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We consider non-degenerate pump-probe spectroscopy of V-systems under conditions such that
interference among decay channels is important. We demonstrate how this interference can result in
new gain features instead of the usual absorption features. We relate this gain to the existence of a
new vacuum induced quasi-trapped-state. We further show how this also results in large refractive
index with low absorption.

PACS No. : 42.50 Gy., 42.50 Hz.

I. INTRODUCTION

The properties of a medium are significantly altered
when the medium is driven by strong, resonant, coherent
fields. Mollow first studied in detail the physical charac-
teristics of a two-level system driven by a coherent field
of arbitrary strength. He discovered new features in the
emission spectra [1a]. These new features are best under-
stood in terms of field dependent eigenstates and eigen-
values or dressed states of the system [2]. Mollow in a
later paper [1b], further demonstrated the possibility of
amplification of a probe field in a coherently driven two-
level system. This gain can also be understood in terms of
dressed states [3]. An alternative way of probing a driven
two-level model is by coupling a probe field to one of the
states (e.g. the ground state) of the strongly driven tran-
sition and a different excited state (V-system). The ab-
sorption spectra will show new resonances related to the
dressed states of the strongly driven two-level atom. The
strong drive splits the absorption resonance into two com-
ponents known as the Autler-Townes components. Vari-
ous experiments in gases [5] and in solid state systems [6]
have confirmed the presence of the Autler-Townes split-
ting of absorption lines. Such a three-level model is not
known to show gain unless additional fields are intro-
duced. For example, an incoherent pumping along the
probing transition of a V-system will give rise to gain
[7,8] . Other three-level models with coherent and inco-
herent pumping also exhibit gain [9].

In this paper, we demonstrate that quantum interfer-
ence between different paths of spontaneous emission in
a V-system can produce gain under conditions when one
would have otherwise observed absorption peaks. Interfer-
ence due to spontaneous emission can arise when sponta-
neous emission from one level can strongly affect a neigh-
boring transition. For example, consider excited levels
|1〉, |2〉 of same parity, and ground state |3〉 of a different
parity (see Fig. 1(a)). Let the spontaneous emission rates
from levels |1〉 and |2〉 to level |3〉 be denoted as 2γ1 and
2γ2 respectively. In interaction picture, the equations of
motion for density matrix elements will be [10]

ρ̇11 = −2γ1ρ11 −
√
γ1γ2 cos θ(ρ12e

−iW12t + ρ21e
iW12t),

ρ̇22 = −2γ2ρ22 −
√
γ1γ2 cos θ(ρ12e

−iW12t + ρ21e
iW12t),

ρ̇12 = −(γ1 + γ2)ρ12 −
√
γ1γ2 cos θeiW12t(ρ11 + ρ22),

ρ̇13 = −γ1ρ13 −
√
γ1γ2 cos θeiW12tρ23,

ρ̇23 = −γ2ρ23 −
√
γ1γ2 cos θe−iW12tρ13. (1)

Here h̄W12 is the energy separation between the ex-
cited levels which we keep arbitrary. The above equa-
tions are derived without making any kind of secular
approximation, and can be solved under the conditions
ρ33 +ρ22 +ρ11 = 1 and ρij = ρ∗ji. The off-diagonal radia-
tive coupling terms in the equations for diagonal elements
of ρ are due to interference among decay channels. Here
the parameter θ is the angle between the dipole matrix

elements ~d13 and ~d23, where ~di3 = 〈i|d|3〉 (i = 1, 2) and
d is the dipole moment operator. Note that this interfer-
ence exists only when θ 6= 90o. Moreover, for equations
(1) when W12 ≫ γ1, γ2, the oscillatory terms will average
out and the effects of such off-diagonal terms will vanish.
A result of such an off-diagonal radiative coupling is that
the coherence ρ12(t) will evolve even when ρ12(0) = 0.
The coherence arises from the vacuum of the electromag-
netic field. We refer to it as vacuum induced coherence
(VIC). This coherence term will change the steady state
response of the medium and under suitable conditions
can create trapping in a degenerate V-system [10]. The
coherence can also modify significantly the emission spec-
trum of a near-degenerate V-system [11]. Recent works
[12] generalize equations (1) to include thermal photons
as well as incoherent pumping. The presence of both
thermal photons and VIC leads to additional features in
the spectrum.

In the present paper, we study how to probe VIC by
using a pump-probe spectroscopy. We demonstrate that
the VIC can manifest itself via gain features instead of
the traditional absorption features. The organization of
this paper is as follows: In Sec. II we present basic equa-
tions describing the pump-probe spectroscopy under con-
ditions when interference between decay channels is im-
portant. We also point out the crucial difference between
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the present work and the previous studies. In Sec. III
we discuss our numerical results. We show the possibility
of new gain features due to VIC. In Sec. IV we report
the possibility of quasi-trapped-states that arise strictly
from the interference between decay channels. In Sec. V
we analyze the effect of this trapping on the absorption
and dispersion properties of the pump field. In Sec. VI
we explain the numerical results of Sec. III in terms of
the trapped states discussed in Sec. IV.

II. BASIC EQUATIONS

Consider the pump-probe set-up shown in Fig. 1(a).

The transition dipole moments ~d13 and ~d23 are non-
orthogonal: so in principle we should include the coupling
of pump (probe) to the transition |1〉 ↔ |3〉 (|2〉 ↔ |3〉).
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FIG. 1. (a) Schematic diagram of a three-level V-system.
The pump and probe fields have a frequency detunings ∆2

and ∆1 respectively. The γ’s denote the spontaneous emis-
sion rates from the respective levels. (b) The arrangement of
field polarization required for single field driving one transi-
tion if dipoles are non-orthogonal.

The pump field ( ~E2 = ~ε2e
−iω2t + c.c) with a Rabi fre-

quency 2G = 2~d23 · ~ε2/h̄ drives |2〉 ↔ |3〉 transition (~d13 ·
~ε2 = 0) and similarly probe field (~E1 = ~ε1e

−iω1t + c.c)

with a Rabi frequency 2g = 2~d13 · ~ε1/h̄ drives |1〉 ↔ |3〉
transition (~d23 · ~ε1 = 0). We work under the condition
such that VIC is important. However, we would like to
keep the situation rather parallel to the usual case. Thus
we assume a specific geometry of the Fig. 1(b), so that

the pump (probe) does not couple to |1〉 ↔ |3〉 (|2〉 ↔ |3〉)
transition. The Hamiltonian for this system will be

H = h̄W13|1〉〈1| + h̄W23|2〉〈2| − h̄(G|2〉〈3|e−iω2t

+g|1〉〈3|e−iω1t + H.c), (2)

where h̄Wi3 (i = 1, 2) is the energy of the state |i〉 when
measured with respect to state |3〉. In the rotating wave
approximation the density matrix equations with the in-
clusion of all the decay terms will be

ρ̇11 = −2γ1ρ11 − η(ρ12 + ρ21) + ige−iδtρ31 − igeiδtρ13,

ρ̇22 = −2γ2ρ22 − η(ρ12 + ρ21) + iGρ32

−iGρ23,

ρ̇12 = −(γ1 + γ2 + iW12)ρ12 − η(ρ11 + ρ22)

+ige−iδtρ32 − iGρ13,

ρ̇13 = −(γ1 + i(∆2 +W12))ρ13 − ηρ23 − iGρ12

+ige−iδt(1 − 2ρ11 − ρ22),

ρ̇23 = −(γ2 + i∆2)ρ23 − ηρ13 − ige−iδtρ21

+iG(1 − ρ11 − 2ρ22), (3)

where δ = ω1 − ω2 is the probe-pump detuning. The
probe detuning ∆1 = W13 − ω1 and the pump detuning
∆2 = W23 − ω2 are related by ∆1 − ∆2 = W12 − δ. In
deriving (3) we have made the canonical transformations
so that ρ13 and ρ23 are obtained by multiplying the so-
lution of (3) by e−iω2t. We also use the trace condition
ρ11+ρ22+ρ33 = 1. Here η = η0

√
γ1γ2 cos θ is the VIC pa-

rameter, which is nonzero when θ 6= 90o. Note that for
the geometry shown in Fig. 1(b), θ is always nonzero,
though it could be small. The parameter η0 enable us
to study the limiting case when the effects of VIC are
ignored (η0 = 0), otherwise we will set η0 = 1. In the
absence of external fields as seen from equations (1), the
VIC effect is important when the separation between the
two excited levels is of the order of natural line width.
However, this condition may be relaxed when the system
is being driven by external fields as we will see later.

Let us first consider the case when η0 = 0. Making a
further canonical transformation on ρ13 and ρ12 we can
get rid of the explicit time dependence. The imaginary
part of ρ13 yields the probe absorption. In the limit of a
weak probe field (g ≪ γ1, γ2), we obtain

ρ13 =
g{(γ2

2 + ∆2
2 +G2)(∆2 − ∆1 + i(γ1 + γ2)) +G2(∆2 − iγ2)}

(γ2
2 + ∆2

2 + 2G2)[G2 + (∆1 − iγ1)(∆2 − ∆1 + i(γ1 + γ2))]
. (4)

In the limit of vanishing γ’s and large G, the above ex-
pression shows that two complex poles exists at ∆1 =
(∆2 + iγ2 + 2iγ1 ±

√

(∆2 + iγ2)2 + 4G2 )/2. The probe
absorption as a function of ∆1, i.e. as a function of
probe frequency will have two resonances at ∆1 = (∆2 ±
√

∆2
2 + 4G2)/2). These are the two Autler-Townes com-

ponents in the absorption spectrum. It can be further
shown that Im(ρ13) > 0.

We now consider the effects of VIC (η0 = 1). The sys-
tem of Eqs. (3) have been studied under a very wide
range of conditions. We would now recall what has
been done and in what ways our current work differs
from the existing works. (a) We could first consider the

2



case when pump is also replaced by the probe (~ε1 ≡ ~ε2,
ω1 = ω2). Here the effects of VIC manifest both in emis-
sion [13,14] and absorption spectrum [15–17]. Zhou and
Swain demonstrated the existence of ultra-narrow spec-
tral lines in emission [14]. Cardimona et al. showed van-
ishing of absorption under certain conditions [15] whereas
Zhou and Swain demonstrated the possibility of gain with
no pump field present [16]. (b) Another case which is ex-
tensively studied by Knight and coworkers corresponds
to degenerate pump and probe fields, i.e. ~ε1 6= ~ε2, but
ω1 = ω2 (δ = 0). Here the pump can have arbitrary
strength while the probe is kept relatively weak. Pas-
palakis et al. showed how VIC can lead to gain without
inversion [17]. (c) In the present work we study the im-
portant case of non-degenerate pump and probe fields,
~ε1 6= ~ε2, ω1 6= ω2. We show how the VIC can invert
the traditional Autler-Townes splittings in the absorp-
tion spectrum and produce gain features.

While we work with a three-level system, it should
be noted that effects of VIC in the context of four and
five-level schemes have been very extensively investigated
[18–26]. In particular, Zhu and coworkers discovered
quenching of spontaneous emission [19,20]. An intu-
itive picture for spontaneous emission suppression and
enhancement was provided by Agarwal [21].

The non-degenerate case, that we treat, has a major
complication due to explicit time dependence in the equa-
tions of motion (3). Since the time dependence in (3) is
periodic, we can solve these equations by Floquet analy-
sis. The solution can be written as

ρij =
∑

m

ρ
(m)
ij e−imδt. (5)

Thus the absorption and emission spectra gets modulated
at various harmonics of δ. The dc component in probe

absorption spectrum is related to ρ
(+1)
13 . The absorption

coefficient α per unit length can be shown to be

α =
α0γ1

g
Im(ρ

(+1)
13 ), (6)

where α0 = 4πN|d13|2ω1/h̄γ1c and N denote the atomic
density. Note that in (6) only one term from the en-
tire series (5) contributes. For the case of degenerate
pump-probe (δ = 0), all the terms in the series (5) are
important.

III. NUMERICAL RESULTS

In order to obtain the probe absorption spectra we
solve (3) numerically using the series solution (5) and the

steady state condition ρ̇
(m)
ij = 0. The situation is much

simpler for a weak probe when ρ
(+1)
ij can be computed to

first order in g, otherwise we use Floquet method. In Fig.
2 we plot the probe absorption as a function of probe de-
tuning. The dashed curves in Fig. 2(a,b) are the usual

Autler-Townes components in the absence of VIC effects.
The solid curves show the absorption spectra when VIC
is included. We observe that one of the Autler-Townes
component flips sign to give rise to significant gain. This
type of behavior is seen for any value of W12 provided
the pump field strength satisfies the condition G = |W12|
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FIG. 2. Effect of interference between decay channels on
probe absorption. For both the frames the dashed curves
show the usual Autler-Townes components in the absence of
VIC (η0 = 0) and the solid curves is for η0 = 1. The common
parameters are g = 0.01γ1, γ2 = γ1, θ = 15o, and ∆2 = 0.
Note that α will depend on W12 only when VIC is present
and we take W12 = −G when η0 = 1. In frame (a) we have
kept G = 10γ1 and in frame (b) we take G = 50γ1. The solid
curve in frame (b) shows that the effect of VIC is retained
even for large W12.

for ∆2 = 0. When W12 = G and ∆2 = 0, the gain ap-
pears at ∆1 = −G. The solid curve in Fig. 2(b) shows
that the effect of VIC is observed even for largeW12 com-
pared to γ1, γ2. This is in contrast to the situation that
exist in the absence of external fields where one finds
that VIC effects are important when the separation be-
tween vacuum coupled levels is of the order of natural
line-width. As can be seen from the Fig. 2(b), for strong
pump fields, such a restriction can be relaxed. Also note
that one of the Autler-Townes component can be almost
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suppressed for certain set of parameters (see for example
the solid curve in Fig. 3). Thus the parameter θ (an-
gle between the two transition dipole matrix elements)
controls the spectra in presence of VIC. The dot-dashed
curve in Fig. 3 also shows the effect of unequal decays.
For γ2 > 2γ1 both the Autler-Townes components flip.
We analyze the origin of gain in the following sections.
We note that the previous works [17a] on the degenerate

pump and probe fields also reported gain, provided the
energy separation between the two excited states can be
scanned.

Finally as mentioned in Sec. II the observation of VIC
related effects requires the use of transitions with non-
orthogonal dipole matrix elements [10–17,19–26]. The
question of production of transition with non-orthogonal
dipole matrix elements has been extensively discussed in
the literature. This can be achieved by mixing the states
using either internal fields [20] or external fields [25–28].
We may further note that the relaxation need not occur
by spontaneous emission. For example in problems in-
volving intersubband transitions in semiconductors the
relaxation can occur by emission of LO phonon [29]. In
such cases the non-orthogonality of dipole matrix ele-
ments is not required.
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FIG. 3. Plots show the important role θ and unequal γ’s
play in the presence of VIC (η0 = 1). The common parame-
ters are G = 10γ1, g = 0.01γ1, ∆2 = 0, and W12 = −G. The
solid curve presents the case when γ2 = γ1 and θ = 35o and
the dot-dashed curve arises when γ2 = 6γ1 and θ = 15o.

IV. QUASI-TRAPPED-STATES FROM

INTERFERENCE OF DECAY CHANNELS

For a very weak probe field (g ≪ γ1, γ2) we can solve
equations (3) perturbatively with respect to the strength
of the probe field. To the lowest order in g, the solution
may be written as

ρij = σ0
ij + gσ+

ije
−iδt + g∗σ−

ije
iδt. (7)

We first examine the behavior of the system in the pres-
ence of pump field alone (g = 0). Note that in the absence
of VIC effects the system reduces to the well known case
of coherently driven two-level atom. But the behavior is
quite different in the presence of VIC effects as we show
in the following.

It is clear that field G creates a coherent mixing of
states |2〉 and |3〉. The new eigenvalues will be

λ± =
∆2 ±

√

∆2
2 + 4G2

2
, (8)

and the corresponding dressed energy states can be writ-
ten as

|+〉 = cosψ|2〉 + sinψ|3〉,
|−〉 = − sinψ|2〉 + cosψ|3〉, (9)

where tanψ = −G/λ+. The crucial point to note is that
the level |1〉 is coupled with |±〉 because of the presence
of VIC. Thus the population in |±〉 also depends on the
VIC parameter η. An important case arises when |1〉 is
degenerate with either |±〉, i.e. when W12 = λ±. The de-
generate levels get strongly coupled via VIC, giving rise
to trapping. When |1〉 and |−〉 are degenerate, we show
that the dynamical behavior of the system can be best
analyzed in the basis given below.

|+〉, |c〉 =

√
2γ1|1〉 +

√
γ2|−〉√

γ2 + 2γ1
, |uc〉 =

√
γ2|1〉 −

√
2γ1|−〉√

γ2 + 2γ1
.

(10)

Using the transformations (9), (10) and Eqs. (3) with
g = 0, we numerically compute the steady state popula-
tion in the states (10). In Fig. 4 we plot the population
of these states as a function of pump detuning. Note that
in the presence of VIC, σ0

ucuc approaches unity at ∆2 = 0
i.e. when the states |1〉 and |−〉 are degenerate because
W12 = −G. A similar kind of trapping will occur when
|1〉 is degenerate with |+〉. When |W12| 6= G the trap-
ping will occur for an off-resonant pump field. Trapping
also requires θ to be small. We show later that σ0

ucuc

cannot approach unity, and for this reason we refer to it
as ‘quasi-trapped-state’ (QTS). Figure 4 also shows that
for ∆2 ≪ −G, all the population remains in |+〉. This
is not an interference effect and happens irrespective of
whether VIC is present or absent. For large negative
pump detuning, λ+ → 0 and thus sinψ → 1 (cosψ → 0)
in (9). Since the level |3〉 being the ground state, most
of the population remains here if the pump is highly off-
resonant. The QTS |uc〉 is a result of interference among
decay channels of |1〉 and |−〉 levels. As a consequence,
even if W12 is large in bare basis, strong VIC effects can
appear when dressed levels are degenerate with the bare
excited levels unconnected by the pump field.
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We next examine how the quasi-trapped-state is
formed. For this purpose we transform the equations of

motion (3) for the density matrix elements in basis (10).
For ∆2 = 0 and W12 = −G, a long calculation leads to

σ̇0
ucuc = −4γ1γ2(γ1 + γ2)(1 − cos θ)

(2γ1 + γ2)2
σ0

ucuc +
γ1(4γ

2
1 + 4γ1γ2 cos θ + γ2

2)

(2γ1 + γ2)2
σ0

cc +
γ1γ2

2γ1 + γ2
σ0

++

−γ2
√
γ1γ2(2γ1 − γ2)(1 − cos θ)√

2(2γ1 + γ2)2
(σ0

ucc + σ0
cuc), (11a)

σ̇0
cc = − (4γ1 + γ2)(4γ

2
1 + 4γ1γ2 cos θ + γ2

2)

2(2γ1 + γ2)2
σ0

cc +
2γ1γ

2
2(1 − cos θ)

(2γ1 + γ2)2
σ0

ucuc +
γ2
2

2(2γ1 + γ2)
σ0

++

−γ1(2γ1 − γ2)
√

2γ1γ2(1 − cos θ)

(2γ1 + γ2)2
(σ0

ucc + σ0
cuc), (11b)

σ̇0
++ = −γ2

2
σ0

++ +
(4γ2

1 + 4γ1γ2 cos θ + γ2
2)

2(2γ1 + γ2)
σ0

cc +
2γ1γ2(1 − cos θ)

(2γ1 + γ2)
σ0

ucuc

+
(2γ1 − γ2)

√
γ1γ2(1 − cos θ)√

2(2γ1 + γ2)
(σ0

ucc + σ0
cuc), (11c)

σ̇0
ucc = −

[

4γ2
1γ2(1 − cos θ)

(2γ1 + γ2)2
+
γ1γ2 cos θ + γ2

2

(2γ1 + γ2)
+ γ1

]

σ0
ucc −

γ1γ2(1 − cos θ)(2γ1 − γ2)

(2γ1 + γ2)2
σ0

cuc

−
√
γ1γ2(1 − cos θ)√

2
σ0

ucuc − [8γ2
1(1 − cos θ) + (2γ1 + γ2)

2 cos θ]

√
γ1γ2√

2(2γ1 + γ2)2
σ0

cc

− γ2
√
γ1γ2√

2(2γ1 + γ2)
σ0

++, (11d)

σ̇0
+uc = − γ2

2(2γ1 + γ2)
[γ2 + γ1(1 + 6

√
2 − cos θ)]σ0

+uc −
√
γ1γ2√

2(2γ1 + γ2)
[2γ1 + γ2 cos θ − 2γ2]σ

0
+c, (11e)

σ̇0
+c = −

√
2γ1γ2

(2γ1 + γ2)
[γ1(1 − cos θ) − γ2]σ

0
+uc − [2γ1γ2(1 + cos θ) + 4γ2

1 + 3γ2
2 ]

σ0
+c

2(2γ1 + γ2)
. (11f)

The above equations have been derived by neglecting
terms rotating at e±2iGt (secular approximation). Note
that the above equations are not the usual rate equa-
tions because the diagonal elements are coupled with the
off-diagonal elements as in (1). It is this coupling which
leads to quasi-trapping even though σ0

ucuc decays at a
rate

Γuc =
4γ1γ2(γ1 + γ2)(1 − cos θ)

(2γ1 + γ2)2
. (12)

Also note that for small non-zero θ the decay from state
|uc〉 is very small, which makes it a highly ‘stable’ state.
We solve Eqs. (11) numerically with the initial condition
σ0

33(0) = 1. In Fig. 5 we plot the time evolution of the
population in states |+〉, |c〉, and |uc〉. Note that both
|+〉 and |c〉 decay very rapidly, while population gets ac-
cumulated in |uc〉. Here complete trapping will occur

(σ0
ucuc(∞) = 1) when Γuc = 0. This is not possible for

the geometry shown in Fig. 1(b). However, we have an
quasi-trapped-state for small θ.

It should be noted that trapped states were shown to
occur in presence of VIC under several conditions. For
example trapped state arises at certain parameter regime
when |1〉 and |2〉 are degenerate and when no external
fields are applied, however the system is prepared in one
of the excited states [10]. Trapping is also known to oc-
cur in the degenerate case (δ = 0) and when pump and
probe have identical strengths (~ε2 ≡ ~ε1) [14]. Recently,
new trapping states in the presence of VIC have been
found for four-level systems [23,24]. However, note that
the QTS discussed above is due to a pump field G cou-
pling |2〉 ↔ |3〉 transition and thus is different from all
the previous works.
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FIG. 4. The atomic population in the basis (10) as a func-
tion of pump detuning ∆2/γ2 in presence (frame b) and in
absence (frame a) of VIC. The parameters are G = 20γ2,
W12 = −G, γ1 = γ2 and θ = 15o. The solid curves denote
σ0

ucuc
, the dashed curves are for σ0

cc
and the dot-dashed curves

denote σ0
++.
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FIG. 5. Evolution of atomic population in the states |+〉,
|c〉, and |uc〉 when ∆2 = 0, W12 = −G and the VIC parame-
ter η0 = 1. The other parameters are G = 20γ2, γ1 = γ2 = 1,
and θ = 15o. The solid curve represents σ0

ucuc
, the dashed

curve is for σ0
cc

and the dot-dashed curve shows evolution of
σ0

++.

V. EFFECTS OF QUASI-TRAPPED-STATE ON

THE PUMP FIELD LINE-PROFILES

We now show the effects of the above trapping on the
absorption and dispersion profiles of the pump field. The
trapping leads to a very steep increase in the refractive in-
dex and reduces absorption drastically for the pump field.
Various models in the past have demonstrated and dis-
cussed the importance of such a medium [30–32]. How-
ever, in the present case we show how VIC can be used to
control the refractive index of a medium. It is known that
a large population difference between the dressed states
can result in large dispersion with vanishing absorption
[31]. For our system the population of dressed states
depends on η and hence in principle we can get a situ-
ation where large population difference between dressed
states can exist. Consider the case when ∆2 = 0 and
W12 = −G. The coherence σ0

23 can be evaluated using
Eqs. (3) and (7). The optical coherence to all orders in
the pump field is found to be

σ0
23 = [G2η2{G2(2γ1 + γ2)γ1 + (η2 − γ1γ2)(γ1 + γ2)

2}
+iG(γ1γ2 − η2){Aγ2 − η2γ1(γ1 + γ2)

2}]/B, (13)

where

A = G2γ2
2 + 4G2γ1γ2 + γ2

1γ
2
2 + 4G2γ2

1 + 2γ3
1γ2 + γ4

1 ,

B = (γ1γ2 − η2){A(γ2
2 + 2G2) + η2G2γ1(γ2 + 2γ1)}

+η2G4(γ2 + 2γ1)
2 + η2(γ1 + γ2)

2(3γ1γ2η
2

−2γ2
1γ

2
2 − η4). (14)

It is known that the Re(σ0
23) corresponds to the disper-

sion and Im(σ0
23) corresponds to absorption. When the

alignment parameter θ is small, we have η2 ≈ γ1γ2 (for
example when θ = 15o, η2 = 0.93γ1γ2), then we can
approximate (13) by

σ0
23 ≈ γ1

γ2 + 2γ1
+ i

(γ1γ2 − η2){A− γ2
1(γ1 + γ2)

2}
G3γ1(γ2 + 2γ1)2

, (15)

with the constraint that G 6= 0. Thus for γ1 > γ2 one
can have Re(σ0

23) as high as 0.5 while the absorption re-
mains low. It should be borne in mind that the absorp-
tion and dispersion have been computed to all orders in
the pump field strength. In Fig. 6 we plot the absorp-
tion and dispersion parts of σ0

23 as a function of detuning
∆2/γ2. For comparison the dashed curves show the result
in the absence of VIC. These curves are obtained from the
steady state numerical solutions of (3) with g = 0. Note
that in the presence of VIC there is a dip in absorption
and a peak in dispersion curve. Due to trapping most
of the population tend to remain in states |1〉 and |−〉.
For W12 = −G and ∆2 = 0 the population in the three
dressed states and the coherence σ0

+− was evaluated to
be

σ0
11 =

G2η2(γ1 + γ2)
2(η2 − γ1γ2) −G4η2γ2(γ2 + 2γ1)

B
, (16)
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σ0
−− = [(γ2

2 + 2G2)A(γ1γ2 − η2) − η2G2(γ1γ2 − η2)(3γ2
2 + 5γ1γ2 + γ2

1) + 4G4η2γ1γ2

+η2(γ2 + γ1)
2(3η2γ1γ2 − 2γ2

1γ
2
2 − η4)]/2B, (17)

σ0
++ =

(γ1γ2 − η2){A(γ2
2 + 2G2) +G2η2γ1(γ2 + 2γ1) + η2(γ1 + γ2)

2(G2 − 2γ1γ2 + η2)}
2B

. (18)

σ0
+− = [(η2 − γ1γ2)(Aγ

2
2 −G2(γ2

2 + γ1γ2 − γ2
1)η2) − η2(γ1 + γ2)

2(3γ1γ2η
2 − 2γ2

1γ
2
2 − η4)

−2iG(η2 − γ1γ2)(Aγ2 − η2γ1(γ1 + γ2)
2)]/2B, (19)

which under the condition η2 ≈ γ1γ2 reduce to

σ0
11 ≈ γ2

γ2 + 2γ1
, σ0

−− ≈ 2γ1

γ2 + 2γ1
, (20)

σ0
++ ≈ (γ1γ2 − η2){A(γ2

2 + 2G2) +G2γ2
1γ2(γ2 + 2γ1) + γ1γ2(γ1 + γ2)

2(G2 − γ1γ2)}
2G4γ1γ2(γ2 + 2γ1)2

, (21)

Im(σ0
+−) ≈ (γ1γ2 − η2){A− γ2

1(γ1 + γ2)
2}

G3γ1(γ2 + 2γ1)2
. (22)

−60 −40 −20 0 20 40 60
∆2/γ2

−0.4

−0.2

0.0

0.2

0.4

R
e(

σ0 23
)

0.00

0.02

0.04

Im
(σ

0 23
)

(a)

(b)

FIG. 6. Plots show the absorption and dispersion curves
for the pump field in dimensionless units as a function of
pump detuning ∆2/γ2. The solid curves show the effect of
VIC and the dashed curves are for η0 = 0. The parameters
are G = 20γ2, γ1 = 10γ2, and θ = 15o. For the solid curve
W12 = −G.

Note that σ0
++ and Im(σ0

+−) are very small compared to
σ0

11 and σ0
−−. One can equally write σ0

23 as

σ0
23 = (σ0

−− − σ0
++)/2 + iIm(σ0

+−), at∆2 = 0. (23)

Thus the large difference in population between states |−〉
and |+〉 gives rise to the large dispersion. Also note that
state |−〉 lies below the ground state |3〉 which can also
cause large index of refraction with small absorption [31].
When η0 = 0, we see from (17), (18) and (19) that,
σ0
−− = σ0

++ and Im(σ0
+−) 6= 0, and hence dispersion at

∆2 = 0 is zero with substantial absorption which is con-
sistent with the well known power broadened absorption
and dispersion profiles for a two-level atom.

VI. ORIGIN OF GAIN THROUGH

QUASI-TRAPPED-STATES

The origin of the Autler-Townes doublet in the ab-
sorption spectrum is well understood. The pump dresses
the states |2〉 and |3〉. The population in the dressed
states |±〉 absorbs a photon from the probe field lead-
ing to the Autler-Townes doublet. The situation changes
drastically in presence of VIC which as shown in Sec. V
can, for a suitable choice of parameters, lead to a quasi-
trapped-state |uc〉. For ∆2 = 0, W12 = −G, γ1 = γ2 and
small values of θ the dressed state |+〉 is almost empty
where as σ0

−− > σ0
11 (Eq. (20)). Thus the probe can be

absorbed in the transition |−〉 → |1〉 whereas the probe
will experience gain in the transition |1〉 → |+〉. We also
note that in principle the coherence between two dressed
states |±〉 can also contribute to the gain [33]. As dis-
cussed in the Sec V, the population in the states |±〉 and
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|1〉 depends on the angle θ between the two dipole matrix
elements. For intermediate values of θ’s the population
in |1〉 and |+〉 can be almost same. This can suppress one
of the Autler-Townes component as shown by the solid
curve in Fig. 3. When γ2 > 2γ1, it is possible to have
σ0

11 > σ0
−− for small θ (see result (20)). Thus both the

Autler-Townes components will show gain. This behav-
ior is shown by the dot-dashed curve in Fig. 3.

VII. CONCLUSIONS

In summary, we have studied the non-degenerate

pump-probe spectroscopy of V-systems when the pres-
ence of interference in decay channels is significant. We
have shown the possibility of gain components in Autler-
Townes doublet. We present physical interpretation of
this gain. We have also shown the possibility of a new
trapped states due to VIC which we further show, results
in very high refractive index with very low absorption.

One of us (GSA) thanks Olga Kocharovskaya and Mar-
lan O. Scully for a number of discussions on the subject
of vacuum induced coherences.
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A 40, 2835 (1989).

[19] S.-Y. Zhu and M. O. Scully, Phys. Rev. Lett. 76, 388
(1996); H. Huang, S.-Y. Zhu and M. S. Zubairy, Phys.
Rev. A 55, 744 (1997); H. Lee, P. Polynkin, M. O. Scully,
and S.-Y. Zhu, Phys. Rev. A 55, 4454 (1997); F. Li and
S. -Y. Zhu, Phys. Rev. A 59, 2330 (1999).

[20] H.-R. Xia, C. Y. Ye, and S.-Y. Zhu, Phys. Rev. Lett. 77,
1032 (1996).

[21] G. S. Agarwal, Phys. Rev. A 55, 2457 (1997).
[22] E. Paspalakis and P. L. Knight, Phys. Rev. Lett. 81, 293

(1998); E. Paspalakis, N. J. Kylstra, and P. L. Knight,
Phys. Rev. Lett. 82, 2079 (1999).

[23] F. Li and S.-Y. Zhu, Opt. Commun. 162, 155 (1999).
[24] F. Plastina and F. Piperno, Opt. Commun. 161 236

(1999).
[25] P. R. Berman, Phys. Rev. A 58, 4886 (1998).
[26] A. K. Patnaik and G. S. Agarwal, J. Mod. Opt. 45, 2131

(1998); Phys. Rev. A 59, 3015 (1999).
[27] K. Hakuta, L. Marmet, and B. P. Stoicheff, Phys. Rev.

Lett. 66, 596 (1991); Phys. Rev. A 45, 5152 (1992).
[28] For a discussion on static field induced mixing of mag-

netic sub-levels see, E. B. Alexandrov, M. P. Chaika,
and G. I. Khvostenko, Interference of Atomic States

(Springer-Verlag, Berlin, 1993), pg. 229.
[29] H. Schmidt and A. Imamoğlu, Opt. Commun. 131, 333
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