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Dark States and Interferences in Cascade Transitions of Ultra-Cold Atoms in a Cavity
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We examine the competition among one- and two-photon processes in an ultra-cold, three-level
atom undergoing cascade transitions as a result of its interaction with a bimodal cavity. We show
parameter domains where two-photon transitions are dominant and also study the effect of two-
photon emission on the mazer action in the cavity. The two-photon emission leads to the loss of
detailed balance and therefore we obtain the photon statistics of the cavity field by the numerical
integration of the master equation. The photon distribution in each cavity mode exhibits sub-
and super- Poissonian behaviors depending on the strength of atom-field coupling. The photon
distribution becomes identical to a Poisson distribution when the atom-field coupling strengths of
the modes are equal.
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I. INTRODUCTION

The dynamics of atom-field coupling in high quality cavities has been an interesting tool to verify the predictions
of quantum electrodynamics (QED) on the radiation-matter interaction [1–5]. The properties of atoms in cavities can
be modified in a controlled way by the proper design of cavity geometry and its quality factors. For example, the
spontaneous emission of an atom can be enhanced or inhibited inside a cavity [3]. Cavities with high quality factors
are especially attractive for studying the regime of strong interaction between the atoms and the quantized fields.
Interesting effects of strong interaction such as collapse and revival of Rabi oscillations, vacuum Rabi splitting, atom-
atom and atom-field entanglements have been predicted and observed [4,5]. The generation of atom-field entangled
states in cavity QED finds many applications in quantum information processing, logic gates etc. A very important
result of strong interaction was the micromaser where the excited atoms go successively through a high quality cavity
in a time much smaller than the characteristic decay times. This leads to build up of a steady state field in the
cavity which has properties quite different from laser fields. The theoretical works on micromaser [6,7] suggested
the sub-Poissonian photon statistics which is purely due to the quantum nature of the field. The operation of the
micromaser has been realized [8] and Weidinger et al verified the existence of trapping states in the micromaser [9].
The two-photon micromaser as well as the microlaser were also realized [10,11]. The theory of two-mode micromaser
operating on three-level systems has been developed [12].

In all these works, the external motion of the atom is treated classically while its interaction with the field is
quantum mechanical. By considering ultra-cold atoms, Scully et al [13] discovered that the quantum treatment of
center-of-mass (c.m.) motion of an atom leads to a completely new kind of induced emission in a cavity. The dressed
state analysis shows that the cavity field can act like a quantum mechanical potential for an ultra-cold, incident atom.
The nature of the potentials depends on the mode profile of the cavity as well as the atom-field coupling strengths
[14,15]. Thus the atom besides changing its electronic states can be either reflected or transmitted through the cavity.
This reflection or transmission of the atoms is very similar to those of a particle interacting with potential barriers
or wells. We have recently shown that tunneling of an ultra-cold, two-level atom in the excited state through two
successive cavities exhibits transmission resonances similar to those of an electron tunneling through semiconductor
double barriers [16]. The reflection and transmission through cavity induced potentials give rise to many interesting
features in the photon statistics and the spectrum of the micromaser pumped by ultra-cold atoms [17]. Further,
the works on quantum treatment of the atomic motion have been extended to study the interaction of two- and
three- level atoms with a single mode field [18]. Considering the quantized motion of Λ-type three-level atoms, the
photon statistics of a two-mode micromaser was discussed [19]. In the Λ-type scheme, an excited atom can make
only one photon transition to either of the two ground levels. In this paper, we examine the photon statistics of a
two-mode micromaser pumped by ultra-cold, cascade three-level atoms. The excited atom in the cascade transition
emits photons sequentially in each of the two cavity modes. Thus, the field mode which is resonant with the upper
transition of the Ξ-type atoms, gets populated by both one and two-photon transitions from the excited state. We
discuss the effect of two-photon emissions from the excited atoms on the photon statistics of the micromaser. We
make use of methods similar to those in Ref. [17].

The organization of the paper is as follows. In Sec. II, we describe the interaction of ultra-cold, Ξ-type three-level
atoms with the bimodal field in the cavity. We show that the field can always induce two-photon transition in an
excited atom when the corresponding one-photon transition is forbidden. In Sec. III, we study the mazer action and
derive the master equation for the reduced density operator of the field in the cavity. In Sec. IV, the numerical results
are presented for the steady state photon distribution in each mode of the bimodal field. We find that the photon
distribution in each mode exhibits Poissonian statistics if the atom-field coupling strengths of the cavity modes are
equal and when the two-photon transitions from the excited atoms are dominant. For different coupling strengths of
the cavity modes, the dominant two-photon effects in transitions can also lead to sub- and super-Poissonian statistics
of photons in the steady state field. Finally, we consider the mazer action when the pumping atoms have kinetic
energies close to the vacuum coupling energy. In this case, one-photon effects also become important and these lead
to different photon statistics for the two cavity modes.

II. ONE AND TWO PHOTON PROCESSES IN ULTRACOLD ATOMS IN A CAVITY

We consider a bimodal cavity of length L pumped steadily by a beam of ultra-cold three-level atoms in the cascade
configuration. The scheme of our model is shown in Fig. 1. The transitions a → b1 and b1 → b2 are dipole allowed
while the direct transition a→ b2 is dipole forbidden. Thus the atom in the excited level a can reach the ground level
b2 only through the two-photon transition a → b1 → b2. The frequencies of the two cavity modes 1 and 2 are tuned
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to those of atomic transitions a → b1 and b1 → b2 respectively. The Hamiltonian describing this resonant atom-field
interaction including the quantized motion of center-of-mass of the atoms along the z direction is given by

H = HA +HF +HAF , (1)

where HA(HF ) is the Hamiltonian of the free atom (field) and HAF is the interaction Hamiltonian describing the
atom-field interaction in the dipole and the rotating wave approximations:

HA =
p2

z

2m
+ h̄Ωa|a〉〈a| +

2
∑

α=1

h̄Ωbα
|bα 〉〈bα| ,

HF =

2
∑

α=1

h̄ωαa
†
αaα ,

HAF = h̄g1(a1 |a〉〈b1| + |b1〉〈a| a†1) + h̄g2(a2 |b1〉〈b2| + |b2〉〈b1| a†2) . (2)

The operator |j〉〈j|(j = a, b1, b2) gives the projection on to the state |j〉 with energy h̄Ωj . The operators |a〉〈b1|
and |b1〉〈b2| describe the atomic transitions from the upper and lower levels to the middle level. The operators aα

(a†α) annihilate (create) a photon in the modes α = 1, 2 with resonance frequencies ω1 = Ωa −Ωb1 and ω2 = Ωb1 −Ωb2

respectively. The first and second terms in the interaction operator HAF represents the action of fields 1 and 2
of the cavity on the upper (a ⇔ b1) and the lower (b1 ⇔ b2) transitions respectively. The parameters gα are the
corresponding atom-field coupling constants andm is the atomic mass. The parameters gα are dependent on z through
the mode function of the cavity.

In the interaction picture, the Hamiltonian (1) of the atom-field system reads

HI =
p2

z

2m
+HAF . (3)

It is useful to expand the interaction Hamiltonian HAF in its diagonal basis. The operator HAF has eigenstates
|φ0

n1+1,n2+1〉, |φ±n1+1,n2+1〉 with eigenvalues 0,±h̄
√

g2
1(z)(n1 + 1) + g2

2(z)(n2 + 1), respectively, where

|φ0
n1+1,n2+1〉 =

g2
√
n2 + 1

√

g2
1(n1 + 1) + g2

2(n2 + 1)
|a, n1, n2〉 − g1

√
n1 + 1

√

g2
1(n1 + 1) + g2

2(n2 + 1)
|b2, n1 + 1, n2 + 1〉

|φ±n1+1,n2+1〉 =
1√
2

[

g1
√
n1 + 1

√

g2
1(n1 + 1) + g2

2(n2 + 1)
|a, n1, n2〉 ± |b1, n1 + 1, n2〉

+
g2
√
n2 + 1

√

g2
1(n1 + 1) + g2

2(n2 + 1)
|b2, n1 + 1, n2 + 1〉

]

(4)

The interaction operator HAF and its eigenstates |φ0
n1+1,n2+1〉, |φ±n1+1,n2+1〉 depend on the position z through the

coupling strengths g1(z), g2(z). Thus, it is in general difficult to carry out the time evolution of an atom-field state
governed by the Hamiltonian (3) for the quantized motion of atoms. So, for simplicity, we work with the mesa
mode functions gα(z) = gα θ(z)θ(L − z) which represent the constant field modes in the cavity. In this case, the
eigenstates of the interaction are independent of atomic position inside the cavity and the atomic motion sees free
particle evolution in the dark state of interaction |φ0

n1+1,n2+1〉. The effect of atom’s interaction with the cavity on

its external motion can be realized only in the dressed state |φ±n1+1,n2+1〉 components of the initial atom-field state.

We need to consider the initial atom-field state to be |a, n1, n2〉, i.e., the atom is in the excited state and the cavity
contains (n1, n2) photons in the modes (1, 2) initially. This initial state can be expanded in the dressed state basis as

|a, n1, n2〉 =

[

g1
√

(n1 + 1)/2
√

g2
1(n1 + 1) + g2

2(n2 + 1)

(

|φ+
n1+1,n2+1〉 + |φ−n1+1,n2+1〉

)

+
g2
√
n2 + 1

√

g2
1(n1 + 1) + g2

2(n2 + 1)
|φ0

n1+1,n2+1〉
]

. (5)
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The time evolution of this initial state can be found by expanding the combined state of atom-cavity system as

|Ψ(z, t)〉 = χ+(z, t)|φ+
n1+1,n2+1〉 + χ−(z, t)|φ−n1+1,n2+1〉 + χ0|φ0

n1+1,n2+1〉 , (6)

then the time dependent Schrodinger equation becomes

ih̄
∂χα(z, t)

∂t
= hαχα(z, t) , α = ±, 0. (7)

Here, h± = p2
z/2m ± h̄

√

g2
1(n1 + 1) + g2

2(n2 + 1), h0 = p2
z/2m are operators acting in the space of center of mass

variables. Thus, the effect of the cavity with fixed number of photons produces potential terms in hα corresponding
to the dressed states |φ±n1+1,n2+1〉 as discussed in Ref. [17]. The barrier and well potentials induced by the interaction

for the atomic motion in the states |φ±n1+1,n2+1〉 are then displayed as in Fig. 2. It is also important to note that the

external motion of atom experiences free time evolution in the dark state |φ0
n1+1,n2+1〉 for the mesa mode distribution

of the cavity fields. Denoting the reflection and transmission amplitudes as ρ±n1,n2
, τ±n1,n2

for the potential barrier-well

problem of the dressed states |φ±n1+1,n2+1〉, respectively, we have

ρ±n1,n2
= i∆±

n1,n2
sin(k±n1,n2

L) exp(ikL)τ±n1,n2
, (8)

τ±n1,n2
= exp(−ikL)

[

cos(k±n1,n2
L) − iΣ±

n1,n2
sin(k±n1,n2

L)
]−1

, (9)

∆±
n1,n2

=
1

2

(

k±n1,n2

k
− k

k±n1,n2

)

, (10)

Σ±
n1,n2

=
1

2

(

k±n1,n2

k
+

k

k±n1,n2

)

,

k±n1,n2
=

√

(

k2 ∓ 2m

h̄

√

g2
1(n1 + 1) + g2

2(n2 + 1)

)

, (11)

where h̄k is the atomic c.m. momentum and L is the length of the cavity. It is to be noted that the strengths of
the barrier - well potentials (potential energy term in k±n1,n2

) depend on the coupling constants g1, g2 as well as the
occupation numbers n1, n2 of the photons in the cavity.

We consider the initial wave packet of the moving free atom to be ψ(z, t) = exp
(

−ip2
zt/2mh̄

) ∫

dkA(k)eikz =
∫

dkA(k)e−i(h̄k2/2m)teikz . The Fourier amplitudes A(k) are adjusted such that the peak of the incident wave packet

|ψ(0, t)|2 at the entry (z = 0) of the cavity occurs at time t = 0. The combined state of the atom-cavity system at
the initial time t = 0 is therefore,

|Ψ(z, 0)〉 = ψ(z, 0)|a, n1, n2〉 . (12)

The wave function of the atom-field system at time t is found by solving the Eqs. (6) and (7) subject to the above
initial condition :

|Ψ(z, t)〉 =

∫

dkA(k)e−i(h̄k2/2m)t
{[

Ra,n1,n2
(k)e−ikzθ(−z) + Ta,n1,n2

(k)eikzθ(z − L)
]

|a, n1, n2〉

+
[

Rb1,n1+1,n2
(k)e−ikzθ(−z) + Tb1,n1+1,n2

(k)eikzθ(z − L)
]

|b1, n1 + 1, n2〉
+

[

Rb2,n1+1,n2+1(k)e
−ikzθ(−z) + Tb2,n1+1,n2+1(k)e

ikzθ(z − L)
]

|b2, n1 + 1, n2 + 1〉
}

, (13)

where

Ra,n1,n2
=

g2
1(n1 + 1)

2 (g2
1(n1 + 1) + g2

2(n2 + 1))

(

ρ+
n1,n2

+ ρ−n1,n2

)

,

Ta,n1,n2
=

g2
1(n1 + 1)

2 (g2
1(n1 + 1) + g2

2(n2 + 1))

(

τ+
n1,n2

+ τ−n1,n2

)

+
g2
2(n2 + 1)

(g2
1(n1 + 1) + g2

2(n2 + 1))
, (14)
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are the reflection and transmission amplitudes for the excited state of the atom with the initial (n1, n2) photons
remaining in the two cavity modes and

Rb1,n1+1,n2
=

g1
√

(n1 + 1)

2
√

(g2
1(n1 + 1) + g2

2(n2 + 1))

(

ρ+
n1,n2

− ρ−n1,n2

)

,

Tb1,n1+1,n2
=

g1
√

(n1 + 1)

2
√

(g2
1(n1 + 1) + g2

2(n2 + 1))

(

τ+
n1,n2

− τ−n1,n2

)

, (15)

are the probability amplitudes that the excited atom goes to the state |b1〉 and emits a photon in mode 1 while getting
reflected and transmitted respectively. Similarly, the excited atom is reflected or transmitted and emits a photon in
both the cavity modes while making a transition to the ground state |b2〉 via the middle state |b1〉 with probability
amplitudes

Rb2,n1+1,n2+1 =
g1g2

√

(n1 + 1)(n2 + 1)

2 (g2
1(n1 + 1) + g2

2(n2 + 1))

(

ρ+
n1,n2

+ ρ−n1,n2

)

,

Tb2,n1+1,n2+1 =
g1g2

√

(n1 + 1)(n2 + 1)

2 (g2
1(n1 + 1) + g2

2(n2 + 1))

(

τ+
n1,n2

+ τ−n1,n2

)

− g1g2
√

(n1 + 1)(n2 + 1)

(g2
1(n1 + 1) + g2

2(n2 + 1))
. (16)

It is clear from the above equations that the effects of the barrier and well potentials induced by the dressed states
|φ±n1+1,n2+1〉 add coherently in either the reflection or transmission of the atom. The additive term to the barrier-well

amplitudes in Eqs. (14) and (16) comes from the contribution of the dark state |φ0
n1+1,n2+1〉 in the initial state

expansion Eq. (5). Since the dark state is orthogonal to the middle state |b1〉, it influences only the two-photon
emissions and not the one-photon emissions of the excited atom. An important feature here is that the two-photon
transition can always be induced by the field when the one-photon transition is forbidden. This can be seen by
examining the probabilities for different states of the atom. When an initially excited atom is incident upon the
cavity containing (n1, n2) photons in the two cavity modes (1, 2), respectively, then from Eqs. (15) and (16) the
probability that the atom makes a one-photon transition to the state |b1〉 with the emission of a photon in mode 1 is

Pn1,n2
(a → b1) = |Rb1,n1+1,n2

|2 + |Tb1,n1+1,n2
|2 , (17)

and the probability that the atom makes a two-photon transition to the state |b2〉 with the emission of a photon in
each of the modes 1 and 2 of the cavity is

Pn1,n2
(a→ b2) = |Rb2,n1+1,n2+1|2 + |Tb2,n1+1,n2+1|2 . (18)

When g2 = 0, the lower transition b1 → b2 is forbidden and hence the two-photon transition probability Pn1,n2
(a→ b2)

vanishes. Then, the upper transition a → b1 behaves like a two-level atom interacting with the mode 1 of the cavity
field. In Fig. 3, we compare the photon emission probabilities of excited, two-level (g2 ≡ 0) and three-level (g2 6= 0)
atoms when the cavity is initially in vacuum state. We scale the parameters in terms of a wave number κ which
is defined by the vacuum coupling energy h̄g1 ≡ h̄2κ2/2m of the two-level atom. Note that the coupling strength
g1 = 2π × 10 MHz of a 85Rb atom corresponds to 155 µm length of the cavity for the parameter κL = 20000π. The
temperature of the atom is of the order of 10−8 K for the mean momentum k/κ = 0.01. For ultra-cold, incident
atoms (k/κ << 1), the graph in Fig. 3(a) shows that the one-photon emission probability exhibits resonances as a
function of length of the cavity for both two-level and three-level atoms. In the three-level atom, the resonances of the
one-photon emission probability occur at values of κL different from those of two-level atom. The two-photon emission
probability shows maxima and minima at the resonance positions of the one-photon transition. This behavior arises
from the interference of the contributions coming from different dressed states in the initial state expansion Eq. (5).

The transmission probability |Tb2,n1+1,n2+1|2 obtained from Eq. (16) has an interference term proportional to the
phase of the amplitude

(

τ+
n1,n2

+ τ−n1,n2

)

. This term can be constructive or destructive which leads to the enhancement
or reduction of the two-photon emission probability. From the graph, we also see that P0,0(a → b2) ≈ 0.32 when
P0,0(a → b1) ≈ 0. This implies that the probability of two-photon emission is not the product of the probabilities for
single photon emission. This also suggests that both the field modes of the bimodal cavity can be amplified together
through the two-photon transition of an excited atom. This feature is absent in the case of two-mode micromaser
pumped by ultra-cold, Λ-type three-level atoms [19]. In the Λ-scheme micromazer, the excited atom can make only
one-photon transition to either of the two ground levels. Therefore, both the cavity modes can not be populated
sequentially by the photon emission from the same atom. Next, we compare our results for ultra-cold atoms with
that of fast, incident atoms in the Ξ- type configuration. In the case of fast, incident atoms (k/κ >> 1), both one-
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and two- photon emission probabilities exhibit Rabi oscillations as a function of the length of the cavity as seen from
Fig. 3(b). The Rabi frequency of oscillation for one-photon emission is twice that of the two-photon emission. These
features resemble exactly the results in the usual Jaynes-Cummings (JC) model where one neglects the quantization
of the atomic motion in atom-cavity interaction [2]. Thus, neglecting the kinetic energy operator in the Hamiltonian
(1), the time evolution of the initial atom-field state |a, n1, n2〉 gives for the photon emission probabilities in the JC
model:

Pn1,n2
(a → b1) =

g2
1(n1 + 1)

Ω2
sin2(Ωτ) ,

Pn1,n2
(a → b2) =

4g2
1g

2
2(n1 + 1)(n2 + 1)

Ω4
sin4(Ωτ/2) ,

where Ω ≡
√

g2
1(n1 + 1) + g2

2(n2 + 1) is the Rabi frequency and τ is the interaction time of the atom with the cavity.
Note that when Ωτ is an odd number multiple of π, the one-photon transition is forbidden and the two-photon
transition probability becomes maximum consistent with the results for fast atoms in Fig. 3.

III. MAZER ACTION IN A BIMODAL CAVITY - BASIC MASTER EQUATION FOR THE CAVITY

FIELD

In this section, we consider the mazer action of ultracold atoms in a bimodal cavity and derive the master equation
for the cavity field assuming that excited atoms are pumped steadily into the cavity. We model the random pumping
of the atoms into the cavity by a Poissonian process with an average rate of pumping r. The flux of the incident
atoms is adjusted so that only one atom interacts with the cavity field at a time. We neglect the cavity field damping
during the time an atom interacts with the field. Since the field in the cavity changes with the passage of each atom,
we need to know the time evolution of the atom-field state for a general initial state of the cavity field. The wave
function of the initial atom-field system is now given by

|Ψ(z, 0)〉 = ψ(z, 0)
∑

n1,n2

Cn1,n2
|a, n1, n2〉. (19)

Carrying out the time evolution for this initial state using Eqs. (5)-(7), the state of atom-field system after the
interaction is given by

| Ψ(z, t)〉 =

∫

dkA(k)e−i(h̄k2/2m)t

∞
∑

n1,n2=0

[

Ra,n1,n2
(k)e−ikzθ(−z) | a, n1, n2〉 + Ta,n1,n2

(k)eikzθ(z − L) | a, n1, n2〉

+ Rb1,n1+1,n2
(k)e−ikzθ(−z) | b1, n1 + 1, n2〉 + Tb1,n1+1,n2

(k)eikzθ(z − L) (20)

| b1, n1 + 1, n2〉 + Rb2,n1+1,n2+1(k)e
−ikzθ(−z) | b2, n1 + 1, n2 + 1〉 + Tb2,n1+1,n2+1(k)

eikzθ(z − L) | b2, n1 + 1, n2 + 1〉
]

,

where

Ra,n1,n2
(k) = Cn1,n2

Ra,n1,n2
(k) ,

Ta,n1,n2
(k) = Cn1,n2

Ta,n1,n2
(k) , (21)

are the probability amplitudes for reflection (or) transmission of the atom in the upper state |a〉 with (n1, n2) photons
in the cavity field and similarly, the atom is reflected (or) transmitted when the atom-field state is |b1, n1 +1, n2〉 (or)
|b2, n1 + 1, n2 + 1〉 with amplitudes

Rb1,n1+1,n2
(k) = Cn1,n2

Rb1,n1+1,n2
(k) ,

Tb1,n1+1,n2
(k) = Cn1,n2

Tb1,n1+1,n2
(k) ,

Rb2,n1+1,n2+1(k) = Cn1,n2
Rb2,n1+1,n2+1(k) , (22)

Tb2,n1+1,n2+1(k) = Cn1,n2
Tb2,n1+1,n2+1(k) .
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The time evolution of the reduced density operator of the field in the interaction picture is then given in the coarse
graining method [7] to be

ρ̇(t) = rδρ(t) + Lρ(t) , (23)

where δρ(t) = ρ(t) − ρ(0) is the change in the reduced density operator of the field due to the passage of a single
atom in the excited state. This can be obtained by forming the atom-field density matrix using Eqs. (19) - (22) and
tracing over external and internal degrees of freedom of the atom. Field damping and the effect of thermal photons
are described by the Liouville operator

Lρ =
1

2
C1(nb1 + 1)(2a1ρa

†
1 − a†1a1ρ− ρa†1a1)

+
1

2
C1nb1(2a

†
1ρa1 − a1a

†
1ρ− ρa1a

†
1)

+
1

2
C2(nb2 + 1)(2a2ρa

†
2 − a†2a2ρ− ρa†2a2) (24)

+
1

2
C2nb2(2a

†
2ρa2 − a2a

†
2ρ− ρa2a

†
2) .

Here nbα
is the number of thermal photons in mode α and Cα is the damping rate of this mode. Using Eqs. (23) and

(24) we obtain the equation governing the time evolution of density matrix elements,

ρ̇(n1, n2;n
′
1, n

′
2) = r

{

(Ra,n1,n2
R⋆

a,n1
′,n2

′ + Ta,n1,n2
T ⋆

a,n1
′,n2

′ − 1)ρ(n1, n2;n
′
1, n

′
2)

+ (Rb1,n1,n2
R⋆

b1,n1
′,n2

′ + Tb1,n1,n2
T ⋆

b1,n1
′,n2

′)ρ(n1 − 1, n2;n1
′ − 1, n2

′)

+ (Rb2,n1,n2
R⋆

b2,n1
′,n2

′ + Tb2,n1,n2
T ⋆

b2,n1
′,n2

′)ρ(n1 − 1, n2 − 1;n1
′ − 1, n2

′ − 1)
}

+
1

2
C1(nb1 + 1)[2

√

(n1 + 1)(n′
1 + 1)ρ(n1 + 1, n2;n

′
1 + 1, n′

2)

− (n1 + n′
1)ρ(n1, n2;n

′
1, n

′
2)]

+
1

2
C1nb1 [2

√

n1n′
1ρ(n1 − 1, n2;n

′
1 − 1, n′

2) (25)

− (n1 + n′
1 + 2)ρ(n1, n2;n

′
1, n

′
2)]

+
1

2
C2(nb2 + 1)[2

√

(n2 + 1)(n′
2 + 1)ρ(n1, n2 + 1;n′

1, n
′
2 + 1)

− (n2 + n′
2)ρ(n1, n2;n

′
1, n

′
2)]

+
1

2
C2nb2 [2

√

n2n′
2ρ(n1, n2 − 1;n′

1, n
′
2 − 1)

− (n2 + n′
2 + 2)ρ(n1, n2;n

′
1, n

′
2)] .

The diagonal elements of the density matrix P (n1, n2) = ρ(n1, n2;n1, n2) which gives the joint distribution of
photons in the two cavity modes, obeys the following equation:

Ṗ (n1, n2) = −Gb1,n1,n2
P (n1, n2) +Gb1,n1−1,n2

P (n1 − 1, n2)

− Gb2,n1,n2
P (n1, n2) +Gb2,n1−1,n2−1P (n1 − 1, n2 − 1)

+ C1(nb1 + 1) [(n1 + 1)P (n1 + 1, n2) − n1P (n1, n2)] (26)

+ C1nb1 [n1P (n1 − 1, n2) − (n1 + 1)P (n1, n2)]

+ C2(nb2 + 1) [(n2 + 1)P (n1, n2 + 1) − n2P (n1, n2)]

+ C2nb2 [n2P (n1, n2 − 1) − (n2 + 1)P (n1, n2)] ,

where Gb1,n1,n2
= rPn1,n2

(a→ b1) and Gb2,n1,n2
= rPn1,n2

(a→ b2) are the gain coefficients for the atomic transitions
with Pn1,n2

(a → b1) and Pn1,n2
(a → b2) as defined in Eqs. (17) and (18). This is the master equation for the two-

mode micromaser describing the time evolution of photon distribution in the cavity. This equation behaves similar to
a rate equation for the probability and a simple physical meaning can be given to each term on the right hand side in
terms of inflow and outflow of probabilities. The first and second terms in the equation gives the effect of one-photon
transitions while the third and fourth terms correspond to the two-photon transitions of the excited atoms.
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IV. PHOTON STATISTICS OF THE MAZER FIELD

The steady state distribution of photons obeys the equation

Ṗ (n1, n2) = 0 (27)

In the limit g2 → 0, the two-photon transition probability in Eq. (18) tends to zero and therefore we can neglect
the third and fourth terms containing Gb2,n1,n2

in the master Eq. (26). In this case, the upper transitions a → b1
behave like two-level atoms interacting with the mode 1 of the cavity. The lower transitions b1 → b2 and hence the
two-photon transitions a → b1 → b2 are forbidden in the interaction. The steady state solution of the Eq. (27)
can then be obtained in analytical form by using the principle of detailed balance as discussed by Meyer et al [17].
The photon statistics in this two-level problem is a mixture of thermal and shifted thermal distributions.
When g2 6= 0, both the one- and two-photon effects of atomic transitions contribute in building up the cavity field.
The two-photon terms (third and fourth terms) in the master equation have no counterpart in the decay terms and
therefore the equation is not solvable analytically for the steady state distribution by the principle of detailed

balance adopted in all the previous works on micromasers. In this general case, we integrate the master equation (26)
numerically using fourth order Runge kutta method to get the steady state solution. We do not use any decorrelation
approximation. The photon distribution P1(n) and P2(n) in the cavity modes 1 and 2 are obtained respectively using

P1(n) =

∞
∑

l=0

P (n, l), P2(n) =

∞
∑

l=0

P (l, n) . (28)

The normalized variances of photon distribution in the two cavity modes are defined by

σ2
α =

〈n2
α〉 − 〈nα〉2
〈nα〉

, α = 1, 2 . (29)

In Fig. 4, we present the numerical results of the photon distribution in steady state for ultra-cold, incident atoms
(k/κ << 1) by assuming equal parameters for the decay terms C1 = C2 = C, nb1 = nb2 = nb. The graph shows that for
g1 < g2, the photon statistics in mode 1 is super-Poissonian (σ2

1 > 1) while that of mode 2 is sub-Poissonian (σ2
2 < 1).

The photon distribution for g1 > g2 is identical to that of g1 < g2 except that modes 1 and 2 are interchanged. When
g1 = g2, each mode of the cavity field exhibits Poissonian statistics (σ2

α ≈ 1) of mean r/2C − 1. To understand these
numerical results, we now approximate the master equation (26) by dropping the first and second terms corresponding
to one-photon transitions. In fact, for the parameters of Fig. 4, the barrier and well amplitudes are ρ±n1,n2

≈ −1,

τ±n1,n2
≈ 0 for wide range of n1 and n2 values. Therefore, the one-photon transition probability Pn1,n2

(a → b1)
in Eq. (17) is approximately zero. The two-photon emission probability Pn1,n2

(a → b2) in Eq. (18) can then be

approximated to be 2g2
1g

2
2(n1 +1)(n2 +1)/(g2

1(n1 + 1) + g2
2(n2 + 1))

2
. Note that this approximation is also consistent

with the results for ultra-cold atoms in Fig. 3. With these substitutions for the photon emission probabilities in
gain coefficients, numerical integration of the master Eq. (26) again gives the same results. Moreover, in the absence
of one-photon terms, the master equation is symmetric with respect to the labels 1 and 2 of the two cavity modes.
Thus, the Poissonian distribution of photons in each cavity mode is purely the effect of two-photon transitions of the
excited atoms. It should be emphasized that the transmission of atoms occurs only in the dark eigenstate component
of the interaction during the field buildup in the cavity. The atoms interacting with the barrier-well component of
the dressed states get reflected always. But both the reflected and the transmitted atoms have equal probability

of two-photon emissions into the cavity. Since the one-photon emissions are forbidden in the interaction for ultracold
atoms, the photon distribution of both the cavity modes peaks around the same photon number in Fig. 4. In general,
the photon distribution for mode 1 peaks at a higher photon number when compared with that of mode 2 . This is
because the mode 1 of the cavity can be populated by both one- and two-photon emissions while the mode 2 can be
populated by only two-photon emissions from the incident atoms. We have found this behavior of steady state photon
distribution in the case of fast, incident atoms. In Fig. 5, we display the steady state photon distribution when the
micromaser is pumped by fast, incident atoms (k/κ >> 1) for the same parameters of Fig. 4(a). The graph shows
that the field 1 is amplified more than the field 2 by the stimulated, photon emissions from the incident atoms. It
is important to note that the field 2 has an influence on the field 1 in the cavity through the interaction with the
atoms. The effects of field 2 such as gain enhancement or gain reduction on field 1 have been already discussed in
a different context viz in a two-beam laser operating on cascade three-level atoms [20]. Next, we show the effect of
thermal photons in the cavity on the steady state photon distribution in Fig. 6. For comparison, we have also plotted
the photon distribution for the two-level problem (g2 ≡ 0). The length κL of the cavity is chosen to be at a resonance
of the one-photon emission probability for the initial, excited state of the two-level atom and three photons in mode
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1 of the cavity. The photon distribution in the two-level problem then looks similar to a mixture of thermal and
shifted thermal distributions as discussed by Meyer et al [17]. For three-level atoms, comparison with Fig. 4(a) shows
that the photon distribution broadens because of the presence of thermal photons (nb 6= 0) even though qualitative
features are very similar. In particular, the two-photon emissions from the pumping atoms are still the dominant
contribution to the steady state field for the chosen length of the cavity. The Poissonian-like statistics of photons
in the micromaser cavity pumped by cold atoms, resembles closely the behavior of a laser operating at far above
threshold [21]. Finally, we note that the two-photon effects are dominant over the one-photon transitions only in the
limit (k/κ << 1) of ultra-slow motion of the incident atoms. The competition of the one-photon with the two-photon
processes becomes stronger even for energies of the incident atoms (k/κ ≈ 1) close to the vacuum coupling energy.
In Fig. 7, we plot the photon distribution in the cavity for the mean momentum k/κ = 1.1 of the incident atoms.
The inset of the Fig. 7 shows the photon emission probabilities of an excited atom for an initial, vacuum state of the
cavity field. The graph shows that the one-photon effects participate in the field build up of the cavity and these lead
to unequal, average number of photons in the two modes of the mazer field.

V. SUMMARY

We considered the interaction of mono-energetic beam of ultra-cold, cascade three- level atoms in the excited state
with a bimodal cavity. The atom-field interaction is equivalent to reflection and transmission of the atoms through
the potentials induced by the dressed states. There is also a reflection-less transmission of the atoms in the dark
eigenstate of atom-field interaction. We find that two-photon transition can always be induced in an excited atom
when its one-photon transition is forbidden. In general, the two-photon emissions from the excited atoms dominate
over the one-photon emissions in building up the steady state field of the cavity. The steady state photon distribution
in each mode exhibits sub- and super- Poissonian behaviors depending on the strengths of the atom-field couplings.
The photon distribution approaches the Poissonian statistics when the atom-field coupling strengths of the two modes
are equal. We have also obtained the photon distribution in steady state when the micromaser is pumped by fast,
moving atoms instead of ultracold atoms. In this case, both one- and two- photon emissions from the incident atoms
contribute in building up the steady field of the cavity.
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FIG. 1. The scheme of the two-mode micromaser cavity pumped by Ξ-type three-level atoms in the excited state.
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FIG. 2. Schematic representation of the energy E of the excited atoms incident upon a two-mode micromaser
cavity with (n,m) photons. The atom-field interaction creates a barrier (dashed) and well (dotted) potentials with

a potential energy V = h̄
√

g2
1(n+ 1) + g2

2(m+ 1) in the dressed states |φ±n+1,m+1〉. The scattering from these cavity
induced potentials leads to reflection or transmission of the atoms through the cavity. The interaction also induces a
reflection-less transmission of the atoms in the dark state |φ0

n+1,m+1〉. However, the reflection or transmission of the
atoms can occur only in either of the three states |a, n,m〉, |b1, n+ 1,m〉, and |b2, n+ 1,m+ 1〉.
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FIG. 3. The probabilities of a→ b1 (solid curve) and a→ b1 → b2 (dotted curve) transitions of an excited atom as a
function of the length κL of the cavity. The cavity is initially in vacuum state and the parameters used are g2/g1 = 2,
k/κ = 0.01 [(a)], k/κ = 100 [(b)]. The dashed curve in Fig. 3(a) represents the photon emission probability of an
excited two-level atom resonant with the upper transition when g2 = 0. Actual values of the dashed curve are 2.5
times those shown. For clarity, the dotted curve in Fig. 3(a) has been displaced by 0.1 units along the Y axis.
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FIG. 4. The steady state distribution of photons in mode 1 (solid curve) and mode 2 (dashed curve). The parameters
used are C1 = C2 = C, nb1 = nb2 = nb, r/C = 50, nb = 0, κL = 20000π, k/κ = 0.01 and (a) g2/g1 = 2, (b) g2/g1 = 1.
In the case of g2 = g1, the dashed curve is hardly distinguishable from the solid curve. The photon statistics for the
parameter g2/g1 = 0.5 is approximately similar to that of g2/g1 = 2 except that the solid (dashed) curve corresponds
to the photon distribution in mode 2 (1).
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FIG. 5. The steady state distribution of photons in mode 1 (solid) and mode 2 (dashed) for the same parameters
of Fig. 4(a) with k/κ = 100.
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FIG. 6. The steady state distribution of photons in mode 1 (solid curve) and mode 2 (dashed curve). The parameters

for the calculation are C1 = C2 = C, nb1 = nb2 = nb, r/C = 50, k/κ = 0.01, g2/g1 = 2, κL = 40000π/ 4
√

4 and nb = 1.
The dotted curve represents the photon distribution in mode 1 for the two-level problem when g2 = 0. Actual values
of the dotted curve are 5 times those shown.
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FIG. 7. The steady state distribution of photons in mode 1 (solid) and mode 2 (dashed) for the same parameters
of Fig. 4(a) with k/κ = 1.1. The solid (dashed) curves in the inset represents the one-photon (two-photon) transition
probabilities of an excited atom for an initial vacuum field in the cavity. The parameters used for the inset are
g2/g1 = 2 and k/κ = 1.1.
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