
PHYSICAL REVIEW A FEBRUARY 1999VOLUME 59, NUMBER 2
Superrevivals in the quantum dynamics of a particle confined in a finite square-well potential

Anu Venugopalan* and G. S. Agarwal†

Physical Research Laboratory, Navrangpura, Ahmedabad 380 009, India
~Received 18 August 1998!

We examine the revival features in wave-packet dynamics of a particle confined in a finite square-well
potential. The possibility of tunneling modifies the revival pattern as compared to an infinite square-well
potential. We study the dependence of the revival times on the depth of the square well and predict the
existence of superrevivals. The nature of these superrevivals is compared with similar features seen in the
dynamics of wave packets in an anharmonic-oscillator potential.@S1050-2947~99!06302-7#

PACS number~s!: 42.50.Md, 03.65.Ge
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I. INTRODUCTION

The wave packet in quantum mechanics is often view
as the most ‘‘nearly classical’’ state and is known to exhi
many striking classical properties. However, its inher
quantum nature also causes it to exhibit many quantum
chanical features. It is known@1,2# that in certain nonlinear
quantum systems the dynamics of the wave packet inco
rates quantum interference effects which cause it to unde
a sequence of collapses and revivals and in the course o
evolution the wave packet periodically breaks up and rec
stitutes its original form. At intermediate times the wa
packet gathers into a series of subsidiary wave packets c
fractional revivals@3#. Quantum revivals are often a manife
tation of the fact that the time evolution of the wave packe
driven by a discrete eigenvalue spectrum and revival feat
depend on the way the eigenenergies of the quantum sy
depend on the quantum numbern @3,4#. Recently there has
been a lot of interest in the theoretical and experimen
study of quantum revivals in a variety of nonlinear syste
like that of Rydberg atom wave packets@1,2#, molecular
wave packets@5#, wave packets in semiconductor quantu
wells @6#, etc. Most experiments dealing with quantum rev
als to date focus on Rydberg atom wave packets@1,2#, mo-
lecular systems@5#, photon cavity systems@7#, and ions in
traps@8#. The simplest class of systems for which one wou
see fractional and full revivals are those for which the ene
spectrum goes asn2, e.g., the infinite square-well potentia
and the rigid rotator@4#. For systems with a nonquadrat
dependence onn, one can see a new sequence of colla
and revivals which are different from the usual fraction
revivals. Often these sequences culminate with the w
packet resembling its original form more closely. These
superrevivals@4,9#. The revival patterns of Rydberg wav
packets, where the energy spectrum is nonquadratic in,
have been seen to exhibit such superrevivals@9#.

An ideal model system to illustrate the fractional reviv
phenomenon is the infinite square-well potential since sim
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analytical forms of the eigenvalues and the eigenfuncti
allow for an easy analysis of the time evolution of any init
state. This system has recently been studied in great deta
the context of fractional revivals@10,11# as well as for the
space-time structures@12# that appear in the dynamical evo
lution. An experimental realization of the predictions of th
fractional revival phenomenon in the infinite well is mo
likely to be in semiconductor quantum-well systems. In
ality, however, it is rather impossible to find a physical sy
tem that creates a truly infinite confining potential. It b
comes crucial, therefore, to study the problem of revivals
more realistic,physicalsystems which are better describe
by finite-well potentials rather than infinite potentials. Th
possibility of the occurrence of both revivals and superrev
als in a finite potential well has been pointed out before@10#
though no explicit study has been done till now. From
more fundamental point of view, the motivation to study t
finite-well system is to get a greater insight into understa
ing the ‘‘classical limit.’’ During the course of its evolution
an initially localized wave packet appears at certain times
a linear superposition of spatially separated copies of its
i.e., in Schro¨dinger-cat-like states. The tremendous progr
in experiments involving semiconductor systems, e.g, the
servation of quantum beats in quantum wells@6# and Bloch
oscillations in semiconductor superlattices@13#, increases the
prospects of generating, detecting, and studying such ca
states among other features like revivals, thus providing
ther motivation to get a better theoretical understanding
these systems.

In this paper we focus on the revival features of wa
packets infinite square-well potentials and compare it wi
the corresponding case for the infinite well. For our purpo
we have only concerned ourselves with the bound eig
states of the finite square-well potential. According to qua
tum mechanics, the wave function has nonvanishing val
in the classically forbidden regions thus giving a nonvani
ing probability for the particle being outside the well. On
thus expects a difference in the wave-packet dynamics
compared to the infinite-well case. We show that the ex
tence of the possibility of tunneling modifies the revival pa
tern as compared to the infinite square-well potential. In p
ticular, it allows for revivalsand superrevivals. We show
that usual revival times are now longer compared to tha
1413 ©1999 The American Physical Society
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1414 PRA 59ANU VENUGOPALAN AND G. S. AGARWAL
the infinite well and depend on the well depth. The pape
organized as follows. In Sec. II we begin by introducing t
concept of fractional revivals and briefly review the finit
well problem. We then present our numerical results a
confirm the approximate formula of Barkeret al. @14# from
which we deduce an approximate analytical expression
revival times in finite square-well potentials. In Sec. III w
present another key result of this paper which is the existe
of superrevivals during the time evolution of an initi
Gaussian wave packet. The absence of an exact analy
expression for the energy spectrum for the finite poten
well makes it difficult to give an estimate of the superreviv
times. However, we get some insight into the nature of
perrevivals in the well by comparing it with superrevivals
the dynamics of Gaussian wave packets in an anharm
oscillator potential for which we have the analytical resu
Finally, we summarize our results in Sec. IV.

II. DEPENDENCE OF REVIVAL TIMES
ON WELL STRENGTH

Consider the time evolution of a particle initially in sta
c(x,0) in a potential:

c~x,t !5(
n

cnfn~x!e2 iEnt/\, ~1!

wheren is the quantum number andfn(x) and En are the
energy eigenstates and corresponding eigenvalues. The
ficientscn are given in terms of the initial wave function b
cn5^fn(x)uc(x,0)&. In general the superposition~1! may
also contain continuum states for whichn would be a con-
tinuous index and the sum would be replaced by an integ
Here, however, we concern ourselves with only superp
tions of bound states assuming negligible continuum con
butions. Also, one assumes that the expansion~1! is strongly
weighted around a mean valuen̄. Both the assumptions
above are reasonable in, e.g., the experimental situa
when a localized wave packet is produced using a short l
pulse @1#. If one assumes that the weighting probabiliti
ucnu2 are strongly centered around a mean valuen̄, one can
expand the energy in a Taylor series inn aroundn̄ as

En5En̄1En̄
8~n2n̄!1

1

2
En̄

9~n2n̄!21
1

6
En̄

-~n2n̄!31•••,

~2!

where the primes denote derivatives with respect ton. From
Eq. ~2! one can identify the time scales

Tcl5
2p\

uEn̄
8u

, Trv5
2p\
1
2 uEn̄

9u
, Tsr5

2p\
1
6 uEn̄

-u
, . . . , ~3!

etc. which are generally termed in the literature as the c
sical, revival, superrevival times, and so on@4#. One can
easily see that rewriting the time evolution~1! in terms of
these time scales shows how they govern the time evolu
of c(x,0). The time scales in turn are controlled by the d
pendence of the energy on the quantum numbern. For the
simple case of the infinite well, the quantized energy lev
are exactly quadratic inn:
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En5
p2\2n2

2mL2
, ~4!

wherem is the mass of the particle andL is the length of the
well. Corresponding to this, one has the time scalesTcl

52mL2/p\n̄, Trv54mL2/p\ while Tsr5`. The time evo-
lution ~1! can be rewritten as

c~x,t !5(
n

cnfn~x!e22p i ~ t/Trv!n2
. ~5!

The expansion~5! includes both odd and even parity state
It is easy to see that the wave function regains its origi
form, i.e., shows full revivals, whenevert equals some mul-
tiple of Trv , and shows fractional revivals whenevert is
equal to some rational fraction ofTrv , e.g., Trv/4, but no
higher-order effects like superrevivals are seen in the dyn
ics of the wave packet for the infinite square-well potent
@10#.

We now turn to the problem of the finite square-well p
tential which is the focus of this paper. The one-dimensio
finite square-well potential for a well of lengthL can be
described as

V~x!5H 0, uxu<
L

2

V0 , uxu.
L

2
.

~6!

The system thus has three distinct regions and the solut
to the Schro¨dinger equation give us the energy eigensta
and eigenvalues. The even parity solutions for the three
gions are

f I~ x̄!5A ebn cos~an!e2bnx̄, x,
2L

2

f II~ x̄!5A cos~2anx̄!,
2L

2
,x,

L

2
~7!

f III ~ x̄!5A ebn cos~an!e22bnx̄, x.
L

2
,

where the eigenvalues are evaluated by solving the trans
dental equation

an tanan5bn , ~8!

while the odd parity solutions are given by

f I~ x̄!52A ebn sin~an!e2bnx̄, x,
2L

2

f II~ x̄!5A sin~2anx̄!,
2L

2
,x,

L

2
~9!

f III ~ x̄!5A ebn sin~an!e22bnx̄, x.
L

2

with eigenvalues given by the transcendental equation
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PRA 59 1415SUPERREVIVALS IN THE QUANTUM DYNAMICS OFA . . .
an cotan52bn . ~10!

Here x̄5x/L whereL is the length of the square well,an

5AmEL2/2\2, andbn5Am(V02E)L2/2\2, with E the en-
ergy (E,V0) andm the mass of the particle and the norma
ization constantA is given as

A5A 2

111/bn
. ~11!

It is clear from Eqs.~7! and ~9! that the wave function ha
nonvanishing values in both the ‘‘classically forbidden’’ r
gions I and III. The quantum mechanical probability for t
particle to be somewhere in regions I and III is, therefo
nonvanishing. It is clear, though, that as one goes away f
the boundaries, the probability density decreases rapidl
zero. Thus the particle withE,V0 cannot really escape t
infinitely long distances but stays ‘‘bound’’ to the well. On
can define

e5AmV0L2

2\2
~12!

as the ‘‘well strength’’@14#. A finite well of well strengthe
would contain a finite number of bound states,N, whereN
;2e/p11. The time evolution of any given initial states ca
be expressed in terms of these eigenstates and eigenva

c~x,t !5(
n

N

cnfn~x!expS 2
8ian

2t

p D , ~13!

wheret5t/Trv is the time scaled in terms of the revival tim
Trv54mL2/p\, of the infinite-well potential. The expansio
~13! contains both odd and even parity states. For our p
pose we examine the quantum dynamics of an initial Gau
ian wave packet with mean positionx0 and zero mean mo
mentum:

c~x,0!5B expS 2
~ x̄2x0!2

2s2 D , ~14!

where B is the normalization constant. The time evolutio
involves the energy eigenvalues,ans and the corresponding
eigenfunctions which are obtained by solving the transc
dental equations~8! and~10! numerically. A Gaussian wave
packet of zero mean momentum can be faithfully construc
by a superposition of these bound states~the sum of the
coefficients,(ucnu2'1).

Our numerical simulations for the finite well show th
presence of revivals in the dynamics of the initial Gauss
wave packet~14! similar to that seen in the case of th
infinite-well potential for short times. The revival time
however, are in general longer than that of the infinite w
and depend on the well strength~depth! e of the finite well.
Barkeret al. @14# have shown via a first-order Taylor serie
expansion of the transcendental equations~8! and ~10! for
the eigenvalues that the energy levels of a finite well
lengthL and well strengthe can be approximated as
,
m
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f

En85
p2\2n2

2mL2 S e

11e D 2

. ~15!

One can see that this is equivalent to the energy levels fo
infinite well but with the larger length,

L85LS 11
1

e D . ~16!

Corresponding to this approximate expression we can t
find an expression for the approximate revival timeTrv8 for
the finite well in terms ofTrv , the revival time for the infinite
well:

Trv8 5TrvS 11
1

e D 2

. ~17!

The formula of Barkeret al. is more accurate for tightly
bound eigenstates~deeper wells! than for weakly bound
states~shallow wells! @14#.

The revival features for the dynamics of any initial sta
can be understood by examining the absolute square of
autocorrelation function:

uA~t!u25u^c~x,0!c~x,t!&u25U(
n

ucnu2e2 iEnt/\U2

5U(
n

ucnu2e28ian
2t/pU2

. ~18!

Figure 1 shows the square of the autocorrelation functi
uA(t)u2, for an initial Gaussian wave packet for three diffe
ent well strengthse, contrasted with that for the infinite po
tential. One can see that for larger values ofe, the revival
time approaches that of the infinite well (Trv8→Trv). The
agreement of the actual revival times with the formula
Barkeret al. gets more accurate ase increases, as expecte
and as shown in Table I. Thus for short times the dynam
of the wave packet in the finite well is similar to that in th
infinite well with modified revival times which depend o
the depth of the well. For our simulations we work with th
values of the parameters for the initial Gaussian state and
well strengthe such that(ucnu2'1 always. In Fig. 1, note
that the detailed behavior of the autocorrelation function
the infinite well ~solid line! shows a symmetry. In contras
the detailed behavior of the autocorrelation function for t
finite well ~dashed line! shows an asymmetry especial
around the revival time as is quite evident from Fig. 1~a!
which corresponds to the shallowest of the three wellse
512). As the well gets deeper, the asymmetry decrea
and, as expected, the detailed behavior begins to rese
more closely that of the infinite well as is obvious from th
‘‘deeper’’ well shown in Fig. 1~c!.

III. SUPERREVIVALS

In the preceding section we examined the wave-pac
dynamics and the structure of fractional revivals at sh
times, i.e., times of the order of or close toTrv8 . Now we turn
to the behavior at longer times. A look at the square of
autocorrelation function,uA(t)u2, for longer times shows
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1416 PRA 59ANU VENUGOPALAN AND G. S. AGARWAL
that after a few revival cycles, the wave packet cease
‘‘reform’’ faithfully to its original form at t50. The peaks in
uA(t)u2 signifying full revivals go down and then pick u
again after a few cycles and the wave packet is once a
closer to its original form. This new sequence of revivals
characterized by a longer revival time (Tsr). This behavior
depends, as expected, on the depth of the finite well an

FIG. 1. Square of the autocorrelation function,uA(t)u2 vs the
scaled timet (t5t/Trv ,Trv54mL2/p\) for an initial Gaussian
wave packet of widthL/10 centered initially atL/5 for the infinite
well ~solid line! and finite well~dashed line! of well strengths:~a!
e512 (N;8), ~b! e530 (N;20), ~c! e5100 (N;64). ~All
quantities plotted are dimensionless.!
to

in
s

is

more obvious when we are dealing with shallow wells, i.
for smaller values ofe. For larger depthse the usual revivals
continue for more cycles before the peaks inuA(t)u2 go
down and pick up again. The superrevival times, thus,
longer and longer with increase in the well depth. This is
agreement with our expectation that the behavior in a dee
finite well should approach that for the infinite well. It i
interesting to note that while the usual revival times at sh
times decrease with increasing well strengthe and approach
that of the infinite well,Trv54mL2/p\, the superrevival
times increase with increasinge approachingTsr5` for the
infinite well. Since the finite well eigenenergies and eige
functions have no simple analytical form, it is not straigh
forward to estimate these superrevival times for various w
strengthse. Figures 2–4 show the square of the autocorre
tion function, uA(t)u2, vs t for an initial Gaussian wave
packet for two different values of the well strengthe. The
structure of the plot of the square of the autocorrelation fu
tion vs the timet is a reflection of the initial state and de
pends on parameters like the width and the mean positio
the initial Gaussian wave packet. The arrow in these figu
indicates the first superrevival. We have taken the case o
initial wave packet which has its mean position at the cen
of the well (x050.0) for Figs. 2 and 3 and (x050.2L) for
Fig. 4. One can see that there are many revivals much be
the characteristic timeTrv8 ~e.g., there are eight revivals i
Figs. 2 and 3 including the one atTrv8 ). Aronstein and Stroud
@10# have pointed out this feature in their study of wav
packet dynamics in an infinite square-well potential. Th
show that for even parity states, such as the one where
wave packet is initially positioned at the center of the w
(x050.0), there are full revivals at multiples oft5Trv/8.
Similarly, odd parity states show full revivals at multiples
times t5Trv/4. These features are obvious in the case of
dynamics in the infinite square-well potential when o
looks at the time evolution of an initial state in terms of t
even and odd parity eigenstates:

c~ x̄,t!5 (
n~even!

A2e22p in2tcn sin~np x̄!

1 (
n~odd!

A2e22p in2tcn cos~np x̄!. ~19!

Here t5t/Trv is the scaled time andx̄5x/L. For an initial
even parity eigenstate„c( x̄)5c(2 x̄)…, only the second
summation with the cosines contributes. It can be chec
that att5Trv/8, this sum can be written as

TABLE I. Comparison of the revival times,Trva with the revival
times estimated from the approximate formula of Barkeret al.,
Trvb , for various well strengthse. All times are scaled byTrv

54mL2/p\, the revival time for the infinite square well.

~Well strength! Trva Trvb Percentage error

12 (N;8) 1.185 1.174 0.9%
30 (N;20) 1.06777 1.06876 0.09%
100 (N;64) 1.02009 1.02005 0.0039%
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FIG. 2. Square of the autocorrelation function,uA(t)u2, vs the scaled timet for an initial Gaussian wave packet of widthL/10 and with

mean position atx̄50.0 for e512 (N;8); ~d! and ~e! highlight the detailed behavior at shorter times and~f! highlights the detailed
behavior near the superrevival time. The arrow marks the first superrevival. The dashed curves correspond to the corresponding p
infinite square well.~All quantities plotted are dimensionless.!
a
s

c~ x̄,t!5 (
n~odd!

A2e22p in2tcn cos~np x̄!

5(
m

A2c2m11 cos@~2m11!p x̄#e2 ipm~m11!e2 ip/4

5e2 ip/4c~ x̄,0!, n52m11, m50,1,2, . . . .
~20!

At t5Trv/8 the state is the same as what it was att50 except
for a constant phase factor. Thus there will be full revivals
multiples of t5Trv/8. Similarly, for the odd parity state
t

@c( x̄)52c(2 x̄)# the contribution will only be from the
first summation containing the sines. Att5Trv/4, the time
evolved state can then be written as

c~ x̄,t!5 (
n~even!

A2e22p in2tcn sin~np x̄!

5(
m

A2c2m sin~2mp x̄!e22p im2

5c~ x̄,0!, n52m, m50,1,2, . . . . ~21!
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FIG. 3. Square of the autocorrelation function,uA(t)u2, vs the scaled timet for an initial Gaussian wave packet of widthL/10 and with

mean position atx̄50.0 for e515 (N;10). ~d! and ~e! highlight the detailed behavior at shorter times and~f! highlights the detailed
behavior near the superrevival time. The arrow marks the first superrevival. The dashed curves correspond to the corresponding p
infinite square well.~All quantities plotted are dimensionless.!
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Thus full revivals occur here at multiples oft5Trv/4. For the
case where the initial Gaussian has mean positionx050.2L
~a state which does not have a definite parity!, there is a
complete revival only atTrv though partial revivals can b
seen at multiples oft5Trv/3 ~Figs. 1 and 4!. These symmetry
features have an interesting analog in the regeneration c
acteristics of a fieldE(x) of wavelengthl propagating
through a multimode planar waveguide of widthb @15#. If
the field is symmetric in the transverse dimension@E(x)
5E(2x)#, its regeneration length isL5b2/l. An antisym-
metric field regenerates at a distance 2L and arbitrary fields
ar-

reproduce after 8L. In the case of wave-packet dynamics
square-well potentials, these symmetry aspects are m
clearly understood for the infinite square-well potenti
However, it is not surprising that we see similar features
wave-packet dynamics in the finite well analyzed here. Al
notice that for the initial Gaussian wave packet centered
x050.0, the autocorrelation functionuA(t)u2 is never zero
~Figs. 2 and 3!. On the other hand, if we examine the ca
wherex050.2L ~Figs. 1 and 4!, there are times~multiples of
Trv/2 in the infinite-well case andTrv8 /2 for the finite well!
when uA(t)u2 is nearly zero. These times for this particul
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FIG. 4. Square of the autocorrelation function,uA(t)u2, vs the scaled timet for an initial Gaussian wave packet of widthL/10 and with

mean position atx̄50.2L for e512 (N;8). ~d! and ~e! highlight the detailed behavior at shorter times and~f! highlights the detailed
behavior near the superrevival time. The arrow marks the first superrevival. The dashed curves correspond to the corresponding p
infinite square well.~All quantities plotted are dimensionless.!
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initial state (x050.2L) normally correspond to those instan
when the wave packet appears like a mirror reflection
itself and hence has very little overlap with what it was
t50. As mentioned before, the absence of a simple ana
cal form for the energy eigenvalues for the finite well mak
it difficult to find estimates for the superrevival times. Th
nature of these superrevivals and how often they oc
would also depend on various factors like the well stren
and the initial position of the wave packet.
f
t
ti-
s

r
h

Comparison with motion in an anharmonic-oscillator potential

As mentioned above, the lack of an analytical form for t
energy makes it difficult to estimate the superrevival tim
for the finite well. However, to get some insight, the reviv
and superrevival structure in wave-packet dynamics of
finite well may be compared with the wave-packet dynam
in an anharmonic-oscillator potential where one has the e
analytical expression for the energy. We examine the Ham
tonian with nonvanishing third-order terms ina†a:
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FIG. 5. Square of the autocorrelation function,uA(t)u2, vs the scaled timet (t5t/t rv ,t rv52p\/m2) for an initial squeezed vacuum with
squeeze parameters510 andb50.002 for the anharmonic oscillator potential~22!. ~d! and ~e! highlight the detailed behavior at shorte
times and~f! highlights the detailed behavior near the superrevival time,Tsr5t rv /b5500t rv . The arrow marks the first superrevival. Th
dashed curves correspond to the corresponding plot for the case whenm350. ~All quantities plotted are dimensionless.!
on

-
o

on
an

e- tial
H5m2~a†a!21m3~a†a!3, ~22!

wherea and a† correspond to the annihilation and creati
operators, respectively. This system has been studied
Gantsog and Tanas´ @16#, though not in the context of quan
tum revivals. To make a comparison with the dynamics
the Gaussian wave packet in the case of the finite well,
can study the dynamics of initial coherent states
squeezed states for the system described by Eq.~22!. We
assume thatm3!m2 . It can be easily checked that the r
vival times and superrevival times for the system~22! are
given by
by

f
e
d

t rv8 5
t rv

~113n̄b!
,

~23!

tsr5t rv /b,

where t rv52p\/m2 is the revival time without the third-
order term, i.e., withm350 andb5m3 /m2 . n̄ is the av-
erage photon number corresponding to the chosen ini
state. Initial coherent and squeezed states@17# can be ex-
pressed in terms of the Fock statesun& and one can study
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PRA 59 1421SUPERREVIVALS IN THE QUANTUM DYNAMICS OFA . . .
their time evolution. The autocorrelation for an initial cohe
ent state with amplitudea can be easily shown to be

uA~t!u25U(
n

uaune2uau2/2

n!
exp~22p i tn222p ibtn3!U2

,

~24!

while for an initial squeezed state, the autocorrelation fu
tion is given by

uA~t!u25U(
n

2As

~s11!2nn!
S s21

s11D n

Hn
2S sA2a

As221
D

3expS 2
2sa2

s11
22p i tn222p ibtn3DU2

.

~25!

HereHn denotes thenth-order Hermite polynomial,s is the
squeezing parameter@18#, and t5t/t rv is the scaled time.
Although the system described by Eq.~22! is not quite the
same as the finite-well potential, one sees certain similar
in the autocorrelation function in both cases. The time e
lution of an initial squeezed vacuum state (a50) in the
anharmonic oscillator potential~22! can be compared with
that of the narrow Gaussian wave packet centered ax0
50.0 in the finite quantum well. Figure 5 shows the autoc
relation function for the dynamics of an initial squeez
vacuum in the the anharmonic potential~22! with squeezing
parameters510, andb50.002 for short times as well as fo
times close to the superrevival times. In both these cases
can see that the autocorrelation functions never go to z
unlike the case whenx0Þ0.0 for the packet in the finite
potential well andaÞ0 for the coherent state/squeezed st
in the anharmonic potential~results not shown for the anha
monic oscillator model!. For this ‘‘symmetric case,’’ there
are many more revivals at short times and superrevival
longer times in both cases in contrast with the case w
x0Þ0.0 andaÞ0 when there are fewer revivals and sup
revivals. For the anharmonic oscillator the autocorrelat
function also indicates the presence of fractional superre
als as seen in the finite-well potential. In particular, one c
compare the signature of the occurrence of superrevival
t

v.
-

s
-

-

ne
o,

e

at
n

-
n
v-
n
in

both potentials by comparing the detailed structure of
autocorrelation functions at times close to the superrev
times. In both cases one can see that at times nearing
superrevival times, the autocorrelation function begins
look more and more like the behavior neart50 and near the
revival times. Moreover, at exactly these superrevival tim
the form of the autocorrelation function for the finite we
appears very similar to that of the infinite well and in th
corresponding case for the oscillator, the autocorrelat
function at these times resembles the behavior for the c
when m350. At all other times away from the revival an
superrevival times, the autocorrelation functions look ve
different. This is clear from Figs. 2–4 where the detail
behavior of the autocorrelation function for the well at sh
times and near the superrevival times is highlighted. Th
the gross features regarding the nature of revivals and su
revivals of wave packets in the finite potential well are qu
comparable with the dynamics of coherent and squee
states in a generic anharmonic oscillator potential~22!.

IV. CONCLUSION

In conclusion, we have studied the wave packet dynam
in a finite square-well potential in the context of quantu
revivals. We have shown that for short times the reviv
patterns are similar to that seen in the infinite-well potenti
but with a modified revival time which is now dependent
the depth of the finite well. For deep enough wells, the ti
scales approach closer to that of the infinite well. For lon
times, the difference in the wave-packet dynamics as co
pared to the infinite-well potential is manifested by the a
pearance of superrevivals. Superrevivals have till now b
predicted for the long time dynamics of Rydberg wave pa
ets @9#. The analysis in this paper predicts that wave-pac
dynamics in quantum-well systems which can be more re
istically modeled as finite square-well potentials rather th
infinite ones, will show superrevivals in addition to the usu
revivals.
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