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Abstract-The theory of melting of molecular crystals developed in Parts I 
and I1 is extended to include short range orientational order. The thermo- 
dynamic properties are evaluated by the quasi-chemical method, which is 
mathematically equivalent to Bethe’s treatment, and the theory is applied to 
liquid crystalline transitions. The interesting result is obtained that the 
nematic-isotropic transition is always iirst order, and that although the long 
range orientational order disappears suddenly at this transition point, a 
certain degree of short range orientational order persists in the isotropic phase. 
The specific heat exhibits both pre- and post-transition anomalies, in con- 
formity with observations. The thermal expansion and isothermal com- 
pressibility show pre-transition anomalies but, contrary to experimental 
facts, no post-transition anomalies, indicating that even the quasi-chemical 
approach is not quite adequate for explaining all the properties. 

1. Introduction 

Though the long range orientational order of the molecules dis- 
appears abruptly at the nematic-isotropic transition point, the 
post-transition anomalies in the specific heat, magnetic birefringence, 
etc., reveal that an appreciable degree of short range orientational 
order persists in the liquid phase. Theoretical of 
the entropy of transition also show conclusively that short range 
order is present even at temperatures well above the transition point. 
In the light of this evidence, we shall reformulate the theory of 
melting of molecular crystals discussed in Parts I(3) and 11(4) SO as 
to include the effect of short range order. The theory was developed 
previously by the use of the Bragg-Williams or zeroth approximation ; 
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22 M O L E C U L A R  C R Y S T A L S  A N D  L I Q U I D  C R Y S T A L S  

we shall now adopt the quasi-chemical approach or the first approxi- 
mation. (5)  

2. The Model 

As before, we consider a two-lattice model consisting of M A-sites 
and N B-sites. A molecule can take up one of two orientations on 
any site so that it has four possibilities, A,, A,, B, and 13,. The 
energy required for a molecule to diffuse to an interstitial site de- 
pends on the AB interactions and the orientational barrier is deter- 
mined by the AlA2 or BIB, interactions. Let Q be the fraction of the 
molecules occupying A-sites and S the fraction occupying 1 -orienta- 
tions. There are then 

NQS molecules in A, positions 

N&( 1 - S )  molecules in A, positions 

N (  1 - &)S molecules in B, positions 

N (  1 - &)( 1 - S )  molecules in B, positions. 

To take into account the short range orientational order, we write 
out the number of AA (or BB) pairs on neighbouring sites occupied 
in four possible ways. For this purpose it is convenient to  regard 
the A-lattice as consisting of 2 sublattices, each of N / 2  sites, desig- 
nated by A’ and A“. Let there be 

$zfNQ2X AlfAlf t  pairs, 

where zf  is the number of A-sites closest to any A-site. This deter- 
mines the number of A’A“ pairs occupied in three other ways as 
given below : 

&’N&2( S - X )  
gz”&2( S - X )  
&”&2( 1 - 2 5  + X )  

Al’A2’’ pairs, 

A2’A1“ pairs, 

AZfA2” pairs. 

Similarly, there are 

iz’N(1 -&)ZX Bl‘Blff pairs, 

+z’N( 1 -&)‘(AS - X )  BlfB2” pairs, 

&”( 1 - &)2(S - X) BZ’Blff pairs, 

$z”( 1 - &)2( 1 - 2 8  + X) B ,’ I3 2 f  pairs. 
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M E L T I N G  O F  M O L E C U L A R  C R Y S T A L S  23 

We ignore short range positional order. 
disorder is therefore 

The partition function for 

Q = y(&, S, X) exp [ - {zNW&( 1 - &) +z‘NW’(S - X)( 1 - 2Q + 2Q2)}/kT], 
(1) 

where W is the repulsive energy of an AB interaction, W’ the 
orientational potential energy of an A,A2 or BIB2 interaction, and 
z the number of A-sites adjacent to each B-site. 

[&Z”&2Xfl] ! {[&z”&Z(S - X,)] ! }2[&z”&2( 1 - 2s + X,)] ! 
* [&Z’NQ2X J ! { [ iz”&2(S - X)] ! }2 [&z’N&2( 1 - 2s + x p  

[&”( 1 - &)”,] ! { [&z”(  1 - & ) 2 ( 5  - X,)] ! }2 [ *z ” (  1 - &I2(  1 - 2s +&)I ! 
. [iz”( 1 - &)“I ! { [ hz ” (  1 - & ) 2 ( S  - X)] ! } 2  [*z”( 1 - &12(1 - 2s +.)I ! 

“&I ! 
“QS] ! [N&( 1 - S ) ]  ! 

[~z”&”,] ! { [iz”&2(S - X,)] ! }2[&Z’N&2( 1 - 2s + X,)] ! 
[ &Z’X&2X J ! { [4$”&2( s - X)] !}2 [ &z”&2( 1 - 2 s  + X)] ! 

for large N, where X, = S2 is the value of X corresponding to com- 
plete randomness (see Ref. 5). Maximizing (1) with respect to X 
leads to the relation 

X ( 1 - 2 S + X )  
(S - X)2 = exp ( 2  PV‘/kT), 

which could also have been arrived at  by Bethe’s r n e t h ~ d . ( ~ - ~ )  Hence 

(BaS+1)-[1+4aS(l -AS)]* 
2a x = .  9 (2) 

where a = [exp (2W’IkT) - 11. 
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24 MOLECULAR CRYSTALS A N D  L I Q U I D  C R Y S T A L S  

The other two conditions of equilibrium are 

0, 
alogD a1og52 

aQ as -=-= 

which yield the following equations : 

Q zr 
I o g c Q  = [2(s2log L.72 + 2 ( 8  - 8 2 )  log ( I s  - 8 2 )  + ( 1  - 2 s  + 5 2 )  log (1 - 2R + S 2 )  

- XlogX - 2 ( S  - X)log ( S  - X) - ( 1  - 2 s  +X)log ( 1  - 2 s  + X)) 

- z r { S l o g S ~ + ( l - 2 S ) l o g ( S - s a ) + ( S -  l ) l o g ( l - 2 S + S 2 ) }  log- - 1-s [ 
( Y> (a,xs > 1 --{-logX+2 1 - -  log(S-X)+ - - 2  l o g ( l - 2 S + X )  

zi  ax 
2 as 

- f i C ( 1 - 3 ]  kT ( 1  -2&+2&3). 

We put 

W = Wo(Vo/J')4, 
W' = W,l( V 0 / V ) 3 ,  

and introduce the parameter 

v = zrwo)/zw, 
which is a measure of the relative barriers for the rotation of a 
molecule and for its diffusion to an interstitial site. For the purpose 
of numerical calculations, we assume the model to be two inter- 
penetrating face-centred cubic lattices, so that z = 6 and zr  == 12. 

The variation of the equilibrium values of Q, S and X with z W / k T  
are shown in Fig. 1 for v = 1.36 and kT/E = 0.665. For the con- 
venience of representing all three quantities in the same diagram, 
Xi has been plotted rather than X. It is interesting to observe that 
Xi does not drop to 0.5 along with S ,  showing that short range order 
is appreciable even for low z W / k T .  Hereafter Q, S and X will be 
understood to refer to the equilibrium values determined by (2), (3) 
and (4). 
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M E L T I N G  O F  M O L E C U L A R  C R Y S T A L S  25 

3. Evaluation of the Thermodynamic Properties 

The component of the Helmholtz free energy due to disorder 
F” = - kT log Q, and the pressure due to disorder p” = - ( aFlf /a  V ) T ,  
so that from (1) 

NkT - kT V 
The entropy of the system due to  disorder 

2&10g&+2(1 -&)log(l  -&)+SlOgS+( l  -S) log( l  -AS) 

z’ 
2 - - (1 - 2& + 2&~){x,logx, + 2(S - X,) log ( S  - X,) 

+ ( 1  - 2s +X,) log (1 - 2 s  +X,) - XlogX - 2(S - X)log(S - X) 

- ( 1 - 2 s + x ) l o g ( l - 2 S + x ) }  . 1 

I I I 1 

2 3 4 5 6 7 

=% 
Figure 1 .  Variation of equilibrium values of Q,S and Xi with z W/k2’(1, = 1.35, 
kT/c  = 0.665). 
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The complete isotherm and the entropy of transition were cvaluatccl 
in the manner described in Part I. For v < 1.3, there is il. single 
transition in which both the long range positional and orientational 
order parameters collapse simultaneously. For v > 1.3, the positional 
melting precedes the rotational melting, both transitions heirig 
attended by changes of entropy and volume. The second order 
nematic-isotropic transition predicted by the zeroth approximation 
for a certain range of v does not occur in this case. The important 
new result that the nematic-isotropic transition should always tw 
first order is in accord with the observed facts. 

The entropy and volume change associated with the solid-nematic 
transition is practically the same as given by the zeroth approxima- 
tion, but the corresponding values for the nematic-isotropic transition 
are significantly different. A S / R  and d V /  V for the nematic-isotropic 
transition for a few values of v are presented in Table 1.  From a 
comparison with Table 1 of Part I,(3) it  will be seen that for a given 
v the present theory gives an entropy of transition much less than 
that predicted by the zeroth approximation. This is evidently 
due to the presence of short range orientational order in the liquid 
phase. 

TABLE 1 Nematic-isotropic Transition 

1.32 0.14 0.01 
1.35 0.20 0.02 
1.40 0.32 0.03 
1.50 0.53 0.06 

Using Eq. (6) of Part I(3)  and proceeding along similar lines, the 
contribution of the orientational disorder to the specific hetit of the 
nematic and isotropic phases turns out to be 
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M E L T I N G  O F  M O L E C U L A R  C R Y S T A L S  27 

The isothermal compressibility due to disorder can be evaluated from 
the general thermodynamic relation 

1 ’  = - k T V ( k )  2log sz . 
B T 

a log sz = ( av)T aQ [ - 2 log 1-& Q +z‘{S2log s2 + 2(S - 82)log ( S  - S2) 

+ (1 - 2 s  + S2) log (1 - 2s + 82) - Xlog X - 2(S - X) log ( S  - X) 

> I  zw Z’W’ 
LT kT - ( 1 - as + X) log ( 1 - as + X ) } (  2Q - 1)  + - - -2( s - X) (2Q - 1) 

S + ($)T [ -log 1-s +z’( 1 - 2Q + 2&2){Slog s2 + (1 - 2 8 )  log ( S  - S 2 )  

2‘ 

2 
+ ( S  - 1) log (1 - 2s + S 2 ) )  -- (1  - 2Q + 2Q2) 

z‘ W’ 

32’W’ 
LT c’ +-- (1  - 2Q + 2Q2)(S - X). 

The coefficients of (aQ/aV)T and (aS/aV)T vanish because of the 
maximizing conditions (3) and (4). Therefore 

21og sz = g[(2Q - 1) ( $ ) T { $ ( S - X )  -4V 

Putting Q = 3 in the nematic and isotropic phases 
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28 M O L E C U L A R  CRYSTALS A N D  L I Q U I D  C R Y S T A L S  

The intersection of an isotherm with the zero pressure line 
determines S ,  X and V / V ,  for that temperature and l~ressore. 
(8 - X) at the same ~ T / E  but a slightly different V /  V,, and hence 
[3(S - X ) / a ( V / V O ) ] ~  in (6), can be derived from the same isotherm ; 
( S  - X) at the same (V/V,)  but at  a different ( ~ T / E ) ,  and hence 
[a(# - X ) / a ( k l ' / ~ ) ] ,  in (5 ) ,  can be obtained from an isotherm for a 
slightly Werent ~ T / E .  The long range order parameter 8 = ( 2 s  - l ) ,  
the specific heat, thermal expansion and isothermal comprtmibility 
evaluated in this manner are shown in Figs. 2-5. The specific heat 
exhibits a slight post-transition anomaly (Fig. 3), whereas according to 
the zeroth approximation C J R  should vanish in the liquid phase. 
However, contrary to experimental facts, the thermal expansion and 
isothermal compressibility curves do not show such an anomaly 
(Figs. 4 and 5 ) ,  indicating that even the first approximation is not 
quite adequate for explaining all the properties. 

' I  I 

Figure 2. Long range orientational order parameter 8 = ( 2 s  - 1 . )  in the 
nematic phase (at zero pressure) for Y = 1.32 and 1.35. 
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Contribution of orientational disorder to the specific heat at constant 
volume in nematic and isotropic phases ( V  = 1.35). 
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16 
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Figure 4. Coefficient of thermal expansion in nematic and isotropiic phastts 
( u  = 1.35). 
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Figure 5. 
phases (U = 1.35). 

Isothermal compressibility due to  disorder in nematic and isotropic 
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