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Abstract

I consider the interaction of a superposition of mesoscopic coherent states and

its approach to a mixed state as a result of a suitably controlled environment. I

show how the presence of a gain medium in a cavity can lead to diagonalization

in coherent state basis in contrast to the standard model of decoherence. I

further show how the new model of decoherence can lead to the generation of

s ordered quasi distributions.
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Mesoscopic superpositions of coherent states have been the subject of extensive studies

[1–7] because of their unusual interference characteristics and because of their relevance to

the quantum measurement problem. These states are also known to be extremely sensitive

to environmental interactions. The interference terms disappear fast and a kind of diago-

nalization takes place [1,4,5]. The diagonalization is itself sensitive to the nature of the bath

or the nature of the interaction with environment. If the initial state is a superposition of

coherent states then ideally one would like to have a situation where the interaction with

the bath produces a mixed state involving the two coherent states [6]. There are however

difficulties as the bath itself has certain intrinsic properties [8] which must be satisfied and

these intrinsic properties determine the dynamical characteristics of the subsystem. In this

paper we examine the question - how a manipulation of the bath could possibly produce a

diagonalization in coherent state basis.

We note that the subject of the manipulation of the bath has also attracted quite a bit of

attention. Raimond et al. [5] demonstrated how the coupling of a high Q cavity containing

the cat state to another resonator leads to the revival of coherence. Several authors [9]

have shown how the feedback and other mechanisms could stabilize effects of decoherence.

Poyatos et al. [10] demonstrated the engineering of the bath in the context of laser cooled

trapped ions. There are other models of decoherence where the nonlinearities could give rise

to coherence characteristics and could indeed produce new types of states [11]. Furthermore

there exists the possibility [12] of achieving a control of the drift and diffusion terms in

the dissipative dynamics by external electromagnetic field. The external fields make the

environment nonthermal leading even to the possibility of making the drift term vanish

and diffusion term rather small. There are several physical realizations of such pumped or

nonthermal environment [13].

In this paper we consider the interaction of the field mode in a mesoscopic superposition

state with a bath which consists of a gain medium in addition to the usual absorber. By

choosing the gain appropriately we get purely diffusive motion of the field mode. This

motion leads to diagonalization in coherent state basis though each coherent peak broadens
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due to diffusion. We also demonstrate how the time evolution under purely diffusive motion

leads to the generation of the s-ordered quasi-distributions associated with the state of the

field.

We start from a cat state, say, even or odd cat state for a bosonic system

| ψ〉 = N±(| β〉± | −β〉), (1)

where the normalization constant is given by

N−2

± ≡ 2(1 ± exp(−2 | β |2)). (2)

The bosonic mode may, for example, represent a field mode in a cavity or the center of mass

motion of an ion in a trap. The Wigner function Φ(α, α∗) for the state (1) is

Φ(α, α∗) =
2N2

±

π
(exp{−2 | α− β |2} + exp{−2 | α + β |2}

± 2 exp(−2 | α |2) cos(4βy)); α = x+ iy, β = real. (3)

The Wigner function thus consists of two Gaussians centered at α = ±β with an interference

term centered at the origin α = 0. The period of oscillation depends on β. The interaction

with the environment is generally described by the density matrix equation [8] for the bosonic

mode a

∂ρ

∂t
= −κ(a†aρ− 2aρa† + ρa†a), (4)

where 2κ will be the rate of dissipation. The Wigner function at time t will be given by

Φ(α, α∗, t) =
2N 2

±

π
(exp(−2 | α− βe−κt |2) + exp(−2 | α + βe−κt |2)

±2 exp(−2 | α |2) exp(−2β2(1 − e−2κt)) cos(4βye−κt)). (5)

We note that as a result of interaction with the environment the two Gaussians move towards

each other eventually merging into one Gaussian. The amplitude of the oscillatory term goes

down by a factor exp(−2β2(1 − e−2κt)) and the period of oscillation increases by eκt. For

κt≫ 1, Eq. (5) goes over to
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Φ →
2

π
e−2|α|2. (6)

For completeness we show this evolution in Fig.1 for different values of κt.

Intuitively, the emergence of classical behavior [6,14] on interaction with the environment

would require a different behavior - we would expect to see a double Gaussian structure with

the missing oscillatory behavior. A natural question arises what model of environment could

achieve that. One natural possibility is to consider a situation so that the exponentially

damped factors can be removed. For example, one could think of inserting a gain media

in the context of cavity problems. The gain can be chosen so as to compensate the loss.

Thus one might be able to keep the double Gaussian structure. However, any gain also

introduces some noise. We thus examine in detail the consequences of both gain and loss

on the dynamics of a mesoscopic superimposition of states. Let 2Γ be the gain of the gain

medium. Then Eq.(3) is modified to

ρ̇ = −κ(a†aρ− 2aρa† + ρa†a) − Γ(aa†ρ− 2a†ρa + ρaa†). (7)

The Wigner function obeys the equation of motion

∂Φ

∂t
= (κ− Γ)

∂

∂α
(αΦ) +

κ+ Γ

2

∂2Φ

∂α∂α∗
+ c.c.. (8)

On writing α = x+ iy, we get

∂Φ

∂t
= (κ− Γ)

∂

∂x
(xΦ) + (κ− Γ)

∂

∂y
(yΦ) +

(

κ+ Γ

4

)

(

∂2

∂x2
+

∂2

∂y2

)

Φ. (9)

We now have two parameters κ and Γ which could be manipulated independently to produce

the desired result.

Now the drift and diffusion coefficients are respectively equal to (κ− Γ) and (κ + Γ)/4.

We now have the possibility of making drift vanish by choosing κ = Γ leading to

∂Φ

∂t
= 2κ

∂2Φ

∂α∂α∗
. (10)

The general solution of (10) can be expressed as
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Φ(α, α∗, t) ≡
1

πδ

∫

exp(− | α− α0 |
2 /δ)Φ(α0, α

∗
0
, 0)d2α0; δ = 2κt. (11)

On substituting (3) in (11) and on using the identity

∫ d2z

π
exp(αz + βz∗ − γ | z |2) =

1

γ
exp

(

αβ

γ

)

, (12)

we get

Φ(α, α∗, t) =
2N 2

π(1 + 2δ)
(exp{−

2

(2δ + 1)
| α− β |2} + exp{−

2

(2δ + 1)
| α+ β |2}

±2 exp{−
2 | α |2

(1 + 2δ)
−

4β2δ

1 + 2δ
} cos(

4βy

1 + 2δ
)). (13)

This result should be compared with the standard model Eq.(5) of decoherence.

Thus for the interaction of a field mode in a Cat state with the new environmental

conditions, each component in the Wigner function remains located at the original position

as there is no drift in the model. However, each component undergoes diffusion. For the

usual model of decoherence there is no diffusion although the mean position quickly drifts

towards origin. The period of oscillation of the interference term increases. The amplitude

of oscillation also decreases. For larger δ and for β2 > δ + 1

2
, the oscillatory (interference)

term disappears leading to

Φ(α, α∗, t) ≈
2N 2

±

π(1 + 2δ)

(

exp

(

−
2

(2δ + 1)
| α− β |2

)

+ β → −β

)

. (14)

We thus achieve diagonalization in coherent state basis - the decoherence to a mixed state

which is a superposition of two Gaussians at ±β. This is what we had set out to achieve.

We show in Fig. 1 the effects of decoherence on the Wigner function of the field mode

interacting with this new model of the environment. These results should be compared with

the ones for the standard model of decoherence. There are obviously important differences

in the dynamics of a Cat state interacting with different types of environment.

We next present some very general results on various quasi distributions like the P-

function, the Q-function and the Wigner function. We discuss the parameter regime in which

the nonclassical characteristics of the original state start disappearing. For this purpose we
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examine the equation of motion for the characteristic function 〈exp(γa†−γ∗a)〉 which is the

Fourier transform of Φ. Clearly the characteristic function obeys the equation

∂

∂t
〈exp(γa† − γ∗a)〉 = −2κ | γ |2 〈exp(γa† − γ∗a)〉, (15)

and hence

〈exp(γa†(t) − γ∗a(t))〉 = exp(−2κ | γ |2 t)〈exp(γa† − γ∗a)〉, (16)

which on using the disentangling theorem leads to

〈exp(γa†(t)) exp(−γ∗a(t))〉 ≡ exp(−(2κt−
1

2
) | γ |2)〈exp(γa† − γ∗a)〉. (17)

Note that the Fourier transform of the left hand side yields the quasi distribution known

as the P-function of the system. Thus from (17) we conclude that the P-function at time

such that 2κt = 1

2
is equal to the Wigner function at t = 0 and the P-function at time given

by 2κt = 1 is equal to the Q-function at t = 0. This implies that all nonclassical effects [15]

will disappear at times given by 2κt ≥ 1. Furthermore, the P-function definitely exists as

an ordinary function in the interval 1 ≥ 2κt ≥ 1

2
though it can be negative. Eq.(16) also

shows that the Wigner function at time t is equal to the s-parameterized distribution [16]

Φs at time t = 0. This is because the s-parameterized distribution is the Fourier transform

of exp[s|γ|2/2]〈exp(γa† − γ∗a)〉. Clearly, for our problem, s is equal to −4κt. Note that for

s = −1, we get the Q-function, i.e. the Wigner function at time 2κt = 1

2
is equal to the

Q-function at t = 0.

We note in passing that if Γ is related to κ via the relation

Γ

κ
=

n̄

(n̄+ 1)
≤ 1, (18)

then the model (7) describes the interaction with a thermal bath [17,18]. However, Γ could

exceed κ as we are describing a pumped environment. We could thus refer to the model (7)

without the condition (18) as the nonthermal and phase sensitive environment.
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In summary, we have shown how the introduction of a gain medium can produce very

remarkable modifications in the dissipative dynamics of a superposition of mesoscopic states.

We demonstrated how to achieve classicality and diagonalization in coherent state basis.

The author thanks R.P. Singh, S. Menon for the beautiful graphics and J. Kupsch, W.

Schleich for discussions on decoherence.
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FIGURES

FIG. 1. Diagonalization in coherent state basis of a Cat State (| β〉+ | −β〉). These frames

show the behavior of the Wigner function as a function of α = x + iy. The plots on the left show

the results [Eq.(13)] for the new model of decoherence due to a controlled environment consisting

of a gain medium, whereas the plots on right show the results [Eq.(5)] for the standard model of

decoherence. The z-axis gives the numerical values of the Wigner function. The plot a0 gives the

Wigner function at time t = 0. The subsequent plots are for increasing times for δ = 2κt = 0.1 for

a1, b1; 0.5 for a2, b2; 4.0 for a3, b3. We have set β = 3 for all the plots.
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