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Reconstruction of an entangled state in cavity QED
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We suggest a scheme to reconstruct a two-mode entangled state in cavity QED by using the interaction of
a V-configuration three-level atom and by driving the cavity field. After the atomic interaction with the cavity
fields, the probability of the atom being in its initial ground state is found to be directly related to the two-mode
Wigner characteristic function. The Wigner function and the four-dimensional density-matrix elements can be
obtained for the two-mode entangled field by simple transformations. We consider both the cases where two
entangled modes are prepared in one cavity or in two spatially separated c8iti@50-294{@9)03304-1

PACS numbgs): 42.50.Ct, 03.70tk

I. INTRODUCTION where|1,0) denotes one photon in the first cavity and none in
the second, an®,1) vice versa. It is also possible to produce
In recent times, the subject of state reconstruction hasoherent state entangleméHt.) between two separate cavi-
become a major field of study in quantum optids2]. The  ties[17]:
guasiprobability functions and density matrices have been
measured experimentally for single-mode running fields us- | W) =B4|a,0)+B,|0,a), (2
ing the homodyne schenj8]. There are also novel propos-
als to reconstruct quantum states by photon statistics. Direathere|«,0) denotes the first cavity in the coherent state
photodetection of a light field gives information only on the and the second in the vacuum. A two-level atom passes
diagonal elements of its density matrix so an auxiliary devicehrough two far-off resonant cavities where an external driv-
is needed before photodetection of the field; the device caing field is simultaneously coupled. The external driving
be a beam splitter or a linear amplifigt]. A quantum state field is switched on by the atom being in its excited state. By
has been experimentally reconstructed for a one-dimensiongkeparing the atom in a superposition of excited and ground
harmonic motion in a trap by considering the excitationstates, the atomic switch is in a quantum superposition. The
probability for the ion’s electronic staf&]. There have also atomic quantum switch can entangle two cavities to be in the
been proposals for a magnetic fidlé] and for an atomic state(2).
state[7]. Quantum-state reconstruction schemes have been Meystre[16] and Davidovichet al. [17] suggested that
suggested for the fields in higl-cavities[1,8,9. However, the probability of atomic inversion for the second atom
most of the earlier reconstruction schemes are for singlewould reflect the interference between two-component states.
mode fields apart from the work of Raymedral.[10], where  In this paper we propose a scheme to reconstruct two-mode
they study reconstruction of a two-mode running field. Inentangled states in higQ-cavities. We assume two cases of
this paper we are interested in reconstruction of a two-modeavity-field entanglement(i) Entanglement of two-mode
entangled cavity field. fields in a cavity, andii) entanglement of two-mode fields of
Entangled states have been at the focus of discussions which one mode is in a cavity and the other mode is in a
guantum optics. Two-system entanglemii] allows more  spatially separate cavity. In this paper, we only examine the
diverse measurement schemes which can admit tests of locgliestion of reconstruction of the two-mode entangled states
realism[12]. In the heart of quantum teleportation, comput-in a cavity or in two separate cavities assuming that the en-
ing, and cryptography, entanglement resifi#8—15. Pro-  tangled states have been prepared.
posals to entangle fields in two spatially separated cavities There have been studies on reconstructirgingle-mode
exist [16,17. Furthermore, it has recently been suggestedield in a cavity by probing it with two-level atomd]. In
that an unknown atomic state can be teleported between twearticular, Kim et al. found that the probability of atomic
cavities which are entangldd8]. A two-level atom in its inversion after a two-level atom interacts with a cavity field
excited state passes sequentially through two resonant singlig- directly related to the Wigner characteristic functié,
mode cavities and is found to be in its ground state after thevhich is the Fourier transform of the Wigner function. We
second-cavity interaction. The atom could have deposited eonsider the following scheme to reconstruct the state of a
photon either in the first cavity or in the second so that thawo-mode field. We first displace the original entangled state
final state| W) of the two-cavity field i16] by coupling resonant classical fields to the cavities. We then
prepare &/-configuration three-level atom in its ground state
and send it to interact with cavity fields. Throughout the
| P y=A1,00+A,|0,1), (1) paper we assume hig-cavities so that the temporal evo-
lution of the combined atom-field system is almost revers-
ible, described by a three-level Jaynes-Cummings-type inter-
*On leave from Department of Physics, Sogang University,action[19]. This condition fits well the current experimental
C.P.0. Box 1142, Seoul, Korea. situation where the cavity damping time is three orders of
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Classical field wherek, andk,, are the coupling constants, respectively, for
in mode a the |a)«|g) and|b)«|g) transitions.
H The density operator for the combined atom-field system

follows a unitary time evolution generated by the time evo-
lution operator,U(t) =exp(~iHt/4). The evolution operator

1 b> — — — - has been studied for A-configuration three-level atom in-
> teracting with a two-mode fiel@i23,19. Before the atom-
o> & il:, EQS field interaction, the atom is initially prepared in its ground

state and the two-mode entangled state is displaced in the
H cavity. The initial atom-field density operator, thus, is

Classical field

in mode b ;(O):IAJF(Q’”B)®|9><9|- (5

The probabilityP 4 of the atom being in its ground state after
the interaction time is then

FIG. 1. Atomic interaction with an entangled two-mode field in
a cavity.

magnitude larger than the atom-field interaction tifae]. Py=Tre(glU(t)p(0)UT(1)[g), (6)
After the interaction, the atoms are detected in one of the h Te is the t the field iabl Using th
atomic energy eigenstates by state-selective field-ionizatiof ere. k15 Ine trace over the Tield variables. sing the
techniques. We show that the probability of the atom beingfvomt'on operatotJ (t) for three-level systemf23,19 we

in its initial ground state is directly related to the two-modefind the result

Wigner characteristic functiof21]. — — . .

We derive the atomic evolution in a driven two-mode Pg=Trlpr(a,B)cog kiaa’+ kZbb't]="Tre[pe cog 0],
cavity in Sec. Il. We show the relation between the ground- (7)
state population density of the atom and the characteristic . L
function for the two-mode Wigner function. We next extend WNere the argument operator of the cosine function is

this result to the case of quantum-state reconstruction for At At \/W A .
entanglement of two separate cavities in Sec. Il 0=D(a)Dy(B) Vrzaa ' + kybbtDy(B)Da( @)
Il. ENTANGLEMENT IN A CAVITY =[3(aa"+ |af?) + KG(BDT+| BI*) + k3(a* a+adl)
5 a

We prepare a hig) cavity with a two-mode entangled + (B b+ Bb") ]2 8
state given by the density operatee. Now we perform a
displacement of the initial state in phase space by applying
unitary transformation

When the displacements=0 and =0, the probabilityP
aepends only on the energy distribution of the cavity field.
However, with the displacemeat#0 andB+ 0, the atomic

f)F(a,B)=|5a(a)f)b([3)f>|5g(/3)f)g(a) inversion may carry ipformatiotl on phase, i.e., off-diagonal
elements of the density operatoy as well.
with the displacement operator One of the important ingredients of our reconstruction
A R R R scheme is that the driving field has to be much stronger than
D,(a)=expaa’—a*a); D,(B)=expBb'—pB*b). the cavity field. It is normally true that photon statistics of

(3)  the strongly drivencavity field is near Poissonian and its
o o photon-number distribution has a dominant maximum at its
Herea(b) anda’(b") are the annihilation and creation op- mean photon number. Under this condition the Rabi oscilla-
erators of the field mode (b) and a(3) is a complex num-  tions in atomic inversion show collapses and reviyai. If
ber characterizing the amplitude and phase of the displaceve restrict ourselves to the atomic interaction before the first
ment. For a single-mode micromaser experiment, theevival time, we can further approximate the argument op-

displacement of the cavity field is carried out by coupling agrat0r@. In this regime, the argument of the cosine function
resonant classical oscillator to the cavity fi¢RP]. in Eq. (8) is approximated by

We inject aV-configuration three-level atom with two ex-
cited statega) and|b) coupled to the common ground state 2
|g). The atom interacts with a two-mode field in a perfect @~ \/k3|a|?+ 7| B]%t+

cavity. A field mode of the annihilation operataris reso-
nant with thela)«|g) transition and the other field mode of 2

the annihilation operatob is resonant with thgb)«—|g) + > “ >
transition. The schematic representation of the atom-cavity 2\/Ka|a|2+ x5l Bl
interaction is sketched in Fig. 1. Under the rotating-wave ) ) ) ) )
approximation, the Hamiltonian in the interaction picture is The first term on the right-hand-side of E§) is the Rabi
frequency. Substituting the argument oper&oback to Eq.
H=7xy(ala)(g|+a'|g)(a|) + % «y(b|b){g|+bT|g)(b|), (7), we find the probability of the atom being in the ground
4 state in the form

fa (a*a+aa)
2ViGla|®+ w5l Bl

(B*b+pb"). 9)
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1.1 oo o A
Pg(t)%§+z[e Tre peDa(pa) Dp(pp) +C.CJ,

la>
|b> T TS T
(10 \@ Tl
where c.c. stands for the complex conjugate and the param

e are deﬁned - I_l—‘_l il
Classical field Classical field
in mode a in mode b

2 2
Q= gl el *+ x| BI2, (11)
FIG. 2. A V-configuration three-level atom interacts with two

i Kia cavities sequentially. Each cavity is a single-mode cavity. The first
cavity field resonantly excites tHg)« |a) transition and the sec-

Ma:—!
Vigla|?+ iyl Bl ond excites theg)«|b) transition.

ix2p where
el w3 B : : .
a b a<m|Da(_77)|n>a:a<n|Da(_77)|m>a
Here, we can see that the probabilRy has a direct relation mi ,
with the characteristic function = \/He‘w| P2 )n=mLR =™ (| 5)2)
Cw(7,6)=Tr[peDa(7)Dp(&)] (12 (14)
for the two-mode Wigner functiof1] of the original cavity ~ with the Laguerre polynomial! "(] u|?).
field. Let us consider a Bell-type entangled state
Equations(10) and (12) show that experimentally mea-
sured data 2P, are directly related to the two-mode |g)=€[0)a|0)p+ o|1)a| 1)y (15

Wigner characteristic functiolfCy(7,£). A similar result
was obtained for the quantum-state reconstruction of
single-mode cavity field9]. However, it is not a mere ex- o —eo* _ ot =|a?
tension of the single-mode case as we note that the measure?%000 '€l Poior r P01 r Pun '
ment of the atom being in the ground state gives full infor-
mation on entanglementof two modes. Measurement of Differences between the classical statistical mixture state and
phase information for a single mode is possible because ahe entangled state appear due to the nonvanishing off-
the initial displacement of the field but the measurement otliagonal termg;0; andp10;109, Which can be obtained as the
the two-mode entanglement is not obvious. A measuremeiteighted integral of the characteristic function

of atomic coherences is not needed but the ground-state

g‘or which the nonvanishing matrix elements are

population is enough to measure the entanglement. This is 1 2 2 . %

due to the fact that the ground state can be populated by pOlOl_?f d ”j d*¢Cw(n, &) 7" &

either the|a)—|g) or |b)—|g) transition and the ground-

state population reflects the interference between |the xexd — 3(| 7|+ [£%)] 17

—|g) and |b)—|g) transitions. If the atom had a cascade | . . .
co|nfi>gurati!)n>of |th23 ground, intermediate, and excited energ hich hag t_)een depve_d using Eq83) and (14). Here th?
states, the ground-state population would not give all th hqracterl_stlc funct|_on is the measured data gnd the_ simple
information on entanglement as the ground state is populateff€ighted integral gives the value of the density-matrix ele-
only by the transition from the intermediate state. ment.
The phases of the driving fields determine which axes o
the characteristic function the measured data refer to. Th

¢ Similar results can be derived for other types of states
éuch as the coherent entangled state

probability Py is related to the real part of the characteristic W)= 4 18
function for Qt=n# and the imaginary part fof)t=(n Vay=elQalvpot olv)al o, (18
+ ), wheren=0,1,2 . ... By theFourier transformation where|{), and|v), are coherent states.

of the measured data we obtain the two-mode Wigner func-

tion. Measuring the characteristic function is important also IIl. ENTANGLEMENT OF TWO CAVITIES

because it gives all the statistical information of a quantum
state and the density matrix of the state. Extending the We now consider the case of two spatially separate
single-mode operator identity25], we obtain two-mode single-mode cavities that are entangled. After producing the

density-matrix elements in Fock basis: entangled state of the density matgix, we couple the cavi-
1 ties with strong classical fields to displace the cavity fields.
pmnm’n/:_zf dz??f d2¢ Cy( 7,€) The displaced CaVIt)-/ fields mAthe two cavities will b_e repre-

™ sented by the density operatpg(a,B) as done earlier for

the single cavity case. To reconstruct the quantum state, we
send aV-configuration three-level atom to interact with the
(13  two driven cavities sequentially as shown in Fig. 2. We ne-

Xa<m|f)a(_ 77)|n>ab<m,|f)b(_§)|n,>b,
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glect the loss of cavity fields during the time when the atom IV. REMARKS
flies through both the cavities. We also assume that the atom Th f . tal At
does not lose its coherence during the flight between twg ' €€ aré SOmMe causes of experimenta; errors. Atoms are

cavities. Thegg)« |a) transition of the atom is resonant with sent to the cavity from an opening in a the_rmal oven and
the field modea of the first cavity and thég)<|b) transi- therefore have random Poisson distributed interaction time.

tion is resonant with the field modeof the second cavity. Er\wl"glll tZSZ?ﬁ[ ihleo/m[dztg] Of[r:hseCF;?]'Ssgnsg'S;gbmué'%r;rg?; bTehZS
We can easily derive the Hamiltonian for atomic interac- =7 , i u '

L : s ; bability of the atom being in the ground state is approxi-
tion in the first and second cavities as we set, respectivel ro : : . e
xky=0 andx,=0, for Eq. (4). We then calculate the%volu- )lgnately given by Eq(10) when the intensity of the driving

) . A o . field is strong. To get the characteristic functi@®) from
tion operatorsl ,(t,) andUy(t,), for atom-field interaction

. .. . o ~~._ measurements d?y(t), the interaction times have to be pre-
within the two cavities. Assuming the atom initially in its ¢ise \when the driving field is intense, the Rabi frequency is

ground state, the density operat;i)(rO) for the atom-field  Jarge and even a small fluctuation in the interaction time can
system is as shown in E¢F). After interaction with both the ' pe fatal. Thus in the experimental realization, the intensity of
cavities, the probability?, of the atom being in the ground the driving field has to be carefully chosen. When the char-

state is acteristic function is real, the envelope of the Rabi oscilla-
tions in Py(t) is the characteristic function as shown in Eqg.
PgZTfF[(9|Ob(tb)oa(ta)ﬁ(o)ol(ta)Og(tb)lgﬂ (10). For the single-mode qqantum-stat_e reconstrugtion the
error caused by the fluctuation of the interaction time has
=Tre[ pr(a,B)coF( ééTKata)cosz( \/BB*Kbtb)]_ been considered by Kirat al.[9]. Similar conclusions apply

to the two-mode problem.

(19 In this paper we have been interested in reconstruction of
. . small-amplitude quantum states. When an atom interacts
This probability can be rearranged as with the strongly driven quantum state, there appear col-
lapses and revivals in atomic inversion. The approximated
1 1 1 1 ili i i i
p _—4 —pab, —pa, —pb (20) probability Py(t) is correct only before the first revival so

94 169 8 9 g8 9 that we study the ground-state probabiliteg(t) before the
revival and Fourier-transform them to get the Wigner func-
where tion. The revival time depends on the intensity of the driving
field. In the strong driving-field limit, as the collapse time is
long we can collect enough experimental data to get the
Wigner function or density-matrix elements. Atoms may

pass the channeltron detectors without having been detected,

Pgb: TrF[;)F( a,ﬁ)(eZi \/Faﬁz;fxata_i_ e 2i \/;a?"ata)
fobT

. ¥ .
X (€71PP oy @7 ZNBD o) ], in which case we have to restart the experiment. Once the
atom is measured, the chance for the measurement to be
pg:TrF[E,F(a”g)(eZiV@Teﬁkataur e_ZiHKata)]’ wrong is negligible so the detection efficiency should not be
an important obstacle.
[ =t Quantum entanglement is at the heart of current develop-

Po=Tre[ pe( . B) (€2 VPP vto+ @200 l) | (21)  ments of quantum information theory. In this paper we sug-
gested schemes for reconstructing the entangled states. We
In our quantum-state reconstruction scheme, the drivindnave considered the reconstruction schemes for the entangle-
fields are assumed to be strong and the atomic interactioment of two modes in a cavity and in two spatially separate
time is shorter than the first revival time. With a similar cavities. We have shown that the probability of the
analysis to the single-cavity case, we can easily seeF{gﬁ\t V-configuration three-level atom being in its ground state is
in Eq. (21) is related to the two-mode Wigner characteristic directly related to the two-mode Wigner characteristic func-
function, P§ to the single-mode Wigner characteristic func- tion. The two-mode Wigner function and the density-matrix
tion for the modea in the first cavity, andP® to the single- elements can be obtained from the characteristic function.
mode Wigner characteristic function for the modén the ~ We add that our emphasis has been on the entangled states
second cavity. In facﬂ?g and PS are the probabilities of the though the formula(llo) holds for all state_s of a two-mode
atom being in the ground state as the atom interacts onl eld, for example, it would apply to the important case of

with the first or the second cavity, respectively. These martWo-mode squeezed vacuum in which the mode-mode corre-

ginal probabilitieng and Pg can be measured in the supple- lation is also important.
mentary experiments and we can get the two-mode Wigner
characteristic function as we subtract the contributionﬁg)f
and PS from the probabilityPy in Eq. (20).

However, for the Bell-type state, Eq15), the off- We are grateful to Professor Walther for hospitality at the
diagonal density-matrix elemenily;o; does not require the Max-Planck Institute. We acknowledge support from the Al-
supplementary experiments of measuring the marginal prokexander von Humboldt Foundation. This work was sup-
abilities because contributions @f‘;‘ and Pg vanish in the ported in part by the Basic Science Research Institute Pro-
weighted integral, Eq(17), as the weighting is an odd func- gram (Program No. 015-D001238 Ministry of Education,
tion. Korea.
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