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Coherent medium as a polarization splitter of pulses
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We show how one can use the anisotropic properties of a coherent medium to separate temporally
the two polarization components of a linearly polarized pulse. This is achieved by applying a control
field such that one component of the pulse becomes ultraslow while the other component’s group
velocity is almost unaffected by the medium. We present analytical and numerical results to support
the functioning of such a coherent medium as a polarization splitter of pulses.

One of the remarkable consequences of one’s ability to manage the dispersion of an optical medium [1,2] has been the
manipulation of the optical pulses. While the dispersion management has been extensively practised in nonresonant
systems like fibers, its use in the context of propagation in resonant systems is gaining prominence only in recent
times. In particular one has discovered ultraslow light [3,4], superluminal propagation [5,6], stoppage [7] and storage
[8] of light. The atomic coherences and quantum interferences [9] are the key elements in control of optical properties
of a medium.

Here we examine the propagation of a linearly polarized pulse in an anisotropic medium. It is well known that an
applied magnetic field makes a medium anisotropic leading to the Faraday effect [10]. Thus the polarization of a cw
field is rotated as if the field propagates through an isotropic medium with a magnetic field applied in the direction in
which the cw field is propagating. Some earlier theoretical [11,12] and experimental [13] studies have shown how this
magneto-optical rotation of a cw field in a medium can be enhanced to a large extent by using control lasers. One even
found newer regions of frequency where the enhancement of the rotation angle was large [14]. Further applications of
coherent control of an anisotropic medium have been suggested [15].

In this paper we discuss an important new application of coherent control in an anisotropic medium. We show how
an anisotropic coherent medium can be used to separate out two polarization components of a pulse. The idea was
to use a control laser appropriately polarized and of suitable frequency so that one of the two circularly polarized
components of the linearly polarized pulse propagates almost without absorption and its dispersion becomes quite
different. The other component, being detuned, has only small absorption. Thus if we were to think of the pulse as
a combination of two polarized components, then one component propagates as if the medium were transparent and
the dispersion for this component is such that it becomes ultraslow. The other component propagates without much
effect as the medium is nonresonant. Clearly under these conditions the two polarization components of the pulse
separate out in time. Thus the medium would act like a polarization splitter of the pulses.

Consider the propagation of a linearly polarized laser pulse through an anisotropic medium of length L. Let us
write the input pulse in terms of its Fourier components as

~E(z, t) = x̂

∫ ∞

−∞

E(ω) exp
{

{iω
(z

c
− t

)}

dω + c.c., (1)

where we assume that the pulse has a small spectral width. The amplitude x̂E can be resolved in terms of two circular
components

x̂E = ǫ̂+E+ + ǫ̂−E−, E± = E/
√

2, (2)

where, unit orthogonal polarization vectors ǫ̂± correspond to σ± polarizations, and are given by

ǫ̂± =
1√
2
(x̂ ± iŷ). (3)

The induced polarization in the medium due to the interaction with the linearly polarized probe can be expressed as

~P (z, t) = ǫ̂+P+(z, t) + ǫ̂−P−(z, t), (4)

P±(z, t) =

∫ ∞

−∞

χ±(ω)E±(z, ω)e−iωtdω. (5)
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Here, χ±(ω) are the complex susceptibilities for the two circularly polarized components inside the medium.
If we assume that the density of the medium is small so that the back reflections are negligible, then the field at

the output can be written as

~E(L, t) ≡ ǫ̂+

∫ +∞

−∞

dω E+(ω) exp

{

iω

(

L

c
− t

)

+
2πiωL

c
χ+(ω)

}

+ ǫ̂−

∫ +∞

−∞

dω E−(ω) exp

{

iω

(

L

c
− t

)

+
2πiωL

c
χ−(ω)

}

. (6)

Clearly the two components of the pulse will travel with different group velocities v±g given by

v±g = c/n±

g ; n±

g ≈ 1 + 2πχ±(ω) + 2πω
∂χ±(ω)

∂ω
, (7)

where the expression (7) is to be evaluated at the central frequency of the pulse.
We will now demonstrate how the ideas of coherent control can be used to separate temporally the two components

of the pulse. The idea is to produce large anisotropy between n+
g and n−

g . We consider a generic four-level model

as shown in Fig. 1 for this purpose. The relevant energy-levels are found in many systems such as in 23Na [16],
7Li [17], and Pr:YSO [18]. The upper level which is a |MF = 0〉 state is coupled to the ground levels by a laser
probe. The degeneracy of the ground level has been removed by applying a static magnetic field of strength B in
the direction of the propagation of the applied laser fields, as in the case of Faraday effect [10]. The orthogonal
components of the probe with σ− and σ+ polarizations interact with |e〉 ↔ |1〉(MF = +1) and |e〉 ↔ |3〉(MF = −1)
transitions, respectively. Renzoni et al. [19] used the same atomic configuration to investigate the possibility of
coherent population trapping using cw field of arbitrary intensities. In a dressed state approach they have shown that
the long-interaction-time-evolution of the system can be completely characterized by the effective line-width of the
noncoupled state.

For the present configuration, the two circular components have the following susceptibilities assuming that the
applied pulse is weak so that the medium behaves like a linear medium:

χ+(ω) =

(

ND2

h̄Γ

) −iΓ

2[i(δ + 2B) − Γe3]
; χ−(ω) =

(

ND2

h̄Γ

) −iΓ

2(iδ − Γe1)
, (8)

where N is the atomic number density of the medium, D is the magnitude of the dipole moment matrix element
between the levels |e〉 and |1〉, the pulse detuning δ is defined as δ = ω −ωe1, ωej (j = 1, 2, 3) is the atomic transition
frequency between the levels |e〉 and |j〉, Γej = Γ = 6γ is the decay rate of the off-diagonal element of the density
matrix between the levels |e〉 and |j〉, and γ = A/12, A being the total spontaneous emission rate of the level |e〉. The
Rabi frequencies for the corresponding transitions are defined as

2g1 = 2
~de1.x̂E

h̄
=

DE−
h̄

; 2g2 = 2
~de3.x̂E

h̄
= −DE+

h̄
, (9)

where, D is proportional to the reduced matrix elements for the relevant |Fe, MF = 0〉 ↔ |Fg, MF = ±1〉 transitions
and can be calculated using the Wigner-Eckart theorem for the hyperfine levels [20]. Note that, the magnetic field
applied makes the system anisotropic, as χ± are different [Eq. (8)]. Thus, the medium will separate the input pulse
into two orthogonal components provided we work in a region of frequencies where absorption is small. Further in
order to produce considerable pulse separation we have to work in a region so that there is large asymmetry between
χ+ and χ−. This requires very large magnetic fields, which could create a Paschen-Back splitting in both the excited
and ground states [21]. In order to overcome these difficulties and to produce very significant temporal separation
between the two circularly polarized components of the pulse, we use the electromagnetically induced transparency
(EIT). We apply a coherent cw field on the transition |e〉 ↔ |2〉

~Ec(z, t) = ~Ec(z)e−iωct + c.c. (10)

The application of this coherent field modifies the susceptibilities to χ̄±(ω):

χ̄+(ω) =

(

ND2

h̄Γ

)

1

2

−iΓ[i(δ + 2B − ∆) − Γ23]

[i(δ + 2B) − Γe3][i(δ + 2B − ∆) − Γ23] + |G|2 , (11a)

χ̄−(ω) =

(

ND2

h̄Γ

)

1

2

−iΓ[i(δ − ∆) − Γ12]

(iδ − Γe1)[i(δ − ∆) − Γ12] + |G|2 , (11b)
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where 2G = 2~de2.~Ec/h̄ is the Rabi frequency for the pump and ∆ = ωc − ωe2 is the pump detuning.
These susceptibilities in units of ND2/h̄Γ have been plotted with respect to δ/Γ in the Fig. 2. We have used the

parameters for 23Na vapor with A = 6.2 × 107 s−1, λ = 5890 Å, N = 2.2 × 1011 atoms cm−3. We have assumed a
Zeeman splitting of 10Γ for the present case, which corresponds to a magnetic field of amplitude ∼ 70 G.

The system has two EIT windows at the frequencies δ = ∆ and δ = ∆− 2B. The lower tick-labels in the x-axis in
the Fig. 2 shows that when δ = ∆, i.e., when the central frequency of the pulse is near-resonance with the |e〉 ↔ |1〉
transition, the σ− component shows a normal dispersive nature, which corresponds to a slow group velocity v−g ;

whereas the dispersion of the σ+ component shows a flatter behavior in frequency domain, which means that this
component will propagate with a group velocity not too different from the velocity in vacuum. Note that because
the σ+ component is far detuned, its absorption through the medium is small (Im[χ̄+(δ = ∆)] ∼ 3.38 × 10−7). The
medium will appear transparent to the σ− component also. A similar situation prevails when δ = ∆− 2B, i.e., when
the input pulse has a central frequency which is near-resonance with the |e〉 ↔ |3〉 transition [upper tick-labels in
x-axis; Fig. 2]. In that case, the σ− component would propagate faster than the other. However both the components
still propagate with negligible absorptions. In either case, because of the difference in group velocities inside the
medium, the two circularly polarized components will come out of the medium at different times, without being
absorbed significantly. Thus, the medium separates the two polarization components of the input pulse temporally.
We have shown the response of the medium for the off-resonant control field in the Fig. 3 under the EIT condition
δ = ∆. For this condition n−

g attains a value of 3.92 × 106, whereas n+
g depends on the value of ∆.

For a medium of length L = 1 cm, we have plotted the variation of temporal separation Γ(t+ − t−) between the
two polaization-components of the pulse with the probe-detuning δ/Γ in the Fig. 4. Here t± = L/v±g are the times

taken by the σ± components to travel through the medium. The maximum time separation between two components
is about −130 µs. Clearly we can reverse the role of σ+ and σ− by working at δ = ∆ − 2B.

We next confirm these results by studying the propagation of a Gaussian pulse [Fig. 5(a)] with an envelop given by

E(ω) = E0

1

σ
√

π
exp [−ω2/σ2]; E(t) = E0 exp (−σ2t2/4). (12)

For our numerical calculation, we choose σ = 2π×4.775 kHz (cf. Γ = 3.1×107 s−1). Using Eqs. (6), (11a) and (11b),
we evaluate numerically the output pulse and show the results in the Fig. 5(b).

For the chosen density and the central frequency of the input pulse, the σ+ component does suffer absorption and
broadening. We calculated the envelop of the σ− component at the output as

E−(L, t) = E0

σ′

σ
exp

[

−σ′2

4

(

t − L

v−g

)2
]

; (13)

σ′ =
σ√

1 − iκ
, κ =

σ2L

2c

[

d2

dω2
{ω [1 + 2πχ−(ω)]}

]

ω=ω0

.

The intensity of the σ− component thus gets reduced by Im(κ), which depends on the second derivative of the
susceptibility. The reduction as seen in the Fig. 5(b) is in conformity with it as the parameter Im(κ) is about 0.15
for the chosen parameters.

However the two components are well separated in time. The time separation between the two peaks in Fig. 5(b)
is of the order of 4000 in units of 1/Γ, which is in agreement with the value given in the Fig. 4 which is based on the
calculation of group velocities. The time separation can in principle be made larger if we increase the density of the
medium. However, the latter option would make the absorption of σ+ quite large leading essentially to an output
pulse which is primarily σ− polarized.

Similar results can be obtained for propagation in other systems. For example, for 7Li [17] in which the Lande’
g-factor for hyperfine levels is positive, the result for pulse separation can be obtained by changing B to −B. The
temporal separation between the two components at the output of such a medium is about +282.5 µs. This means
that the σ− component will come out earlier for δ = ∆.

In conclusion, we have shown how a coherent anisotropic medium can be made to work like a polarization splitter of
pulses. This is achieved by applying a coherent pump field to create EIT for one polarization component whereas the
other component suffers little absorption as it is detuned from resonance. The group velocity of one of the components
is much less than c, while the other component travels through the medium without being much affected. Thus the
orthogonal polarized components of the pulse get temporally separated out after passing through the medium.

GSA thanks E. Arimondo for discussions on this paper.
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FIG. 1. The atomic level configuration for splitting an input pulse temporally. The level |e〉 is coupled to |1〉 and |3〉 by σ−

and σ+ polarized components of the input pulse, with respective Rabi frequencies 2g1 and 2g2 and both with central frequency
ω0. A pump field with Rabi frequency 2G couples the level |e〉 to |2〉. Here B is the Zeeman separation between the degenerate
states. The σ− component is detuned from the corresponding transition frequency by δ and the pump detuning is ∆. 2γje

(j = 1, 2, 3) are the spontaneous decay rates from |e〉 to |j〉.
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FIG. 2. The variations of real (solid line) and imaginary (dotted line) parts of the susceptibilities χ̄+ [upper tick-labels in
x-axis] and χ̄

−
[lower tick-labels in x-axis] in units of ND2/h̄Γ with probe detuning δ/Γ are plotted here. The parameters used

are G = 0.15Γ, B = 10Γ, ∆ = 0, Γe1 = Γe3 = Γ, and Γ12 = Γ23 = 0. At the EIT window δ = ∆ = 0 of the σ− component, the
Im[χ̄+] attains a value of 3.38 × 10−7.
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FIG. 3. This figure shows the variation of n+
g with the pump detuning ∆/Γ at the EIT window δ = ∆ of σ− component.

The parameters used here are N = 2.2 × 1011 atoms cm−3, λ = 5890 Å, and Γ = 3.1 × 107 s−1. All the other parameters are
the same as in the Fig. 2. Here n−

g remains constant at a value ∼ 3.92 × 106.
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FIG. 4. The variations of temporal separation between the two pulses with the probe detuning δ/Γ are shown here. The
parameters used here are L = 1 cm and ∆ = 0. All the other parameters are the same as in the Fig. 3. Note that σ+ component
moves faster inside the medium than the σ− component around the EIT window δ = ∆.
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FIG. 5. (a) This displays the input Gaussian pulse in time-domain with a width of 2π × 4.775 kHz; |E+|
2 = |E

−
|2 = |E|2/2.

(b) The two orthogonal components of the linearly polarized input probe pulse at the output of the medium are displayed here.
It also demonstrates the temporal separation between them for δ = ∆. The solid line shows the σ+ component and the dashed
curve refers to the σ− component. The parameters used here are the same as in the Fig. 3 and τ = t − L/c.
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