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Superrevivals in the quantum dynamics of a particle confined in a finite square-well potential
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We examine the revival features in wave-packet dynamics of a particle confined in a finite square-well
potential. The possibility of tunneling modifies the revival pattern as compared to an infinite square-well
potential. We study the dependence of the revival times on the depth of the square well and predict the
existence of superrevivals. The nature of these superrevivals is compared with similar features seen in the
dynamics of wave packets in an anharmonic-oscillator potefi8dl050-29479)06302-7

PACS numbe(s): 42.50.Md, 03.65.Ge

I. INTRODUCTION analytical forms of the eigenvalues and the eigenfunctions
allow for an easy analysis of the time evolution of any initial
The wave packet in quantum mechanics is often viewedtate. This system has recently been studied in great detail in
as the most “nearly classical” state and is known to exhibitthe context of fractional revivalgl0,11] as well as for the
many striking classical properties. However, its inherentspace-time structurdd 2] that appear in the dynamical evo-
guantum nature also causes it to exhibit many quantum megtion. An experimental realization of the predictions of the
chanical features. It is knowfl,2] that in certain nonlinear fractional revival phenomenon in the infinite well is most
quantum systems the dynamics of the wave packet incorpdikely to be in semiconductor quantum-well systems. In re-
rates quantum interference effects which cause it to undergality, however, it is rather impossible to find a physical sys-
a sequence of collapses and revivals and in the course of item that creates a truly infinite confining potential. It be-
evolution the wave packet periodically breaks up and reconeomes crucial, therefore, to study the problem of revivals in
stitutes its original form. At intermediate times the wave more realistic,physicalsystems which are better described
packet gathers into a series of subsidiary wave packets calldsy finite-well potentials rather than infinite potentials. The
fractional revivalg 3]. Quantum revivals are often a manifes- possibility of the occurrence of both revivals and superreviv-
tation of the fact that the time evolution of the wave packet isals in a finite potential well has been pointed out befdi@
driven by a discrete eigenvalue spectrum and revival featuregiough no explicit study has been done till now. From a
depend on the way the eigenenergies of the quantum systeimore fundamental point of view, the motivation to study the
depend on the quantum numbei3,4]. Recently there has finite-well system is to get a greater insight into understand-
been a lot of interest in the theoretical and experimentaing the “classical limit.” During the course of its evolution
study of quantum revivals in a variety of nonlinear systemsan initially localized wave packet appears at certain times as
like that of Rydberg atom wave packeft$,2], molecular a linear superposition of spatially separated copies of itself,
wave packet$5], wave packets in semiconductor quantumi.e., in Schrainger-cat-like states. The tremendous progress
wells[6], etc. Most experiments dealing with quantum reviv-in experiments involving semiconductor systems, e.g, the ob-
als to date focus on Rydberg atom wave pack&ig], mo-  servation of quantum beats in quantum wéé3$ and Bloch
lecular system¢5], photon cavity systemfr], and ions in  oscillations in semiconductor superlatti¢d8], increases the
traps[8]. The simplest class of systems for which one wouldprospects of generating, detecting, and studying such catlike
see fractional and full revivals are those for which the energytates among other features like revivals, thus providing fur-
spectrum goes as?, e.g., the infinite square-well potential ther motivation to get a better theoretical understanding of
and the rigid rotatof4]. For systems with a nonquadratic these systems.
dependence on, one can see a new sequence of collapse In this paper we focus on the revival features of wave
and revivals which are different from the usual fractional packets infinite square-well potentials and compare it with
revivals. Often these sequences culminate with the wavehe corresponding case for the infinite well. For our purpose
packet resembling its original form more closely. These arave have only concerned ourselves with the bound eigen-
superrevivalg4,9]. The revival patterns of Rydberg wave states of the finite square-well potential. According to quan-
packets, where the energy spectrum is nonguadratig, in tum mechanics, the wave function has nonvanishing values
have been seen to exhibit such superreviyals in the classically forbidden regions thus giving a nonvanish-
An ideal model system to illustrate the fractional revival ing probability for the particle being outside the well. One
phenomenon is the infinite square-well potential since simplehus expects a difference in the wave-packet dynamics as
compared to the infinite-well case. We show that the exis-
tence of the possibility of tunneling modifies the revival pat-

*Electronic address: anu@prl.ernet.in tern as compared to the infinite square-well potential. In par-
TAlso at Max Planck Institut fu Quantenoptik, Garching, Ger- ticular, it allows for revivalsand superrevivals. We show
many. that usual revival times are now longer compared to that of
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the infinite well and depend on the well depth. The paper is w2h2n2
organized as follows. In Sec. Il we begin by introducing the n= > 4
concept of fractional revivals and briefly review the finite- 2mL

Gonffm the approximate formula of Barket &l (14 fom  Wheremis the mass of the partice afds the lengih of the
which we deduce an approximate analytical expression fof€ll- Corresponding to this, one has the time scalgs
revival times in finite square-well potentials. In Sec. Il we =2mL%/w#n, T,=4mL?/=f while Tg=. The time evo-
present another key result of this paper which is the existencgition (1) can be rewritten as

of superrevivals during the time evolution of an initial

Gaussian wave packet. The absence of an exact analytical P(x,t)=> cn¢n(x)e‘2”‘“”w>"2. (5)
expression for the energy spectrum for the finite potential n

well makes it difficult to give an estimate of the superrevival
times. However, we get some insight into the nature of su
perrevivals in the well by comparing it with superrevivals in
the dynamics of Gaussian wave packets in an anharmonic ; ; |
oscillator potential for which we have the analytical results.iPle Of Tr, and shows fractional revivals wheneveis

Finally, we summarize our results in Sec. IV. equal to some rational fraction 4., e.g., T,/4, but no
higher-order effects like superrevivals are seen in the dynam-

ics of the wave packet for the infinite square-well potential
[10].
We now turn to the problem of the finite square-well po-
Consider the time evolution of a particle initially in state tential which is the focus of this paper. The one-dimensional
#¥(x,0) in a potential: finite square-well potential for a well of length can be
described as

The expansiort5) includes both odd and even parity states.
It is easy to see that the wave function regains its original
form, i.e., shows full revivals, wheneveequals some mul-

Il. DEPENDENCE OF REVIVAL TIMES
ON WELL STRENGTH

Y =2 Cogpn(x)e” 5", (D) L
n 0, |X| = E
wheren is the quantum number angl,(x) andE,, are the V(x)= L (6)
energy eigenstates and corresponding eigenvalues. The coef- Vo, [X|>=.
ficientsc, are given in terms of the initial wave function by 2

C”:<¢“(X).| w(x,O)}. In general the sgperposmo(ri) MY The system thus has three distinct regions and the solutions
also contain continuum states for whiohwould be a con-

tinuous index and the sum would be replaced by an integraf0 the Schrdinger equation give us the energy eigenstates

: .and eigenvalues. The even parity solutions for the three re-
Here, however, we concern ourselves with only superposE]icmS are
tions of bound states assuming negligible continuum contris

butions. Also, one assumes that the expanglgis strongly . _ —L

weighted around a mean value Both the assumptions #1(x)=A ebncog a,) €2Pr, X<—-~

above are reasonable in, e.g., the experimental situation

when a localized wave packet is produced using a short laser o L L

pulse[1]. If one assumes that the weighting probabilities du(x)=Acoq2a,x), T<X<§ @)
|c,|? are strongly centered around a mean valy@ne can

expand the energy in a Taylor seriesriraroundn as _ — L
du(x)=A efncogay)e” 2, X>7

— 1 —. 1 _
E,=E,+EX(n—n)+-E-{(n—n)®+ ZE-(n—n)3+. .-, , _
v 2 6 n where the eigenvalues are evaluated by solving the transcen-
(2)  dental equation
where the primes denote derivatives with respeat.trom aytana, =B, (8)
Eg. (2) one can identify the time scales
while the odd parity solutions are given by
27h 27h - 27h 3
C|:_/' Y " Sr: myr — o _L
1= 3 |E; = $i() =~ A nsin(a, €2, x<—=
etc. which are generally termed in the literature as the clas- L
sical, revival, superrevival times, and so pf]. One can A G ) ey
easily see that rewriting the time evoluti¢h) in terms of P00 =ASIN2anx),  —-<x<3 ©

these time scales shows how they govern the time evolution
of ¢(x,0). The time scales in turn are controlled by the de-
pendence of the energy on the quantum numbefor the
simple case of the infinite well, the quantized energy levels
are exactly quadratic in: with eigenvalues given by the transcendental equation

0 = L
du(x)=A efnsin(a,)e” 2P, X>E
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Here x=x/L wherelL is the length of the square welk,
= JmEL?/242, and B,=Vm(V,—E)L?/242, with E the en-  One can see that this is equivalent to the energy levels for an
ergy (E<V,) andmthe mass of the particle and the normal- infinite well but with the larger length,
ization constanA is given as

1

L'=t{1+=
A= (11) ‘
1+1/8,

Corresponding to this approximate expression we can thus
find an expression for the approximate revival tiffig for

the finite well in terms off,,, the revival time for the infinite
well:

. (16)

It is clear from Egs(7) and (9) that the wave function has
nonvanishing values in both the “classically forbidden” re-
gions | and Ill. The guantum mechanical probability for the
particle to be somewhere in regions | and Il is, therefore,
nonvanishing. It is clear, though, that as one goes away from T =Ty
the boundaries, the probability density decreases rapidly to

zero. Thus the particle witk <V, cannot really escape 10 The formula of Barkeret al. is more accurate for tightly
infinitely long distances but stays “bound” to the well. One g nd eigenstate¢deeper wells than for weakly bound

2

1+ - (17
€

can define states(shallow well$ [14].
The revival features for the dynamics of any initial state
mVL2 can be understood by examining the absolute square of the
= o2 (120 autocorrelation function:

2

as the “well strength”[14]. A finite well of well strengthe |A(T) 2= [{g(x,0) (X, 7))|*= ‘ En: |cpl2e ™ 1EnA
would contain a finite number of bound statds,whereN
~2el 7+ 1. The time evolution of any given initial states can

. . . — 2 78’&27'/77
be expressed in terms of these eigenstates and eigenvalues, = En: ol %@ %4 (18

N 8iaﬁ~r Figure 1 shows the square of the autocorrelation function,
P(x)=2 Cn¢n(X)eXP( i (13 |A(7)|2, for an initial Gaussian wave packet for three differ-
" ent well strengths, contrasted with that for the infinite po-
tential. One can see that for larger valuesepfthe revival

wherer=t/T,, is the time scaled in terms of the revival time, . P )
T=4mL?/ 7#, of the infinite-well potential. The expansion time approaches that of the_ '”f'r?"e Welrf('_’T”’)' The
agreement of the actual revival times with the formula of

(13) contains both odd and even parity states. For our pur: keret al. get ¢ ) ted
pose we examine the quantum dynamics of an initial Gauss.E""lr eret al. gets more accurate asincreases, as expectec
ian wave packet with mean positio and zero mean mo- and as shown in Table I. Thus for short times the dynamics

mentum: _of _th_e wave packet in_t_he finit_e WeI_I is similgr to that in the
infinite well with modified revival times which depend on
the depth of the well. For our simulations we work with the
(14) values of the parameters for the initial Gaussian state and the
’ well strengthe such that=|c,|?~1 always. In Fig. 1, note
that the detailed behavior of the autocorrelation function for
whereB is the normalization constant. The time evolution the infinite well (solid line) shows a symmetry. In contrast,
involves the energy eigenvajuesms and the Corresponding the detailed behavior of the autocorrelation function for the
eigenfunctions which are obtained by solving the transcenfinite well (dashed ling shows an asymmetry especially
dental equationg8) and (10) numerically. A Gaussian wave around the revival time as is quite evident from Figa)1
packet of zero mean momentum can be faithfully constructevhich corresponds to the shallowest of the three wetls (

by a superposition of these bound statése sum of the =12). As the well gets deeper, the asymmetry decreases
coefficients,S |c,|?~1). and, as expected, the detailed behavior begins to resemble

Our numerical simulations for the finite well show the more closely that of the infinite well as is obvious from the
presence of revivals in the dynamics of the initial Gaussian‘deeper” well shown in Fig. 1c).
wave packet(14) similar to that seen in the case of the

(X—X)?

P(x,00=B exp( - 7

o

infinite-well potential for short times. The revival times, lll. SUPERREVIVALS
however, are in general longer than that of the infinite well
and depend on the well strengditlepth e of the finite well. In the preceding section we examined the wave-packet

Barkeret al.[14] have shown via a first-order Taylor series dynamics and the structure of fractional revivals at short
expansion of the transcendental equatigsand (10) for  times, i.e., times of the order of or closeT@,. Now we turn
the eigenvalues that the energy levels of a finite well ofto the behavior at longer times. A look at the square of the
lengthL and well strengthe can be approximated as autocorrelation function|A(7)|?, for longer times shows
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(a) TABLE I. Comparison of the revival timeg,,,, with the revival
times estimated from the approximate formula of Barkeml.,

1.0 - Tnp, for various well strengths. All times are scaled byT,,
E =4mL?% 7#, the revival time for the infinite square well.
0.8
(Well strength Tw Tw Percentage error
' a b
i
06 ; ; 12 (N~8) 1.185 1.174 0.9%

IAD) s | 30 (N~20) 1.06777  1.06876 0.09%
04} "': : 100 (N~64) 1.02009 1.02005 0.0039%
02

3 =-".5 more obvious when we are dealing with shallow wells, i.e.,

for smaller values ot. For larger depthg the usual revivals
continue for more cycles before the peaks|&(7)|?> go
down and pick up again. The superrevival times, thus, get
longer and longer with increase in the well depth. This is in
10 . i agreement with our expectation that the behavior in a deeper
finite well should approach that for the infinite well. It is
interesting to note that while the usual revival times at short
times decrease with increasing well strengtand approach
that of the infinite well, T,,=4mL?/7#, the superrevival
times increase with increasingapproachingrl =0 for the
infinite well. Since the finite well eigenenergies and eigen-
functions have no simple analytical form, it is not straight-
forward to estimate these superrevival times for various well
strengthse. Figures 2—4 show the square of the autocorrela-
tion function, |A(7)|?, vs 7 for an initial Gaussian wave
packet for two different values of the well strength The
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0.0 . structure of the plot of the square of the autocorrelation func-
1 tion vs the timer is a reflection of the initial state and de-
(c) pends on parameters like the width and the mean position of

the initial Gaussian wave packet. The arrow in these figures

1.0 indicates the first superrevival. We have taken the case of an
initial wave packet which has its mean position at the center
0.8 of the well (x,=0.0) for Figs. 2 and 3 andx{=0.2L) for
Fig. 4. One can see that there are many revivals much before
0.6 the characteristic timd/, (e.g., there are eight revivals in
LYOK Figs. 2 and 3 including the one &f,). Aronstein and Stroud
04l [10] have pointed out this feature in their study of wave-
’ packet dynamics in an infinite square-well potential. They
show that for even parity states, such as the one where the
02y wave packet is initially positioned at the center of the well
(Xo=0.0), there are full revivals at multiples ot=T,/8.
0.0

0.0 05 “— Similarly, odd parity states show full revivals at multiples of
' ' T ' ' timest=T,/4. These features are obvious in the case of the
dynamics in the infinite square-well potential when one
FIG. 1. Square of the autocorrelation functidA(7)|? vs the  looks at the time evolution of an initial state in terms of the
scaled timer (7=t/T,,,T,=4mL%=#) for an initial Gaussian even and odd parity eigenstates:
wave packet of width./10 centered initially at./5 for the infinite
well (solid line) and finite well(dashed ling of well strengthsi(a)

€=12 (N~8), (b) €=30 (N~20), (C) e=100 (N~64). (Al Py, 1= > 2e 2m’1c sin(nmx)
guantities plotted are dimensionless. n(even
—2min?r o\
that after a few revival cycles, the wave packet ceases to 2 e Cn COIN7X). (19

n(odd)
“reform” faithfully to its original form att=0. The peaks in

|A(7)|? signifying full revivals go down and then pick up

again after a few cycles and the wave packet is once agaiffere 7=1/T,, is the scaled time ang=x/L. For an initial
closer to its original form. This new sequence of revivals iseven parity elgenstatéz//(x) P(— x)) only the second
characterized by a longer revival tim@{). This behavior summation with the cosines contributes. It can be checked
depends, as expected, on the depth of the finite well and ithat att=T,/8, this sum can be written as
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FIG. 2. Square of the autocorrelation functidA(7)|?, vs the scaled time for an initial Gaussian wave packet of width10 and with
mean position ak=0.0 for e=12 (N~8); (d) and (e) highlight the detailed behavior at shorter times afidhighlights the detailed
behavior near the superrevival time. The arrow marks the first superrevival. The dashed curves correspond to the corresponding plot for the
infinite square well(All quantities plotted are dimensionless.

— o2 — [#(x)=—(—x)] the contribution will only be from the
l//(X,T)—nmzdd) V2e 27", cognx) first summation containing the sines. &t T, /4, the time
- _ evolved state can then be written as
= \2Com.1 €09 (2M+ 1) mrx]e i mMm+ Dgimle
" . — « ) — —27in®r, ; A\
:eilﬂml//(X,O), n=2m+ l, m:O,l,Z o ( df(X,T) n(ezver) \/Ee Ch Sln(n’TTX)
20

_ R o a—2mim?
At t=T,/8 the state is the same as what it wat=a0 except - % ‘/Eczm sin(2Zmmx)e
for a constant phase factor. Thus there will be full revivals at
multiples of t=T,/8. Similarly, for the odd parity states =¢(x,0, n=2m, m=0,12.... (21
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FIG. 3. Square of the autocorrelation functidA(7)|?, vs the scaled time for an initial Gaussian wave packet of width10 and with
mean position ak=0.0 for e=15 (N~10). (d) and (e) highlight the detailed behavior at shorter times dfdhighlights the detailed
behavior near the superrevival time. The arrow marks the first superrevival. The dashed curves correspond to the corresponding plot for the

infinite square well(All quantities plotted are dimensionless.

reproduce after B. In the case of wave-packet dynamics in
square-well potentials, these symmetry aspects are more
clearly understood for the infinite square-well potential.
complete revival only aff,, though partial revivals can be However, it is not surprising that we see similar features for
seen at multiples af=T, /3 (Figs. 1 and 4 These symmetry wave-packet dynamics in the finite well analyzed here. Also,
features have an interesting analog in the regeneration chametice that for the initial Gaussian wave packet centered at
acteristics of a fieldE(x) of wavelength\ propagating X,=0.0, the autocorrelation functiofA(7)|? is never zero
through a multimode planar waveguide of widtH15]. If (Figs. 2 and R On the other hand, if we examine the case
the field is symmetric in the transverse dimens|d#(x) wherex,=0.2L (Figs. 1 and 4 there are timeémultiples of
=E(—x)], its regeneration length is=b%\. An antisym-  T,/2 in the infinite-well case and,/2 for the finite wel)
metric field regenerates at a distande @nd arbitrary fields when|A(7)|? is nearly zero. These times for this particular

Thus full revivals occur here at multiples oE T, /4. For the
case where the initial Gaussian has mean positjpn0.2L
(a state which does not have a definite payithere is a
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FIG. 4. Square of the autocorrelation functipa(7)|?, vs the scaled time for an initial Gaussian wave packet of width10 and with
mean position ak=0.2L for e=12 (N~8). (d) and (e) highlight the detailed behavior at shorter times gfdhighlights the detailed
behavior near the superrevival time. The arrow marks the first superrevival. The dashed curves correspond to the corresponding plot for the
infinite square well(All quantities plotted are dimensionless.

initial state ko=0.2L) normally correspond to those instants Comparison with motion in an anharmonic-oscillator potential
when the wave packet appears like a mirror reflection of ag mentioned above, the lack of an analytical form for the
itself and hence has very little overlap with what it was atenergy makes it difficult to estimate the superrevival times
t=0. As mentioned before, the absence of a simple analytifor the finite well. However, to get some insight, the revival
cal form for the energy eigenvalues for the finite well makesand superrevival structure in wave-packet dynamics of the
it difficult to find estimates for the superrevival times. The finite well may be compared with the wave-packet dynamics
nature of these superrevivals and how often they occuin an anharmonic-oscillator potential where one has the exact
would also depend on various factors like the well strengthanalytical expression for the energy. We examine the Hamil-
and the initial position of the wave packet. tonian with nonvanishing third-order terms aa:
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FIG. 5. Square of the autocorrelation functipi(7)|?, vs the scaled time (r=t/t,, ,t,= 2%/ u,) for an initial squeezed vacuum with
squeeze parametsr=10 andB=0.002 for the anharmonic oscillator potenti@P). (d) and (e) highlight the detailed behavior at shorter
times and(f) highlights the detailed behavior near the superrevival timgst,, /8=50Q,,. The arrow marks the first superrevival. The
dashed curves correspond to the corresponding plot for the casepgled. (All quantities plotted are dimensionless.

H=uy(a'a)?+ ua(a’a)?, (22

trv
t=—,
wherea anda' correspond to the annihilation and creation Y (1+3np)
operators, respectively. This system has been studied by (23)
Gantsog and Tand46], though not in the context of quan- to=t. /B
sr— trv 1

tum revivals. To make a comparison with the dynamics of
the Gaussian wave packet in the case of the finite well, one . . . ) .
can study the dynamics of initial coherent states andvheretn=2wfi/u, is the revival time without the third-
squeezed states for the system described by(Z2). We  order term, i.e., withuz=0 and=pu3/u,. nis the av-
assume thajug<<u,. It can be easily checked that the re- erage photon number corresponding to the chosen initial
vival times and superrevival times for the syst¢p®) are  state. Initial coherent and squeezed stdd can be ex-
given by pressed in terms of the Fock staies and one can study
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their time evolution. The autocorrelation for an initial coher- both potentials by comparing the detailed structure of the
ent state with amplitude: can be easily shown to be autocorrelation functions at times close to the superrevival
times. In both cases one can see that at times nearing the
superrevival times, the autocorrelation function begins to
look more and more like the behavior neatr 0 and near the

(24) revival times. Moreover, at exactly these superrevival times

the form of the autocorrelation function for the finite well

while for an initial squeezed state, the autocorrelation funcappears very similar to that of the infinite well and in the

|n - a\ 12 2
—————exp(— 2mi™?—2mi B3| ,

|A(7)|2= ‘E o

tion is given by corresponding case for the oscillator, the autocorrelation

function at these times resembles the behavior for the case
2 2\s (S—l ", s\2a when u3;=0. At all other times away from the revival and

A(7)[*= ; (s+ 1)2nn,\s+1 " /-1 superrevival times, the autocorrelation functions look very

' different. This is clear from Figs. 2—4 where the detailed

2502 2 behavior of the autocorrelation function for the well at short

Xexy{ ) i 2 277i,87n3) times and near the superrevival times is highlighted. Thus
the gross features regarding the nature of revivals and super-

(25) revivals of wave packets in the finite potential well are quite
comparable with the dynamics of coherent and squeezed

HereH, denotes thenth-order Hermite polynomiak is the  states in a generic anharmonic oscillator poter(#3).
squeezing parametgd 8], and r=t/t,, is the scaled time.
Although the system described by E2) is not quite the
same as the finite-well potential, one sees certain similarities
in the autocorrelation function in both cases. The time evo- In conclusion, we have studied the wave packet dynamics
lution of an initial squeezed vacuum state=0) in the in a finite square-well potential in the context of quantum
anharmonic oscillator potenti&l2) can be compared with revivals. We have shown that for short times the revival
that of the narrow Gaussian wave packet centerecpat patterns are similar to that seen in the infinite-well potentials
=0.0 in the finite quantum well. Figure 5 shows the autocor-but with a modified revival time which is now dependent on
relation function for the dynamics of an initial squeezedthe depth of the finite well. For deep enough wells, the time
vacuum in the the anharmonic potent{@P) with squeezing scales approach closer to that of the infinite well. For longer
parametes= 10, andB=0.002 for short times as well as for times, the difference in the wave-packet dynamics as com-
times close to the superrevival times. In both these cases omared to the infinite-well potential is manifested by the ap-
can see that the autocorrelation functions never go to zerg@earance of superrevivals. Superrevivals have till now been
unlike the case whemxy+# 0.0 for the packet in the finite predicted for the long time dynamics of Rydberg wave pack-
potential well andx# 0 for the coherent state/squeezed stateets[9]. The analysis in this paper predicts that wave-packet
in the anharmonic potenti@tesults not shown for the anhar- dynamics in quantum-well systems which can be more real-
monic oscillator model For this “symmetric case,” there istically modeled as finite square-well potentials rather than
are many more revivals at short times and superrevivals ahfinite ones, will show superrevivals in addition to the usual
longer times in both cases in contrast with the case wherevivals.
Xo# 0.0 anda# 0 when there are fewer revivals and super-
revivals. For _the_ anharmonic oscillator the_ autocorrelatio_n ACKNOWLEDGMENT
function also indicates the presence of fractional superreviv-
als as seen in the finite-well potential. In particular, one can One of us(G.S.A) is grateful to W. Schleich for useful
compare the signature of the occurrence of superrevivals idiscussions on the dynamics of wave packets.

IV. CONCLUSION
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