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Reconstruction of an entangled state in cavity QED

M. S. Kim1,* and G. S. Agarwal1,2
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We suggest a scheme to reconstruct a two-mode entangled state in cavity QED by using the interaction of
a V-configuration three-level atom and by driving the cavity field. After the atomic interaction with the cavity
fields, the probability of the atom being in its initial ground state is found to be directly related to the two-mode
Wigner characteristic function. The Wigner function and the four-dimensional density-matrix elements can be
obtained for the two-mode entangled field by simple transformations. We consider both the cases where two
entangled modes are prepared in one cavity or in two spatially separated cavities.@S1050-2947~99!03304-1#

PACS number~s!: 42.50.Ct, 03.70.1k
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I. INTRODUCTION

In recent times, the subject of state reconstruction
become a major field of study in quantum optics@1,2#. The
quasiprobability functions and density matrices have b
measured experimentally for single-mode running fields
ing the homodyne scheme@3#. There are also novel propos
als to reconstruct quantum states by photon statistics. D
photodetection of a light field gives information only on th
diagonal elements of its density matrix so an auxiliary dev
is needed before photodetection of the field; the device
be a beam splitter or a linear amplifier@4#. A quantum state
has been experimentally reconstructed for a one-dimensi
harmonic motion in a trap by considering the excitati
probability for the ion’s electronic state@5#. There have also
been proposals for a magnetic field@6# and for an atomic
state@7#. Quantum-state reconstruction schemes have b
suggested for the fields in high-Q cavities@1,8,9#. However,
most of the earlier reconstruction schemes are for sin
mode fields apart from the work of Raymeret al. @10#, where
they study reconstruction of a two-mode running field.
this paper we are interested in reconstruction of a two-m
entangled cavity field.

Entangled states have been at the focus of discussion
quantum optics. Two-system entanglement@11# allows more
diverse measurement schemes which can admit tests of
realism@12#. In the heart of quantum teleportation, compu
ing, and cryptography, entanglement resides@13–15#. Pro-
posals to entangle fields in two spatially separated cav
exist @16,17#. Furthermore, it has recently been sugges
that an unknown atomic state can be teleported between
cavities which are entangled@18#. A two-level atom in its
excited state passes sequentially through two resonant si
mode cavities and is found to be in its ground state after
second-cavity interaction. The atom could have deposite
photon either in the first cavity or in the second so that
final stateuC f& of the two-cavity field is@16#

uC f&5A1u1,0&1A2u0,1&, ~1!

*On leave from Department of Physics, Sogang Univers
C.P.O. Box 1142, Seoul, Korea.
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whereu1,0& denotes one photon in the first cavity and none
the second, andu0,1& vice versa. It is also possible to produc
coherent state entanglementuCc& between two separate cav
ties @17#:

uCc&5B1ua,0&1B2u0,a&, ~2!

whereua,0& denotes the first cavity in the coherent stateua&
and the second in the vacuum. A two-level atom pas
through two far-off resonant cavities where an external dr
ing field is simultaneously coupled. The external drivin
field is switched on by the atom being in its excited state.
preparing the atom in a superposition of excited and gro
states, the atomic switch is in a quantum superposition.
atomic quantum switch can entangle two cavities to be in
state~2!.

Meystre @16# and Davidovichet al. @17# suggested tha
the probability of atomic inversion for the second ato
would reflect the interference between two-component sta
In this paper we propose a scheme to reconstruct two-m
entangled states in high-Q cavities. We assume two cases
cavity-field entanglement:~i! Entanglement of two-mode
fields in a cavity, and~ii ! entanglement of two-mode fields o
which one mode is in a cavity and the other mode is in
spatially separate cavity. In this paper, we only examine
question of reconstruction of the two-mode entangled sta
in a cavity or in two separate cavities assuming that the
tangled states have been prepared.

There have been studies on reconstructing asingle-mode
field in a cavity by probing it with two-level atoms@1#. In
particular, Kim et al. found that the probability of atomic
inversion after a two-level atom interacts with a cavity fie
is directly related to the Wigner characteristic function@9#,
which is the Fourier transform of the Wigner function. W
consider the following scheme to reconstruct the state o
two-mode field. We first displace the original entangled st
by coupling resonant classical fields to the cavities. We th
prepare aV-configuration three-level atom in its ground sta
and send it to interact with cavity fields. Throughout t
paper we assume high-Q cavities so that the temporal evo
lution of the combined atom-field system is almost reve
ible, described by a three-level Jaynes-Cummings-type in
action@19#. This condition fits well the current experiment
situation where the cavity damping time is three orders
,
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magnitude larger than the atom-field interaction time@20#.
After the interaction, the atoms are detected in one of
atomic energy eigenstates by state-selective field-ioniza
techniques. We show that the probability of the atom be
in its initial ground state is directly related to the two-mo
Wigner characteristic function@21#.

We derive the atomic evolution in a driven two-mod
cavity in Sec. II. We show the relation between the grou
state population density of the atom and the character
function for the two-mode Wigner function. We next exte
this result to the case of quantum-state reconstruction
entanglement of two separate cavities in Sec. III.

II. ENTANGLEMENT IN A CAVITY

We prepare a high-Q cavity with a two-mode entangle
state given by the density operatorr̂F . Now we perform a
displacement of the initial state in phase space by applyin
unitary transformation

r̂F~a,b!5D̂a~a!D̂b~b!r̂D̂b
†~b!D̂b

†~a!

with the displacement operator

Da~a!5exp~aâ†2a* â!; Db~b!5exp~bb̂†2b* b̂!.
~3!

Here â(b̂) and â†(b̂†) are the annihilation and creation op
erators of the field modea ~b! anda(b) is a complex num-
ber characterizing the amplitude and phase of the displ
ment. For a single-mode micromaser experiment,
displacement of the cavity field is carried out by coupling
resonant classical oscillator to the cavity field@22#.

We inject aV-configuration three-level atom with two ex
cited statesua& andub& coupled to the common ground sta
ug&. The atom interacts with a two-mode field in a perfe
cavity. A field mode of the annihilation operatorâ is reso-
nant with theua&↔ug& transition and the other field mode o
the annihilation operatorb̂ is resonant with theub&↔ug&
transition. The schematic representation of the atom-ca
interaction is sketched in Fig. 1. Under the rotating-wa
approximation, the Hamiltonian in the interaction picture

Ĥ5\ka~ âua&^gu1â†ug&^au!1\kb~ b̂ub&^gu1b̂†ug&^bu!,
~4!

FIG. 1. Atomic interaction with an entangled two-mode field
a cavity.
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whereka andkb are the coupling constants, respectively, f
the ua&↔ug& and ub&↔ug& transitions.

The density operator for the combined atom-field syst
follows a unitary time evolution generated by the time ev
lution operator,Û(t)5exp(2iĤt/\). The evolution operator
has been studied for aL-configuration three-level atom in
teracting with a two-mode field@23,19#. Before the atom-
field interaction, the atom is initially prepared in its groun
state and the two-mode entangled state is displaced in
cavity. The initial atom-field density operator, thus, is

r̂~0!5 r̂F~a,b! ^ ug&^gu. ~5!

The probabilityPg of the atom being in its ground state aft
the interaction timet is then

Pg5TrF^guÛ~ t !r̂~0!Û†~ t !ug&, ~6!

where TrF is the trace over the field variables. Using th
evolution operatorÛ(t) for three-level systems@23,19# we
find the result

Pg5Tr@rF~a,b!cos2Aka
2ââ†1kb

2b̂b̂†t#5TrF@ r̂F cos2 Q̂#,
~7!

where the argument operator of the cosine function is

Q̂5D̂a
†~a!D̂b

†~b!Aka
2ââ†1kb

2b̂b̂†tD̂b~b!D̂a~a!

5@ka
2~ ââ†1uau2!1kb

2~ b̂b̂†1ubu2!1ka
2~a* â1aâ†!

1kb
2~b* b̂1bb̂†!#1/2. ~8!

When the displacementsa50 andb50, the probabilityPg
depends only on the energy distribution of the cavity fie
However, with the displacementaÞ0 andbÞ0, the atomic
inversion may carry information on phase, i.e., off-diagon
elements of the density operatorr̂, as well.

One of the important ingredients of our reconstructi
scheme is that the driving field has to be much stronger t
the cavity field. It is normally true that photon statistics
the strongly drivencavity field is near Poissonian and i
photon-number distribution has a dominant maximum at
mean photon number. Under this condition the Rabi osci
tions in atomic inversion show collapses and revivals@24#. If
we restrict ourselves to the atomic interaction before the fi
revival time, we can further approximate the argument o
eratorQ̂. In this regime, the argument of the cosine functi
in Eq. ~8! is approximated by

Q̂'Aka
2uau21kb

2ubu2t1
ka

2

2Aka
2uau21kb

2ubu2
~a* â1aâ†!

1
kb

2

2Aka
2uau21kb

2ubu2
~b* b̂1bb̂†!. ~9!

The first term on the right-hand-side of Eq.~9! is the Rabi
frequency. Substituting the argument operatorQ̂ back to Eq.
~7!, we find the probability of the atom being in the groun
state in the form
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Pg~ t !'
1

2
1

1

4
@e2iVt TrF r̂FD̂a~ma!D̂b~mb!1c.c.#,

~10!

where c.c. stands for the complex conjugate and the par
eters are defined as

V5Aka
2uau21kb

2ubu2, ~11!

ma5
ika

2a

Aka
2uau21kb

2ubu2
,

mb5
ikb

2b

Aka
2uau21kb

2ubu2
.

Here, we can see that the probabilityPg has a direct relation
with the characteristic function

CW~h,j!5Tr@ r̂FD̂a~h!D̂b~j!# ~12!

for the two-mode Wigner function@21# of the original cavity
field.

Equations~10! and ~12! show that experimentally mea
sured data 122Pg are directly related to the two-mod
Wigner characteristic functionCW(h,j). A similar result
was obtained for the quantum-state reconstruction o
single-mode cavity field@9#. However, it is not a mere ex
tension of the single-mode case as we note that the mea
ment of the atom being in the ground state gives full inf
mation on entanglementof two modes. Measurement o
phase information for a single mode is possible becaus
the initial displacement of the field but the measuremen
the two-mode entanglement is not obvious. A measurem
of atomic coherences is not needed but the ground-s
population is enough to measure the entanglement. Th
due to the fact that the ground state can be populated
either theua&→ug& or ub&→ug& transition and the ground
state population reflects the interference between theua&
→ug& and ub&→ug& transitions. If the atom had a casca
configuration of the ground, intermediate, and excited ene
states, the ground-state population would not give all
information on entanglement as the ground state is popul
only by the transition from the intermediate state.

The phases of the driving fields determine which axes
the characteristic function the measured data refer to.
probability Pg is related to the real part of the characteris
function for Vt5np and the imaginary part forVt5(n
1 1

4 )p, wheren50,1,2, . . . . By theFourier transformation
of the measured data we obtain the two-mode Wigner fu
tion. Measuring the characteristic function is important a
because it gives all the statistical information of a quant
state and the density matrix of the state. Extending
single-mode operator identity@25#, we obtain two-mode
density-matrix elements in Fock basis:

rmnm8n85
1

p2E d2hE d2j CW~h,j!

3a^muD̂a~2h!un&ab^m8uD̂b~2j!un8&b ,

~13!
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where

a^muD̂a~2h!un&a5a^nuD̂a~2h!um&a*

5Am!

n!
e2uhu2/2~h* !n2mLm

n2m~ uhu2!

~14!

with the Laguerre polynomialLn
m2n(umu2).

Let us consider a Bell-type entangled state

uCB&5eu0&au0&b1su1&au1&b ~15!

for which the nonvanishing matrix elements are

r00005ueu2, r01015es* , r10105e* s, r11115usu2.
~16!

Differences between the classical statistical mixture state
the entangled state appear due to the nonvanishing
diagonal termsr0101 andr1010, which can be obtained as th
weighted integral of the characteristic function

r01015
1

p2E d2hE d2j CW~h,j!h* j*

3exp@2 1
2 ~ uhu21uju2!# ~17!

which has been derived using Eqs.~13! and ~14!. Here the
characteristic function is the measured data and the sim
weighted integral gives the value of the density-matrix e
ment.

Similar results can be derived for other types of sta
such as the coherent entangled state

uCA&5euz&auy&b1suy&auz&b , ~18!

whereuz&a and uy&b are coherent states.

III. ENTANGLEMENT OF TWO CAVITIES

We now consider the case of two spatially separ
single-mode cavities that are entangled. After producing
entangled state of the density matrixr̂F , we couple the cavi-
ties with strong classical fields to displace the cavity fiel
The displaced cavity fields in the two cavities will be repr
sented by the density operatorr̂F(a,b) as done earlier for
the single cavity case. To reconstruct the quantum state
send aV-configuration three-level atom to interact with th
two driven cavities sequentially as shown in Fig. 2. We n

FIG. 2. A V-configuration three-level atom interacts with tw
cavities sequentially. Each cavity is a single-mode cavity. The fi
cavity field resonantly excites theug&↔ua& transition and the sec
ond excites theug&↔ub& transition.
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glect the loss of cavity fields during the time when the at
flies through both the cavities. We also assume that the a
does not lose its coherence during the flight between
cavities. Theug&↔ua& transition of the atom is resonant wit
the field modea of the first cavity and theug&↔ub& transi-
tion is resonant with the field modeb of the second cavity.

We can easily derive the Hamiltonian for atomic intera
tion in the first and second cavities as we set, respectiv
kb50 andka50, for Eq. ~4!. We then calculate the evolu
tion operators,Ûa(ta) andÛb(tb), for atom-field interaction
within the two cavities. Assuming the atom initially in it
ground state, the density operatorr̂(0) for the atom-field
system is as shown in Eq.~5!. After interaction with both the
cavities, the probabilityPg of the atom being in the groun
state is

Pg5TrF@^guÛb~ tb!Ûa~ ta!r̂~0!Ûa
†~ ta!Ûb

†~ tb!ug&#

5TrF@rF~a,b!cos2~Aââ†kata!cos2~Ab̂b̂†kbtb!#.

~19!

This probability can be rearranged as

Pg5
1

4
1

1

16
Pg

ab1
1

8
Pg

a1
1

8
Pg

b , ~20!

where

Pg
ab5TrF@ r̂F~a,b!~e2iAââ†kata1e22iAââ†kata!

3~e2iAb̂b̂†kbtb1e22iAb̂b̂†kbtb!#,

Pg
a5TrF@ r̂F~a,b!~e2iAââ†kata1e22iAââ†kata!#,

Pg
b5TrF@ r̂F~a,b!~e2iAb̂b̂†kbtb1e22iAb̂b̂†kbtb!#. ~21!

In our quantum-state reconstruction scheme, the driv
fields are assumed to be strong and the atomic interac
time is shorter than the first revival time. With a simil
analysis to the single-cavity case, we can easily see thatPg

ab

in Eq. ~21! is related to the two-mode Wigner characteris
function, Pg

a to the single-mode Wigner characteristic fun
tion for the modea in the first cavity, andPg

b to the single-
mode Wigner characteristic function for the modeb in the
second cavity. In fact,Pg

a andPg
b are the probabilities of the

atom being in the ground state as the atom interacts o
with the first or the second cavity, respectively. These m
ginal probabilitiesPg

a andPg
b can be measured in the suppl

mentary experiments and we can get the two-mode Wig
characteristic function as we subtract the contributions ofPg

a

andPg
b from the probabilityPg in Eq. ~20!.

However, for the Bell-type state, Eq.~15!, the off-
diagonal density-matrix elementr0101 does not require the
supplementary experiments of measuring the marginal p
abilities because contributions ofPg

a and Pg
b vanish in the

weighted integral, Eq.~17!, as the weighting is an odd func
tion.
m
o

-
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g
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r-
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b-

IV. REMARKS

There are some causes of experimental errors. Atoms
sent to the cavity from an opening in a thermal oven a
therefore have random Poisson distributed interaction ti
Even though the width of the Poisson distribution can be
small asDt/t51% @22#, this can cause some errors. Th
probability of the atom being in the ground state is appro
mately given by Eq.~10! when the intensity of the driving
field is strong. To get the characteristic function~12! from
measurements ofPg(t), the interaction times have to be pre
cise. When the driving field is intense, the Rabi frequency
large and even a small fluctuation in the interaction time c
be fatal. Thus in the experimental realization, the intensity
the driving field has to be carefully chosen. When the ch
acteristic function is real, the envelope of the Rabi oscil
tions in Pg(t) is the characteristic function as shown in E
~10!. For the single-mode quantum-state reconstruction
error caused by the fluctuation of the interaction time h
been considered by Kimet al. @9#. Similar conclusions apply
to the two-mode problem.

In this paper we have been interested in reconstruction
small-amplitude quantum states. When an atom intera
with the strongly driven quantum state, there appear c
lapses and revivals in atomic inversion. The approxima
probability Pg(t) is correct only before the first revival s
that we study the ground-state probabilitiesPg(t) before the
revival and Fourier-transform them to get the Wigner fun
tion. The revival time depends on the intensity of the drivi
field. In the strong driving-field limit, as the collapse time
long we can collect enough experimental data to get
Wigner function or density-matrix elements. Atoms m
pass the channeltron detectors without having been dete
in which case we have to restart the experiment. Once
atom is measured, the chance for the measurement to
wrong is negligible so the detection efficiency should not
an important obstacle.

Quantum entanglement is at the heart of current deve
ments of quantum information theory. In this paper we su
gested schemes for reconstructing the entangled states
have considered the reconstruction schemes for the enta
ment of two modes in a cavity and in two spatially separ
cavities. We have shown that the probability of th
V-configuration three-level atom being in its ground state
directly related to the two-mode Wigner characteristic fun
tion. The two-mode Wigner function and the density-mat
elements can be obtained from the characteristic funct
We add that our emphasis has been on the entangled s
though the formula~10! holds for all states of a two-mod
field, for example, it would apply to the important case
two-mode squeezed vacuum in which the mode-mode co
lation is also important.
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