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Calculus for Functions of Noncommuting Operators and General Phase-Space Methods
in Quantum Mechanics. III. A Generalized Wick Theorem and Multitime Mapping*
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The new c-number calculus for functions of noncommuting operators, developed in Paper I and employed
in Paper II to formulate a general phase-space description of boson systems, deals with situations involving
equal-time operators only. In the present paper extensions are presented for the treatment of problems
involving boson operators at two or more instants of time. The mapping of time-ordered products onto
c-number functions is studied in detail. The results make it possible to evaluate time-ordered products of
boson operators by phase-space techniques. The usual Wick theorem for boson systems is obtained as a
special case of a much more general theorem on time ordering. Our method of derivation appears to provide
the first direct proof of Wick's theorem as well as a clear insight into its true meaning. A closed expression is
also obtained for the time-evolution operator in terms of the solutio~ of the c-number difFerential equation
for the phase-space equivalent of this operator. The new calculus is also applied to the problem of evaluating
normally ordered time-ordered, and also the antinormally ordered time-ordered, correlation functions.

I. INTRODUCTION we obtain a new identity which makes it possible to
express time-ordered products of a set of operators,
which are functionals linear in the positive- and the
negative-frequency parts of the field operators, in
normally ordered forms. This identity is essentially a
generalization of a formula given by Anderson, ' ' which
like Wick's theorem is frequently used in 6eld theory.
In Sec. IV, we present a closed-form expression for the
unitary time-evolution operator of a boson system in
terms of the solution of the c-number differential equa-
tion satisfied by the phase-space equivalent of this
operator. We illustrate this result by deriving the
explicit expression for the time-evolution operator for a
forced harmonic oscillator. In Sec. V, we introduce the
concept of multitime mapping of unequal-time boson
operators onto t,"-number variables; we then show how
this correspondence may be used to evaluate the
normally ordered time-ordered, and also the anti-
normally ordered time-ordered, correlation functions.
Some of the results of this section are analogous to
those obtained recently by Laxr in connection with
c-number techniques for the solution of problems in
areas such as the theory of the laser and the statistics
of photoelectrons. In Sec. VI, we present a brief sum-
mary of the main results obtained in these three papers
and for comparison we display in a table the main
quantum-mechanical equations, both in their con-
ventional operator form and in our phase-space
representation.

' 'N Paper I and Paper II of this series, ' ' we developed
- a new calculus for functions of noncommuting

operators, based on the concept of mapping a function
G(tt, at) of noncommuting boson operators d and tent onto
a c-number function F(z,ze) of complex variables z

and s*. We showed that this calculus leads to a general
phase-space description of boson systems and provides
a systematic method for solving a great variety of
quantum-mechanical problems by c-number techniques.
In these papers only problems involving operators
that satisfy the equal-time commutation relations
Lit(t), tit(t)g = 1 were considered.

In the present paper, we extend the theory to situa-
tions involving noncommuting boson operators at two
or more instants of time. We study in detail the mapping
of the time-ordered product of a set of operators onto
c-number functions. In Sec. II we derive a general
formula which makes it possible to evaluate time-
ordered products in terms of products ordered according
to some prescribed rule. The well-known Wick
theoremz e for boson systems, usually established by
induction, is shown to follow readily from this new
theorem as a special case. Our method of derivation
seems to provide the first direct proof of Wick's theorem
and gives a new insight into its true meaning. In Sec. III
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normally ordered ones. The theorem is of basic im-
portance in calculations, based on perturbation tech-
niques, relating to the behavior of the unitary time-
evolution operator of a quantum-mechanical system.

In this section we establish, with the help of the
t."-number techniques developed in the earlier parts of
this investigation, an interesting generalization of
Wick's theorem for boson systems. This generalized
theorem allows the evaluation of time-ordered products
of Heisenberg operators —whether linear or nonlinear
in the annihilation and the creation operators —as
products arranged according to a prescribed rule of
ordering. Normal ordering plays, of course, a preferen-
tial role in Geld theory because of the significance of
vacuum expectation values. However, as already
pointed out in I, other rules of ordering are occasionally
employed and some arise naturally in other branches
of physics, e.g., Weyl ordering in quantum statistics
and antinormal ordering in quantum optics. ' In any
case, the generalized Wick theorem that we will now
establish, and the considerations of Secs. III and IV of
the present paper, bring into evidence a fact not
previously explicitly recognized, namely, that the
phase-space representation of operators plays a basic
role in time-ordering problems.

Let T denote the time-ordering operator and let us
consider the time-ordered product T{Gl(tl)G2(t2) .
GM(tM) }of cV Heisenberg operators G (222= 1,2, . . . ,3I).
The operators G will also depend on tt and lent (i.e.,
Gm=Gm(tt, 12t;t ); Ltt, tttj= 1), but as a rule we will not
exhibit this dependence explicitly. We may express the
time-ordered product in the form

T{Gl(tl) GM(tM)} =g 8(t;,—t;,)

M

X II12 "M II Fm (Zm)sm*)tm)
~ zm=z; zm*=z" ) (2 5)

m=1

where
8 8 8 8

A"=—
2 Bs; Bz,* Bz;* Bs,.

(2.6)

M
'tt12".M'"' = II 0

m= & Qgm* ()gm

t) 1' gal M

XQ~ g, —Z —. (2.7)
1m=1 mls

* m=1 tls

In Eq. (2.7) the function 0(n,P) is the filter function for
0 mapping and Q(n, IS) = t 0(n)p)g ' is the filter function
for the mapping that is reciprocal to Q.

We note that under the interchange of the indices
i and j, the operator h.;; changes sign, whereas the
operator '@~2...~'"' remains unchanged. Hence it
follows from (2.4a), (2.5), and (2.1) that

T{Gl(tl) GM(tM) }=0{expLp g A,;e(t;—t,))

M

x~,... &"'?IF-'"'(-, -*;t-)I*.=.;. '=**}, (28)
m 1

where

is given by the following formula, which is a generaliza-
tion, for a product of an arbitrary number of operators,
of Theorem V (Product Theorem) given in Sec. III of
II, and which is derived in Appendix A of the'present
paper:

F12...M'"'(s, z*; tl, . . .)tM) =exp{+ Q A;,}

(t)M-1 )M)G)1(t)1) G)M(t)M) ) ( '1) e(r)=+I if r)0
if g&0. (2.9)

tI(r)=I lf r&0
=0 if 7&0,

(2 2)

See, e.g., H. Mori, I. Oppenheim, and J. Ross, in Studies in

and Qn denotes the summation over all the permuta-
tions of the indices 1,2, . . . ,M. Let F, &"i(s,s*;t;) be the
0 equivalent of the operator G;, i.e.,

G ()2 dt t )= Q{F &oi (s s* t )}
'"'( * t ) = e{G( ' t )}, ( 3)

where 0 is an arbitrary linear mapping operator defined
in Sec. II of I and O~ is its inverse. Then the 0 equivalent
F12...M+&(s,s*;tl tM) of the product Gl(tt, d, ;t,)
GM(d, dt; tM), i.e., the c-number function such that

Gl(d, at;tl) ~ GM (d,ctt;tM)

= Q{F12...M&"&(s,z*; tl tM) }, (2.4a)

F12" M (s)s ) tl) ~ ~ ~ )tM)
= O{G (d ttt tl) . .GM(tt ttt tM) }, (2.4b)

The right-hand side of (2.8) may be expressed in many
diferent functional forms. In particular, it may be
expressed as an 0-ordered form. This form will be ob-
tained on replacing the mapping operator 0 on the
right-hand side of (2.8) by the substitution operator
5&"& for 0 mapping'e Lsee Eq. (I.2.16)j.We then obtain
the following formula:

T{Gl(tl) GM(tM) }=S&"i{expLg Q A;,e(t,—t,)j
M

X IL12...Mi i g F i (2',z *;t )j; = }. (2.10)

This formula expresses the time-ordered product
T{Gl(tl) GM(tM)} as an 0-ordered form. We will refer

Stutisticul Mechanics, edited by J. deBoer and G. E. Uhlenbeck
(North-Holland, Amsterdam, 19621, VoL I, p. 217.' L. Mandel, Phys. Rev. 152, 438 (1966).

"Equations prefixed by I and II refer to equations in Refs.
1 and 2, respectively.
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to (2.10) as a generalized Wick theorem for boson
systems.

Let us now consider the special case when each of the
operators G is a linear combination of the annihilation
and the creation operators. We will take the G 's in the
interaction picture, so that their time dependence is the
same as that of the free 6eld operators, i.e.,

G (t)=A oe '"'+B ate'"' (2.11)

where A and 8 are c numbers. Consider now the class
of mappings whose filter functions are given by
Eq. (I.3.38), i.e.,"

Q(a, P) = exp(t&n'+&P'+l&nP). (2.12)

It then follows, according to the results expressed by
Eqs. (I.3.34) and (I.3.36), that the Q equivalent of the
operator G (t) is given by

F„«&(z,z*; t) =A„zc '"'+Bw*e'"'. (2 13)

We note that for each operator G (t) of the form (2.11),
the Q equivalent [given by (2.13)7, for any choice of Q

belonging to the class characterized by (2.12), is
independent of the particular choice of Q.

For the class of mappings characterized by (2.12), the
operator tt&, 2, ...,&&r

&"& defined by (2.7) may be expressed
in the form

where

LG '(t)G (t)7'"'
=S {[A12c(tl t2)+u12 7Fi (zl)zl j tl)

XF2 " (z»z2*z t2) l s= z= ' z'= z"= *} (2 17)

We shall refer to [Gi'(ti)G~'(t~)7&"& as the chronological
contraction of the opera, tors Gi(ti) and G2(t2) for Q

mopping. If we recall the definitions of the operators
A» and u»&"& [Eqs. (2.6) and (2.14b) with i=1, j=27
and use the explicit expressions for Fi&"& and F, '"& [Eq.
(2.13)7, we readily find that

[Gi (t,)G, (t,)7&»
= —2p818 es~('I+'» —2' 1A gg

—'"{."I+'»

+A iB2p+-', e(ti —t2)7e-'" &'&—'»

+A2B,P.+-', e(t, —t,)7e-'"«~'». (2.18)

More generally, if we expand the exponential on the
right-hand side of (2.15) in a power series, we obtain
the following expression for the time-ordered product
of the M operators G (t ):

T{G1(tl)' ' 'Gilf (4f) }

where [cf. (II.3.10)7

8 8
I;,&")=—2v- =

Bs Bz&'

exp(u;;&" &),

8
2p

Bz;* 8s;*

(2.14a)
00

=S«& g —[Q Q X; ~(t;—t;)+u "«&7"
n=Og, t

3/I

X II F.& &(z„,z„*;t„)l,„=,,.„=, . (2.19)

8 8
(2.14b)

(Bz; Bz;* &&z;* Bz;

Hence (2.10) may in such cases be written as

T{Gi(ti). . Gu(t»r) }
=S&o&{exp[p p h;;e(t; t;)+u,;.

&"'7—

A typical ij term for n = 1 may be expressed in the form

S&o&{[h;&e(t;—t;)+u;, &"&7

=S&"'{ II F &"&(z z*.t )

XIIF &"&(z„,z„*;t )l,„=„.,„=.}. (2.15)
tn=1;mph, j

X[G (t~)G (t,)7&"&}. (2.20)

Let us consider first the special case when 3E=2. On
expanding the exponential in (2.15), and on using the
fact that the c-number functions Fi&"&(z,z*; t) and
F2&"&(z,z*; t) are linear in z and z*, we obtain from (2.15)
the formula

T{Gi(ti)Gz(tz) }
=S'"'{[1+~(4—tz)~»+ui2'"'7Fi&"'(ziti*, ti)

XF2 (z2iz2 zt2) l zy zz z;zy zz =z"}
=S&"&{Fi&»(z,z* ti)F2&"&(z z* t2)}

+[G, (ti)G2 (t,)7 ", (2.16)

'~The restriction to Glter functions of the form (2.12) is not
essential and is made here only for the sake of simplicity.

In a similar way we can simplify the contribution of a
typical ij term for each value of n. It is obvious that
each term in the expansion of

S&"&{[Q Q u;z&"&+h;zc(t;—t;)7"

M

xIIF '(., *;l.)l.„=...„=.}

will lead to n chronological contractions. Thus (2.19)
finally leads to the identity

T{Gi(ti) Gu(t»r)} = ro&"&+5'i«&+
z (2.21)
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where"
M

P (&&) &&(0){g P (&&)(s sw. t )}

q, (n) p p~(u&{ g ~ (&»(ss*.t )
m=1;mgi, j

(2.22)
X[G* (t')G (t )]("&},

1 M

~ '"'= —Z Z 2 2 ~'"'{ ll F-'"'(, *;t-)
2I q s&q' l k&l m=1;mgi, j,k, l

X[G; (t;)G (» )j'"'[Gs (t )G '(«) 3'"'}

etc Fo. rmula (2.21), together with (2.22), expresses
the time-ordered product of a set of operators that are
linear in the creation and the annihilation operators
6 and at, respectively, as the sum of all the 0-ordered
products of the G's, with all possible chronological
contractions for the 0 mapping, including the term with
no contraction.

In the special case when we choose 0 to represent
mapping according to the normal rule (superscript E),
and use the fact that for the normal rule the parameters
in (2.12) have the values tt=t =0, )&= s (cf. Table IU
of I), the chronological contraction (2.18) reduces to

[Gr (tr)Gs (ts)j("&
= se(tt ts)[AtBee ice(tl-ts) —gsBteku(tl —t2)j

+s[AtBse '"('r '»+AsBre'"('& "&g. (2.23)

The contraction [Gr'(tr)Gs'(ts) j(~& has a simple
physical meaning. This is readily seen by taking the
vacuum expectation value of (2.16) (with 0 again
representing the normal rule). We then obtain

ol r{G,(t,)G,(t,)}lo)
=(0(S(~'{F(~'(ss*; t,)F, ~ (sz*; t,)}(0)

+«I [G, (t,)G, (ts))(~&IO). (2.24)

The erst term on the right-hand side vanishes, since it
is the expectation value of a normally ordered operator
in the vacuum state. The second expression is equal to
[Gt (tr)Gs'(ts)g( & since, being a c-number, it remains
unchanged on taking the expectation value. Hence

[Gr (tr)Gs'(ts) j' '= (0l 2'{Gr(tr)Gs(ts) }I o), (2 23)

showing that [Gt'(tt)Gs'(ts) j( & is precisely the chrono-
logical product as usually defjned. ' ' It is now seen that
in the special case when 0 is chosen to represent the
normal rule of mapping formula (2.21) is (except
for notation) nothing but Wick's theorem' ' for time-
ordered products of a boson system.

"In more customary notation the expression S&o& {F&&o&(s,s~; t&)

X Fsr&o& (s,s*; tsr) ) with 0 representing the normal rule of map-
ping would be written as:Gr(t&) ~ ~ G&tr(tsr):, where the colons
indicate normal ordering. However, the customary notation dis-
guises the important role that the phase-space representation
plays in the ordering problem.

It is evident that our generalized Wick theorem,
expressed by (2.10), from which we have just derived
as a special case the usual form of Wick's theorem for
boson systems, is of considerable generality. It allows
us to express time-ordered products of Heisenberg
operators Gt, . . . ,Gsr (not necessarily linear in tf and dt)
of a boson system as a 0-ordered form. In general, the
use of our generalized Wick theorem requires the solu-
tion of the dynamical equation for the 0 equivalent
F ("~ of each of the Heisenberg operators G . In the
special case when all the operators t" are in the inter-
action picture, the solution of the dynamical equation
is given by the very simple expressions (2.13), which
are seen to be of the same mathematical form as the
G 's themselves [Eq. (2.11)j. It is presumably for this
reason that the role of the phase-space representation
of the Wick theorem has not been previously recognized.

Finally, we recall that there is also a Wick theorem
for the ordin(try product of operators. It is shown in
Appendix A that a generalization of that theorem may
also readily be obtained and that it bears the same
relation to Wick's theorem for the ordinary product
as (2.10) bears to Wick's theorem for the time-ordered
product. This generalization is

{G,(a,'t)" G~(',dt)} =S& &{..pL

M

X~»...~("& g F ("&(s....*)l,„...„*=,}, (2.26)

where the differential operators A;; and %,~~...M(") have
the same Ineaning as before. It is also shown in Appendix
A that (2.26) leads to the following theorem.

Theorem. The ordinary product of a set of boson
operators that are linear in the creation and the
annihilation operators is equal to the sum of all 0-
ordered products of the 6's, with all possible pairings
for 0 mapping [defined by (A24) j, including the term
with no pairing. In particular, when 0 represents the
normal rule of mapping, this theorem reduces to the
usual Wick theorem for ordinary products.

III. GENERALIZATION OF ANDERSO¹S
THEOREM ON TIME-ORDERED
PRODUCT OF FUNCTIONALS OF

FIELD OPERATORS

We will now derive an interesting generalization of a
result of Anderson' ' which expresses the time-ordered
product of functions of 6eld operators in terms of
normally ordered ones. For this purpose we choose 0 to
represent again the mapping according to the normal
rule of association. Then if we substitute in the right-
hand side of (2.10) from (2.6) and (2.14) (with t&= v=0,
)&=s, appropriate to the normal rule), and if we also
use the identity 8(r) = sr[1+e(7)j between the functions
8(r) and e(r) defined by (2.2) and (2.9), respectively,
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we obtain the relation

T{Gt(hr) . Gir(tsr) }

=S'~' exp P P 0(t , t .)—
8s; 8s;~

The phase-space equivalent of G (t) for the normal
rule Df association is

F-'"'[s(p, t),s*(p,h))

[A-(p)s(p, t)+&-(p)s*(p t))d'P (3 9)

X II F .i(:.„..*;«.)l ..=. .
m=1 where s(p, t) and s*(p,t) have the form

s(p, h) =s(p)e-'""', z*(p,h) =z*(p)e'"" (3 1o)Let us again assume that each of the operators G is
of the form (2.11), so that its Phase-sPace equivalent i In l ce of (3 5) we then obtain the formula
given by (2.13).We will write this equivalent as

F &»{s(t),s*(t)}=A„s(t)+8~*(t),

where s(t) and its complex conjugate s~(t) are of the
form

T{Gi(ti) Gsr(tsr) }=S&~' exp dt'd'P' Ckd'P

z(t)=se '"',

Identity (3.1) then becomes

s*(t)= z*e'"' (3.3) XD(h', p'I t,p)
8s(p', t') 6z*(p,t)

T{Gi(ti). Gir(tsr)} =S& ' exp P g 0(t; t,)—with

X II F-' 'I s({P}t-) s*({p}«-)) (311)
m=1

D(h', p'I h, p) = ~"'(P—p')D(t'I h). (3.12)
8 8

Xexp[ —iso(t; —t,))
Bs;(t;) Bs,*(t,)

X II F '"'{ (t ), *(h )}
~m (t )=& (&m) l &m (4n) =& (Em)

(3 4)

Now in view of the linearity of F &~&, (3.4) mav be
rewritten as

T{Gi(ti) Gsr(t~) }

~(+) J a( ) (3.13)

where J is a c-number and J* is its complex conjugate.
In place of the operators G (t) defined by (2.11), we
now have the operators

We are now' in a position to obtain the generalization
of the result of Anderson. Let q(+) and q( ) be the
positive- and negative-frequency parts of a boson Geld
operator p. In the interaction picture, the commutator
[j&+&(x,t'), i«& i(y, t)) is a c-number. Let us make the
association" (analogous to the association a-+s, Ot—+s*)

=S&» exp dt' Ch D(t'It)
Ss(t') Sz*(t) G (t) = [A„(x)Pt+&(x,t)+8 (x)&p' '(x,t))d'x, (3.14)

where

X II Fm {z(tm)P*(tm)} ~ (3 5) i.e., linear functionals of the operators pi+1(x&t) and
P& &(x,t). The c-number equivalents of the operators
(3.14) for the normal rule of association are

D(t'I t) = 8(t' —t) exp[ —r'(u(t' —t)), (3 6)
F '"'[J({x},«),J*({x},t))

and 8/6s(h) denotes the functional derivative.
Identity (3.5) may readily be generalized to systems

with an arbitrary number of degrees of freedom, in
which the operators G (t) are of the form

[A„(x)J(x,t)+8 (x)J*(x,t))d'x. (3.15)

It should be noted that (3.15) is of the same form as
G (t) [A (P)«t(p)e

—'~,~+g (p)«tt(p)e'~, ~)dsp (3 7) (3.9) when transformation to the momentum space is
made. One may also show by straightforward functional

where the operators a(p) and dt(p) satisfy the com-
mutation relations

[~(p),"(p')7= ~"'(p—p').

"This representation of the 6eld q+ (x) by the c-number J(x)
is very similar to one employed by J. Schwinger I Proc. Natl. Acad.
Sci. 3/, 452 (1951);3V, 455 (1951)J in his external source repre-
sentation of the boson held.
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tonians. 'i We will see shortly that (4.9) is, in fact,
intimately related to our generalized Wick theorem.
ltr. We will illustrate the use of the new identity (4.9)
by determining the time-evolution operator for a forced
harmonic oscillator, with the Hamiltonian

II(t) = Aa)ata+ Af(t) (a+at), (4.10)

where f(t) is real and represents the driving force. The
interaction Hamiltonian in the interaction picture is,
in this case, given by

Br(t) = hf(t)(ae '"'+ate*"t) (4.11)

The formal expression for the time-evolution operator
is, according to (4.11) and (4.3), now given by

then of the form Of a product of F&&"& and a polynomial
in s and s*.Sy equating the coeKcients of equal powers
of s and s* on the two sides, we obtain the following set
of equations:

iBB/ttt= f(t)e

iBC/Bt= f(t)e'"'

(4.17a)

(4.17b)

iBA/8t= 2ttf—(t)e'"'C(t) —2ttf(t)e '"'B(t)

+P+ ,')f(t)-. '-'C-(t)+ P ;)f—(t)—e'-B(t) (4..17c)

This coupled set of differential equations, subject to
the initial conditions (4.16), is readily solved and the
result is

Ur(t) =T

X exp i —f(t )(tte '"'+Ate'"')dt'
0

B(t) =—i f(t') e '"'Ct'-

(4.12)
C(t) = i f(t—') e'"'Ct'= —B*(t),

(4.18a)

(4.18b)

where we have chosen to=0.
Let us now apply our technique to evaluate (4.12).

We will restrict ourselves to the class of 0 mappings for
which the filter function is again of the form (2.12).
The 0 equivalent of the Hamiltonian (4.11) is given by

A(t) =-.C (t)-» (t)+(~-!)B(t)C(t)

i —f(t')e '"'C(t')dt'. (4.18c)

F~"'(»s* t) = &f(t)(se '"'+z*e'"') (41 ) It follows from (4.9), (4.12), and (4.15) that

If we substitute from (4.13) into (4.6), we readily
obtain the explicit form of 2+F tt &"& Lcf. Eq. (II.3.18a)j,
and from (4.5) we then obtain the following equation
for the 0 equivalent of the time-evolution operator for
the present problem:

$gpU ( )

f(t)e '"ts+f*(t)et"'s* 2tsf(t)e'"t-
Bt Bs

8 8
2of(t) e ittt +P + )f(t)e

—i tot-
Bs Bs*

T exp i f(—t')(ae '"'+ate'"')dt'

=S&"i{exp|A(t)+B(t)s+C(t)s*)), (4.19)

where A(t), B(t), and C(t) are given by Eqs. (4.18).
In particular, let us consider the special case when 0

represents the normal rule of association (tt= t = 0, X= s;
cf. Table IV of I).We note that of the three coeKcients
given by (4.18) only the A coeKcient depends on the
particular choice of association and for the normal rule
(suflix 'tie) it becomes

8
+( —l)f(t) '"'—F '"' (4 14)

Bs A ~ = — f(t') e '""dt'—f(t")e'""'dt"

The parameters X, p, and u characterize, of course, a
particular mapping.

Let us take as a trial solution of (4.14) an expression
of the form"

2 0

f(t')e '""Ct'

F &"i(s,s*; t) = expLA(t)+B(t)s+C(t)z*j. (4.15)

The initial condition (4.7) requires that

A(0) =B(0)=C(0)=0. (4.16)

We next substitute from (4.15) into (4.14). Each side is

= —l I B(t) I
'. (4.20)

T exp f(t') (ae '"'+a'e'"")dt'—

Noting also that, according to (4.18a) and (4.18b),
C(t) = —B*(t) Lsince f(t) is realj, (4.19) now reduces to

'4 See, e.g., W. H. Louisell, Radiation used Noise in QNuetlm
Electronics (McGraw-Hill, New York, 1964).

"This form of the trial solution is suggested by a theorem of
J. H. Marburger LJ. Math. Phys. 'I, 829 {1966)j relating to solu-
tions of c-number equations for systems whose Hamiltonians are
quadratic in 4 and d~.

=S&~&f expt ——,
'

I B(t) I
'j expI B(t)zf expI —B*(t)s*j)

= exp L
——', I B(t) I

'] exp L
—B*(t)at)

X-pLB(t)'3, (4»)
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We will now show that these techniques may be ex-
tended to calculations of the expectation value of an
observable that is represented by an operator which is
an arbitrary function of the annihilation and the
creation operators at diferent times. Expectation values
of operators of this type have recently become of im-

portance in quantum optics, particularly in connection
vrith the theory of the laser" and in problems concerning
the coherence properties of light beams. "The calcula-
tion of such expectation values is, in general, a rather
involved problem.

Let &t(t) and &tt(t) be the boson annihilation and
creation operators at time I. These operators at different
times do not commute in general, i.e.,

[&t(tt),d(ts)]NO if trWts. (5.1)

Let G[a(tr),&tt(tr);. . . ; 8(1„),t)t(1„)] be an arbitrary
function of the boson operators, considered at different
times t~, t2, . . .,t„, where"

t„~& t„—g~& (5.2)

Further, let s~,s2, . . .,s„be the c-numbers associated
with the annihilation operators &2(tr), . . . ,&t(t„) and
sr*, . . .,s„* (where s;* is the comPlex conjugate of s;)
be the c-numbers associated with the creation operators
dt(tr), . . ,ttt(t„). We n. ow introduce a linear mapping
operator Qz ~ & defined by the formula"

and it places all the creation operators to the left of the
annihilation operators and puts all the annihilation
operators into chronological order and all the creation
operators into antichronological order. Following Lax, ~

we call the product occurring on the right-hand side of
(5.3) a normally ordered time orde-red product. Such
products arise naturally, for example, in the analysis of
photoelectric detection of photons. "In such an analysis
one is led to correlation functions of the form

where A &+& (t) and 3 &
—

& (t) are the positive- and negative-
frequency parts of the appropriate held operator A.
We will refer to (5.6) as a normally ordered time ordere-d

correlation function When. the field consists of a single
mode, (5.6) reduces to

I' '"'=([ '(t )]""L '(t.)]'"
&&[~(t.)]'"" [d(t )]") (5 7)

In a similar manner, one can introduce other linear
mapping operators. For example, the operator Qp(~'

associated with the antinormal rule of association is
defined by the property that

(Ir&"&{(sr*)" (s *)'"(si)" .(s.)'"}
= [d(t )]""[~(t-)]'"[d(t-)]™"[~'(t )]" (5 8)

By analogy with (5.7), we define the antinormally
ordered time ordered correla-tion function I'r'"& as

Here i& ~ .i, j& ~ j„are any non-negative integers and
T and 1 denote the chronological and the anti-
chronological ordering, respectively. We also introduce
the inverse operator O~s &~&, defined by the formula

er'"'{T{[@'(ti)]""[&'(t )]'"}
&&&{I&t(t )]""[d(t.)]'"}}

= (s *)""(s *)'"(»)" (s.)'" (5 4)

It is seen from (5.3) that the operator Qr&~& replaces all
the c-numbers by the corresponding annihilation and
creation operators according to the rule

Correlation functions of this type occur in the theory
of photon detectors which operate via emission rather
than absorption of photons. '

In this section, we will consider in detail the mapping
characterized by the operator Qz (~~. Let Fz ~~~ be the
c-number equivalent of the operator G in this mapping:

s, ~a(t;), s;*~d"(t,), (5 5) Then the expectation value of G may be expressed as

8Such correlation functions, which occur in the theory of
lasers, based on the van der Pohl oscillator model have been com-
puted by several authors. See, e.g., H. Risken, Z. Physik 191,
302 (1966); R. D. Hempstead and M. Lax, Phys. Rev. 161, 350
(1967); H. Risken C. Schmidt, and W. Weidlich, Z. Physik 193,
37 (1966); 194, 33 (1966).

's P. L. Kelley and W. H. Kleiner, Phys. Rev. 136, A316 (1964).
~o We will retain the labeling implied by (5.2) throughout this

section.
'~The expression on the right-hand side of Eq. (5.3) can,

of course, be written in many diferent functional forms by the use
of the commutation relations. By analogy with Eq. (X.2.16), we
may also introduce an associated substitution operator S+~N) such
th«6'r'"'((»')" "(s *)'"(»)""(s )™)—=Co'(») J"". Ed'«)3'"
XP&t (t )J&» ~ ~ P&t (t~) g'&, where the identity sign is used in the same
sense as before t cf. the discussion following Eq. (1.2.13)g.

(G) = (G[d(t ) &'(t ) " ' d(t-) &1'(t.)])
—(0 &~&{F &~&(s s * s s *)}) (5 11)

Equation (5.11) may be rewritten in the form

d'{Z„}Fr&~&(zr,rr*, . . . ,
.z„,z„*)

which, in view of the linearity of Qz (~), can be expressed
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(G) = d'{z„}Fr&~&(zi,st*, . . . , z„,z„*)

where
X4r &~ &(:,,z,*,t,;.. . ; z„,z„*,t„), (5.13)

(A) l-4r (ZilZi itic ~ ~ ~ ) Z~)zn, qt~)

We see from Eq. (5.13) that the function C»&"& plays
the role of a Inultitime phase-space distribution
function. "We can rewrite (5.14) as follows:

We will now derive an explicit expression for the
multitime phase-space distribution function C~~"~. Wt:
will show that CT'~) can be expressed in terms of the
Green's function of the c-number equation of motion
for the phase-space equivalent of the density operator.
The main properties of this Green's function and its
application to calculations of multitime correlation func-
tions has been discussed in another publication. 23 We
will first recall some of the results derived in Ref. 23.

Let Ki"&(z,z*,t
t zp, zp*, tp) be the Green's function

associated with the equation of motion for the 0
equivalent F,&"&(z,z*,t) of the density operator p. This
Green's function satisfies the equation of motion
(II.4.7), viz. ,

thaK~»/at= (z+—Z )K&"& (5.19)
where hz (~) is the mapping 6 operator for the rule of
association characterized by Q~(~), and it is given by (with the operators Z+ and 2 being defined by

Eqs. (II.3.16)], subject to the initial condition
n

(Ni I) (N&{ II b(pi(z z )}
A,=l

(5.16) K& &(z.z*,tp(z„zp*, tp) =-b (z—z,). (5.20)

On using the integral representation for the 8 function,
relation (5.16) reduces to

It was shown in Ref. 23 that E(") may be expressed in
the form

(N)

7r2

n
~ d'{n} II expL —(n&,z&,

*—n&,*z&,)]
)&&,=1

K&"&(z,z*,t
t zp, zp*, tp)

= pr Tr{5+&(zp —d, zp* —dt) Ut(t, tp)

XA&"&(z d, z*——dt) U(t, tp)}. (5.21)

n

d'{n}II expL-( &z»,
*-

,*z&))
7r2" )1,=1

XexpLnidt(tt)] expLn„dt(t„)]

Xexp) —n„*d(t„)]. .expL —ni*a(ti)], (5.17)

where (5.2) and (5.3) have been used. . Relations (5.13),
(5.15), a,nd (5.17) are natural generalizations to the
case of multitime operators of our results expressed
by Eqs. (II.2.9) and (II.2.8) and (I.3.14) (with 0= 0&~&).

From (5.13) we obtain, in particular, the following
expression for the normally ordered time-ordered
correlation function (5.7):

I' ' = . d'{z„}C&r '(zi, zi*,ti, . . . , z„,z„*,t„)

On combining (5.21) and (5.22), we find that

K&"&(z,z*,t
~ zp, zp*, tp)

= pr Tr{A&"&(zp—d, zp* —d')

X6&"&(z—d, z*—dt; t)}. (5.23)

This relation has a simple meaning. For in view of
Theorem III LEq. (I.3.25)], it follows that

K+&(zt,zt*,t) z,z*,tp) = O{h&"&(zi—d,, zi*—dt; t)}, (5.24)

or, on inverting,

g& &(z,—d, z,*—dt; t) =f1{K&"&(ztzt*,t~zz*, tp)}. (5.25)

We now introduce the mapping 6 operator
6&"&(z—d, z*—dt;t) in the Heisenberg picture. It is
related to the mapping 6 operator in the Schrodinger
picture by the unitary transformation:

6&"&(z—d, z*—dt; t) = Ut(t, tp)

X6&"&(z—a, z*—dt) U(t, to) . (5.22)

This formula is a generalization of Eq. (II.2.19).
'2This relation should be distinguished from one introduced

not 1oug ago by M. Lax LRef. 7, Eq. (5.3)j.Lax de&ines a multi-
time phase-space distribution function I'„by the formula which
in his notationisP =(8(pi* bt(ti)l ~ b(p—-bt(t ))b(p -b(t„))

~ b(p1 —b($1))).This dehnition is seen to involve 8 functions of
arguments that are not real c-numbers; their use is not always
without ambiguities.

Hence E("' is the 0 equivalent of the 6 operator for 0
mapping in the Heisenberg picture. It is shown in
Appendix C that the Green's function E&") satisfms a

~ G. S. Agarwal, Phys. Rev. 177, 400 (1969). The results in
this reference were established under the assumption that Q(e,p)
was a symmetric function of ~ and P and that it was of the form
(2.12). These restrictions are easily relaxed (cf. Agarwal, Ref. 25).
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On repeating this procedure again and again we finally
arrive at the following expression for G:

G = d'{z„)d'zo

n

xII {( *)'"(")'"&(")(,*,t
I —,-*,t-)}

X=1

XA (~) (zo —d, , zo*—(it; t()) . (5.36)

From (5.36) and Theorem II LEq. (I.3.13)7, it follows
at once that the c-number equivalent of the operator G,
for the normal rule of mapping, is given by

n

Fa(&) — . . . II {(zi+)4(zi)A

Hence the multitime phase spa-ce distribution function
C's (") can be calculated in terms of the Green's function
E(") and the single tim-e distribution function C(") by
means of the formula

4T (zl)zl )tlI ~ ~
q zo)ze )te) 4 (zl&zl )ti)

XII &("'(zi,z.*,tiIz.-i z~-i*,t.-i) (5 42)
X=2

This remarkable result was first obtained by Lax~ in
quite a different manner on the basis of his "quantum
regression theorem. "

It is also possible to give an expression for Cy&~' in
terms of C&"& and E("), for any rule of mapping 0,
characterized by a filter function of the form (2.12).
The result arid the proof" are given in Appendix D.

X«~)(zizz*, ti~zi ized i*,4 i)}d'{z)}. (5.37)

Finally on substituting from (5.37) into (5.30), we
obtain the following expression for the normally ordered
time-ordered correlation function I'p(~' in terms of the
phase-space distribution function C( ) and the associ-
ated Green's function E(~&:

n
(&) — . . . @(&)(z,z,* t,) II {(zi+)4(zi)ii

X=1

X&(~)(zi, z),*,4
~
zi-i, zi-i*,4-i) )d'{zi)d'zo. (5.38)

In a similar way, we may derive an expression for the
antinormally ordered time ordered correl-ation function
I'r(") defined by Eq. (5.()), and we find that

n

4'"'(zo zo* to) II {(z~*""(»)'"
X=1

X&'"'(z~,zi*,4~zi „zi-i*,4 i))d'{zi)d'zo (5.39)

We now consider the multitime phase-space distri-
bution function Cr'"'(zi, zi*,ti, . . . , z„,z„*,t ) defined
by (5.14). We substitute (5.17) in (5.15) and expand
each of the operators exp', at(t, )j and exp/ —n;*a(t,)1
in a power series. Then on using (5.38), we find that

(A) @(A)(z z 8 t )

XII &(~)(z).,zi*,ti~ z),-i,z), i*,t) —i)d'zo. (5.40)
}I,=1

The integration over so can be carried out by noting
that

C (")(zo,zo*,to)IC ~ (( ,)zzt
~
zo,zo*,to)d'z o

=C (")(z,z*,t) . (5.41)

VL SUMMARY AND COMPARISON OF QUANTUM
EQUATIONS IN GENERALIZED PHASE
SPACE WITH THEIR CONVENTIONAL

OPERATOR FORM

In view of the considerable length of the three papers
of this series and because of the great generality of our
analysis, it might be helpful to summarize our main
results. This will now be done.

Basic in the present theory is the concept of the

mapping of a function G(a,at) of the noncommuting
boson operators 4 and d~ onto functions of c-numbers
F(z,z*). In Sec. II of I we introduced a class of linear
mappings, each characterized by a mapping operator
0 t G= II{F }).We also introduced the inverse mapping
operator O~ fF= O~{G)$. We have shown tha, t such
mappings are intimately related to the problem of
ordering of functions of the noncommuting boson
operators according to some prescribed rule. In fact,
the mapping and the ordering problem were found to be
essentially equivalent to each other. In Sec. III of I we
showed that each mapping 0 (satisfying some obvious
regularity conditions) is characterized by an entire
analytic function D(n, P) of two complex variables u
and J3. We also derived in Sec. III of I closed expressions
for the c-number function corresponding to a given
operator and for the operator corresponding to a given
c-number function, for any prescribed mapping of this
class. The solution to the mapping problem is expressed
with the help of the operator 6&"), which we called the
mapping 6 operator and which acts as a transformation
kernel. This mapping 6 operator is the operator onto
which the two-dimensional Dirac 6 function is mapped
by O.

In Paper II we showed how this new calculus may
be used to calculate systematically quantum-mechanical

~Alternative proofs of Kqs. (5.38) and (D17) based on the
equation of motion for the 0 equivalent of the generating func-
tional for normally ordered time-ordered correlation functions
were given by G. S. Agarwal, Ph. D. thesis, University of Ro-
chester, 1969 (unpublished).
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TABLE I. The main quantum-mechanical formulas in p as - phase-s ace form and in conventional form.

Present phase-space theory

A
Arbitrary operator G.

A

Phase-space equivalent of G:

Fg &» (s,s*)= 0{G (&z,&tt) }=or Tr{Gti& "& (s—a, s*—a )}.

State of system characterized by density operator p.

A,

Expectation value of G:

State of system characterized by generalized distri ution function:

4 «& (z,s*) = (1/or) 0{p (8 &t &)}.

Expectation value of 6 expressed as phase-space average:

(G) =»(aG) (G) = 4&»(s,s*)Fg&"& (s,z*)d'z.

Schrodinger's equation of motion for the unitary time-evolution
operator U($ $0):

iraU/at=DU

Schrodinger's equation of motion for density operator p.

i &rta p/at =haft, r&g

Phase-space equation of motion for the Q equivalent FU (0) of

U (t,tp):

i hap&&&»/at =2+pg&»

Phase-space equation of motion for the distribution function 4 &") .

ihac&"&/at= (2+—2 )c&a&.

Equation of motion for Heisenberg operator G:

ihdG/dt = LH, Gg—+iroaG/at

A

Phase-space equation of motion for Q equivalent F&{:")of G:

irodpg&»/dt = —(Zp. 2)pg&»+—ihapg«&/at

Sloch's equation for unnormalized density operator p of system
in thermal equilibrium:

ap/ap = Bp-
Equation for Q equivalent F,{")of p.

BFp(") //0P = —2+Fp(").

Time evolution of density operator p.

r)(t) = U(t) p(0) Ut (t).

Time evolution of phase-space distribution function 4("):

C&"&(s s*t) = E "&(z z*,tIzosp*, to)4&"&(zp zp*, t )d'z,

Time evolution of a Heisenberg operator G: Time evolution of Q equivalent Ft.(") of G:

G(~) = Ut(~) G(0) U(~). Fg&"& (s,zP;t) = E«& (s,s*,t
I sp zp, tp)Fg&"& (so sp*,to)d'zo

Basic (group) property of time evolution operator U:

U(t tp)=U(t t&)U(t&tp) (t&it&&~to).

(0)-basic property of time-evolution kerne

It&» (z,s*,t Isp, sp*,t,)

Z&»(z, s*,tIs„s,*,t,)E«&(s„z,*,t, Iz„s,',t,)d's, (t&t, &t,).

Product of M operators:
A A

G1G2 ' GM.

Phase-space equivalent of product of M operators:

p&o. ..&&&&» = e{G&Go

Time-ordered product of M operators:

T{G,(t )Gp(to) ~ ~ G&p&(t»r) }.

=esp{+ 2 &1,}'tt&p" sr& &yy F~ s,zm0 (0)

i s&~ m=1

Phase-space equivalent of time-ordered product of 3f operators:

'"'=8{T{G&(t&) Gsr(tpr)}}12 "M
(0)=exp{+ P it;;o(t, t, )}'tt&p s&- ...

j i&j

Wick's theorem for ordinary product of two operators" that are
linear in 4 and 4t:

A A A A A A
GiG2-—.GiG2 ..+Gi G2 .

New identity for the ordinary product of two operators t"that
are linear in 8 and dt:

G&Go —g&» {P&&»Pp&»}+.I G, Gp gz&»
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Kick's theorem for time-ordered product o pf two o erators" that
are linear in 4 and d t:

Tf Gl( lt) GS( t2)} —.Gl(tl)G2(t2) +Gl (tl)G2 ( 2) ~

J.'Vormally ordered time-ordered correlation function:

h'~' '=»(pE&"(t )3*' L&t(t )3'"r&(t )3'" E&(t )1"}.

Present phase-space theory

'dentity for time-ordered produc o pt of two o erators thatewi
are linear in d and 4:
~(G (t~)G2(t2)} =~'"'&~~'"'(t~)F~'"'(t~) }+K~ (t~)G2'(t~) J'"'.j 1 I

hen 0 re resents the normal rule of mappingIn the special case w en rep
this identity is equivalent to Kick's t eorem.

A more general identity o
' '

ro ufor time ordering o t e pro u
operators that are not necessarily linear in u an a

Normally ordered time-ordered correlation function expresse
as phase-space average:

I' (» = ~ 4 (~) (sp, sp*,tp)T

ta

S&,
* '& SZ)'&&'"'(~~,~~,4. ~~), h, ~&, i,4-i d g}h,}IPSPo

I'ina11 we display in Table I the phase-space form
nd the conventional form of the main quantum-
echanical formulas.

APPENDIX A: Q EQUIVALENT OF PRODUCT
OF M BOSON OPERATORS AND
GENERALIZED WICK THEOREM

FOR ORDINARY PRODUCTS

ula, 2.5, whichIn this appendix we derive formula
expresses the 0 equivalent o pof the roduct of 3I boson

h f theoperators in terms of the 0 equivalents of eac o e
operators. is resu+h' lt which is a generalization o

V (Sec. III of II), will be shown to lead to an
interesting generalization of t e ic
ordinary products of boson operators.

LetF & s,s e e*~ b the 0 equivalents of the operators
=12 . . . M). An expressionfor eac of e

("& is0 equivalents F &") in terms of the operator G
given by Theorem III t Eqs. (I.3.25) and (1.3.26)).
This expression may be written as

Q(n, n*)g„(n,n*) exp(no* —n*s)d'n, (A1)P (hh)(s s8)

where

g„(n,n*) = (1/~) Tr{G (d,at)D"(n)), (A2

and Dt(n) is the Hermitian adjoint of the dhsplacement
operator (cf. Appendix 3 of I).

Fourier theorem LEq. (I.C1)g to express the product
of the M operators G in the form

Gh(a, at) G~(a, at)

expectation values by c-number techniques. Vile found
II f II that the expectation values may be a,

as the mexpr esse in ed in the same mathematical form as
expectation values in classical statistical mechanics, i.e.,

eneralized) phase space. The phase-space distribu ion
function associated vnth a given ~g y
of a quantum-mechanical system, one for each choice
of mapping, is prop0 '

portional to the c-number unction
he hase-onto which the density operator is mapped. The p ase-

uation of motion of the distribution functionspace equa ion o m
and of the c-number equivalent of the time--evolution

d f Heisenberg operator were derived in
Sec. IV of II and the phase-space form of t e oc
equation or efor the unnormalized density operator p of a

thermodynamic equilibrium was given insystem in er
tions wereSec. VI of II. All these phase-space equations

found to be o e ormb f th form of generalized Liouville
equations.

w techni ueIn the resent paper, we applied this new tec niquen e pre
t various time-ordering pro~.ems.0 v

Wick'swe oun an inf d interesting generalization o
wed that thet eorem orh f r boson systems, and we showed t a e

hase-space representation provides a c ear insig
the meaning of this theorem. n ec.
discussed the mapping of functions of boson operators,

d ff t times onto c-number functions, and
rovided methods for calculating the normally anwe provi e me o s

the antinormally ordered time-or ere cd red correlation
functions.

The present series of papers dealt wi'th closed svstems
onl . The extension of our techniques to open systems
( . ystem interacting with a reservoir) was givenqe.g., a sys
111 another paper.

g y 178 2025 (1969}.
"For the sake of simplicity, we display t e ic j. en &

and our new i
l f s of our new identities involvingoperators only. The generaI cworms o our

the product of any number of operators are gi y'ven b Eqs. (2.21)
and (2.26}.
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We recall that the product of two displacement opera-
tors may be expressed in the form t Eq. (I.&10)g

D(n )D(n„) =D(n +n„) exp(lP „), (A4)
where

/mal

=
g (&anile &m ~n) ~ (A5)

Identity (A4) may be generalized to the product of
an arbitrary number of displacement operators. The
result, which rn.ay readily be proved by induction, is

Equation (A10) shows that the c-number function
F»" M "'(s,s~) is the Q equivalent of the product
Gl(a, dt) GM(8, a") of the M operators G . We will
next express F12...M&"' in terms of the 0 equivalents of
each of these operators. For this purpose we rewrite
Flg. ..M(") in the form

F1....M &» (s,s*)

f(s4sl i ~ ~ ~ i zM~sM ) I &m=&'&m =& ~ (A12)
where

m=1 m=1 m(n n f(s1 s1 ~ ~ eM pM ) . . ~

m=1

Next we express the first term on the right-hand side
of (A6) in the form XQ(a„,n„*)exp(n„s„* n„—*s„)1

m=1 m=1 m=1

M M M

XQ(Z -, 2 .*)D(Z .), (A7)
Xexpt g p lp „)d'nl d'o.M. (A13)

which obviously holds because the 6lter function
Q(n, n*) was de6ned as the reciprocal of Q(ot,n*), and it
was assumed that Q(n, n*) has no zeros Pcf. (1.3.23)g.
Now in view of relation (I.3.17), which may be written

Now by a strictly similar procedure as was used in
deriving (II.815), one may express (A13) in the form

Q{exp(ns* —n~s) }=Q(n, n~)D(n),

it is evident that (A7) may be rewritten in the form

m=1 m=1

XQ{expL g (a~*—n *s)$}. (AS)
m=1

X II F.&»(s.,s„*), (AN)

Prom (A6) and (AS) it follows that the product
II =1MB(n ) of the M displacement operators may be
expressed as

where relation (A1) was used. From (A12) and (AN)
it follows that the Q equivalent F»...M&»(s,s*) of the
product of the M operators Gl(d, ,dt) GM(8, lit) may
be written as follows:

m=1 m=1 m(n n
F12...M~ ~(ep*) =exp{ P P A''}

XQ{expL P (n s* n„*s))},—(A9)
m=1

M

x&» "M'"' II F '"'(e-,e *)
m=1

Zrrt, Zl Zfg Z

(A15)

and. hence (A3) may be written as

(A10)

Here
1 0 8

A;j=—
2 BZi t9Zj BZi BZj

(A16)

where

i=1 i~ 1

M

&u" M'"'= tI Q —,——
QZm* QZm

iII Q ilI

XQ Q ——,—Q —. (A17)
m=l Zm m=1 ~Zm

M Formula (A10) together with (A15) expresses the
Xexpp Q (n;e*—n,*s)gd'nl d'nM. (A11) prodlct theorem for an arbitrary number of boson

i=1 operators.
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The product Gi(&1,at) ~ Gir(d, itt) may, of course, be
expressed. in many different forms. In particular, it may
be expressed as an 0-ordered form, for a chosen rule of
ordering. According to (A10) and Theorem I [Eqs.
(I.2.22) and (I.2.23)) the Q-ordered form of this
product is given by

&&&"'(d,at) =[Q-ordered form of g G (a,at))

Equation (A22) expresses the ordinary product of a set
of operators, which are linear in the creation and the
annihilation operators, as the sum of all 0-ordered
products of the G's, with all possible pairings for 0
mapping, including the term with no pairing.

In the special case when 0 represents the normal rule
of association (&&i =v =0, X= is), Eq. (A24) reduces to

[Gi G2')v&~) =A iB2. (A25)
—

&& (&&){F (&&)(s s&v) } (A18)

where S("~ is the substitution operator for 0 mapping
[Eq. (I.2.16)).Formula (A18), together with expression
(A15), for Fin. ..i&&&")(s,s*) may be regarded as a general

isatiori of the W'ick theorem for ordiriary products of bosori

operators. '' To see the connection between (A18) and
the Wick theorem for ordinary products, consider the
special case when each of the operators is a linear com-
bination of the creation and annihilation operators, i.e.,
of the form

G (d,dt) =A„lt+B ttt, (A19)

where A and B are c-numbers. We again consider the
class of mappings whose 6lter functions are given by
(2.12), viz. ,

This pairing has a simple physical meaning as is seen at
once by taking the vacuum expectation value of (A22),
for the case 3f=2, with 0 representing the normal rule
of association. One then obtains

[G, G, )v& ) =(oiG,G, io), (A26)

APPENDIX 8: PROOF OF IDENTITY (4.27)

We will now derive identity (4.27), viz. ,

i.e., [G, G, )p &~) is the vacuum expectation value of the
product G,G,. Fquation (A22) with the choice Q=Q(
together with (A26) is the usual Wick theorem for an
ordinary product'4 of boson operators.

Q(n, a) =exp(tin'+va'+Rais) .

The 0 equivalent of the operator G is then, in view
of Eqs. (I.3.34) and (I.3.36), given by

(A20)
g+(ti) g+(t„ i)F&i«»(s,s*;t„)=exp{ Q g A;,}

F„&o)(s,s*)=A„s+Bw*, (A21) X~ ...."II F '"'(...*;t )
Z$Q Zg Z)Q Z

(81)

and is independent of the particular choice of Q. We
substitute from (A21) in (A15) and expand the ex-
pressions on the right-hand side of (A15), which
involve the differential operators A;j and %.12...~&"', in
power series. We then obtain in a way strictly similar
to the derivation of (2.21) the following expression for
the product Gl ~ .G~.

Gi('(t, at) G&)i(a,at) =3'.0&")+3'.i&a)+, (A22)

where

ae, «)=S«){gF «&( *)}

~.(t')F '"'(t)= d'n;d'n, Q(n;,n;*)Q(n;,n,*)

Xga(ni&ai & ti)ga(a&&ni & tt)

Xexp(A;;)%, @&")exp(nis;* n;*s;)—

Xexp(a&'si n&' si) I ~ =*&=~.*"=&'=*' (82)

Consider first the expression Zi.(t;)Fli&")(t,) (t;(t,).
From (4.6) and (A1) it follows that

~, (&&) g g p g g«&){
2! m, =l; mgi, j,jt, l

p (&))(s s4)

X[G' G; )v'"'[G), G& )v«'},

&R& (&)) —Q Q g(&)){ g p (Q)(s so)
j i&j m=1;mgi, j (A23)

X[G' G; 1.&")},
gri(n;, n,*,t,) = (1/s.) Tr{PI(a,at; t,)Dt(n;) }. (83)

Since the differential operators A,; and tt;, &") in (82)
[denned by Eqs. (II.3.4) and (II.3.5)) act on the
exponential functions, we may replace their arguments
(&/Bs; by —n,*, 8/Bs;* by n;, etc. , and we obtain the
formula

etc. Here [G G )v&"), which we call the pairirig of the

operators G; arid 6, for Q mapping, is given by

[Gi G2 )v&") = 2pBiBs 2vAiA2- —
+A iB2(X+-',)+A2B,(&,—-', ) . (A24)

exp(A;&) L& &"& exp(n, s;*—a,*s;) exp(a, s;~ —n,*s;)

=expP( n;*n;+a;a,*)—) Q(n;,n;*)Q(a&,n;*)

XQ(ai+aj& ai*+n,*) exp(nisi ai si)

Xexp(a, s;* a;*s;). —(84)
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t the foriQula]]y ai riQe a

F &&&i(t )z,,(t)" ~+(t"-' "
) (B2) becomes

n

a(Zn'~ '
~ i i=1

p)don. don Q(ni+n»

~D F. W LFA GA R. WA LS

xg-(- -* ')g"'"' "
( ++,.*)zg exp(4"t , (B5)x"p«-'+ "* .* t;) "p[~ ~ ~"~Xgg~(' '

B11)d nioned b~'(A )the quantity de newhere &&t;; is e

Pzj = Az(Xj As Aj'V 2

(B5) in the formWe rewrite

g'(n, *)= $ ~ t' 'ti gII(nil ) Id n'd njgii(nipni ) i g

d'n D(n, n*)g,, (n,n*)Z (t;)FII&a&(t;)= n n, * "nn*( )

Xexp ns —n s,
where

(B6)
a—1

ri —
'

f B11)isof the
'

ht-hand side oth g

A
A1 ).Th lilied to

d identity
to

the requireds to (A15, iswhich corresponds o
(B

OF CHAPMAN-: DERIVATION OF
V RELATION FOKOLMOGOROV 0

FUN CTIO

ix we will establish relationIn this appendix we wi es
(BS)X-p(O;;)~&"(.—,—;).

e o erator 2+(tk). AnNext we appy
ex ression or

5 b noting aat '
h the help of (B yat once wit e

same mathema ic
h 'h' f,A1), wit

eatoncet aof (A1). Hence we see asponding to g of A

Z~(tk) Z+(t;)F II&"&(t,

no )gII(nk, nk,* tk)d nkd n D(nk+no nk +np

np S*—o.r,
* no* gxg;;(no, no*) exp[( no s —nk*nk+ )

&t;&t;). (B9)Xexp(Ao) (tk~, ~, .

Z, (tk) Z, (t,)Z, (t,)

d'n n; n nk, n;*+n;*+nk*)d nod n d nkQ(ni+nj+nkq ni

ed to theBS into (B9) we are ledOn substituting from (BS) into
expression

E&"&(s,s*,t) zi,si , it0

o
— E&"&(s s*,t~si,si, Ito =7l )

E&"&(s,s*,t j sp, zo, o—

X»(~'"'(so—a, zo —"'A Q d$)

at; ti) }d—'si (C3)X~«&(s,—a, s,*—a;,
t t& t~~&to. Let us use relationre it is assu t t&

,). W hin
'

s of 6&"&(z—a, s —a; p .in (C3) in terms of
that

E&"&(s,s ,t) sp, so ,

s o*, ' (C1)z so, tp)d si q
Xlt&"&(si,sk, ti zo, o*,

such that t&~ t&&~ to.which holds for a v
The Green's function

b Eq. (5.21), viz. ,

K '&(z, st
~
zp, zp*, to

&(h~") s —a, z*—a, p

6 operator inis the mapp g
r ic

'
therefore, in epet e

" r icture an is,
'

ns 5.22) anf lt'
5.28) in (C2) and o tain

XgFI(nk)ink ) k)g

XeXp[(n;+n,+nk S —n;;* ~ S

* t;)gII(n, ,n;, ,a &i)&i ) i
Z &"&(s,s*,t

i so,zo*,to)

(

») (B1o)Xexp/ k;+p;,+ski ~

It &"&(Si,sk ,ti SP,SP ,
*

tp)E«»(s,s', t
~
s„s,*,t, ,) .. . s

Tr{6&"& (s p
—a, sp —"tt)

—at; to))d z&d~zo ~X~&"&(zp—a, so*—a oa ain, wee roce urd e again and g
'

By repea ting the saln p (C4)
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Now b, &"&(z—d, z*—i';tp) is the 6 operator for the by Eq. (5.7) may be expressed in the form
0 mapping in the Schrodinger picture. Since the
Schrodinger and the Heisenberg picture were assumed gs1+42+' '+4+&1+' ' '+2rp

to coincide at the time t =to, we have

A&a&(z —d, z*—d'; tp) =hi"&(z —d, z*—a'). (C5)

Using (C5), it follows at once from the orthogonality
relation (I.4.8) for the mapping 6 operators that

XA'(b 4* ~i' . ; k, k *,i )
((,)=0, Ig )=0

(D3)

Tr{h "&(zp—a., zp* —a~)A'"'(zp —a, zp* —at; tp)}
= (1/~) 6&'&(zp —zp) . (C6)

On substituting from (C6) into (C4) and carrying out
the trivial integration over s2, we obtain the required
identity (C1), i.e., a relation of the Chapman-
Kolmogorov type" for the Green's function E&"'. This
relation is essentially a reAection of the well-known

group property of the unitary evolution operator U,
V1Z.)

U(f, fp) = U(t, fi) U(ft, fp) (f& fi& fp) . (C7)

Q(n, P) =exp(&in'+vP'+XaP) . (D1)

It will be useful to introduce the generating function
A'(pi, )i*,tt, . . . ', $„,$„*,t„) defined as follows:

~(4,4*,~»

—= (T {expl Z p'a"(~')]}2' {expl:—& &'*d("»})

= (exp[(id/(t, )] exp[&.a'(& )]

APPENDIX D: EXPRESSION FOR NORMALLY
ORDERED TIME-ORDERED CORRELATION

FUNCTION I p(~) IN TERMS OF
GREEN~S FUNCTION X«) AND
PHASE-SPACE DISTRIBUTION

FUNCTION e&")

In Sec. V we defined the normally ordered time-
ordered correlation function I'r&~& [Eq. (5."I)], and we

derived an expression for it in terms of the Green's
function E{'"&and the phase-space distribution function
C &"& [Eq. (5.39)]. In this appendix we will derive an

expression" for Fp&~) in terms of the Green's function
E&o& and the phase-space distribution function 4&"&,

where 0 represents any particular mapping character-
ized by a filter function of the form (2.12), viz. ,

We will now 6nd an expression for the generating
function E.

According to Eq. (II.2.8), the generating function
may be expressed in the form

1V= C &n&(zp, zp*, tp)

X~ato&(z„z,*;i„{~;},{~;*},{~;})d.„(D4)

g„=exp(&„at) exp( —&„*a). (D6)

According to Theorem III [Eq. (I.3.25)), the 0 equiva-
lent F„&"&of g„ is given by

F &n& =pr Tr{exp[(„at]exp[ —(„*u]g«&(z—g, z*—g)}

Q( *)T [D(4)D'( )]
Xexp(z'I ].I') exp(nz* n*z)dz—~ (D7)

where Eqs. (I.3.14) and (I.3.9) were used. D(u) is, as
before, the displacement operator for the coherent
state In). On using the orthogonality property of the
displacement operators expressed by Eq. (I.812),
Eq. (D7) reduces to

F„t"&=Q(&„,&„*)exp(&~z* —(„*z)exp(-',
I $„I ') (D8)

We now assume that the filter function Q(n, g) is of the
form (D1). If we use Eqs. (5.29) and (D8) we find that

where Fa&"& =0'{G}is the Q equivalent of the operator

G =exp[&id'(&,'i)] exp[]„u'(t„)]
Xexp[—$~aa(t )] exp[ —gt*a((i)]. (D5)

To 6nd an expression for the Q equivalent of 6, we
consider 6rst the operator

Xe p[—4'&(~ )] p[—
& *it(' )]&. (D-) g„= p[p„"t(~„)]e p[—t„*u(i„)]

In terms of this generating function the normally
ordered time-ordered correlation function I'g&~& dered dpznd'z'Q(p„, p *) exp((„z„*—(„*z„)

2 The Chapman-Kolmogorov relation for the Green's function
E&"~ in the special case when 0 represents the Weyl rule was 6rst
obtained by J.E.Moyal, Proc. Cambridge Phil. Soc.45, 99 (1949).

Xexp(-'I( I')&'"&(z z *t Iz'z'*~ )

X&io&(z' —d z'*—a' t ) (D9)
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$„,$„*,t„) in terms of the Green's function E'&"& and the phase-space distribution function C 'n&:

n

d'(zy}d'zo II exp[ts&g'+pj's*'+(), +s) ~ &i ~

'+&xzg* —&x*zx]
)l,=l

n

XII«"'(. ..*,l
I

—2.( *—()+-,')(, *+2t t +(&+l)b *,t )
X=2

XE "'(zl,zi*)tii zo)zo*, tp)4 " (zp)zp*)tp). (D17)

The normally ordered time-ordered correlation function I'a &~& may be obtained from (D3) and (D17). We stress
that in (D17) 0 is arty mapping characterized by a 61ter function of the form given by (D1). With the special
choice corresponding to mapping according to the antinormal rule one has tt= p=. O, ) = —s (cf. Table IV of I)
and Eqs. (D3) and (D17) may then be readily shown to give formula (5.38) derived in the text.
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Derivation of Equal-Time Commutators Involving the Symmetric
Energy-Momentum Tensor and Applications*
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The use of covariance and the Jacobi identity in the study of equal-time commutators is investigated.
Denoting by 7„„the conserved and symmetric tensor density of Poincard tranformations and by X any of
the operators p, Bpd Jp Jp ol' Jp[ we use the most general form of the equal-time commutators piTp„(x),
X(y) g and LiTpp(x), iTpp(y) ) compatible with covariance, together with the Jacobi identities for Pt iT pp(x),
iTpp(y)), X(s)j, to derive relations between the equal-time commutators PiTp (x), X(y)] and (iTpp(x),
F(y) g, where F is any of the operators denoted by X or 04, 3&ip», 3&J„,and Bp1p . This information is first
used in deriving equal-time commutators in canonical models. We then show that the assumption of SU(2)
&U(2) charge-current commutators together with [A @(x)pJ'(y)]„~pppg (x) r yps(x y) (wh—ere A„~ denotes
the axial-vector current and ib denotes a spinor Geld) implies (as obtained earlier by the authors under differ-
ent assumptions) PA p (x),f(y) pj p~p= &P(x)ypypr 3(x y)+i(y )x—pALp(x) f—t(y)&pg„„p Lwhere f denotes
(iyp3„m)p j —For the . conserved vector current an analogous relation holds. The incompatibility of field-
algebra current commuta tora with J' d(pxA (px) iI (y) ypg„„p pp |k (y) y py p is noted. Taking ib to be the nucleon
field, it is shown that a certain form of the nucleon current leads to the above unless the right-hand side
vanishes. Imposing this requirement, one then obtains gx, =g„where gz,ap (x)p»" (r /2)ip(x) Lg,o„'(x)&"
&&(r~/2)ib(x)g denotes the contribution of Ar (p) to f in terms of the renormalized'field a„(o„).From this
and the usual saturation of the Weinberg spectral-function sum rules by single-particle intermediate states,
we obtain the universality relations gp=m, P/fr and ga, = (m, /mz, )Pm&is/fz„where fz, (f,) is defined by
pzr (mp) =fgrpb (mp —mzrp) Lpp (mp) =fppb (mp mpp) j Fot curre—nts obe.ying the algebra-of-fields commutators,
we obtain restrictions on Schwinger terms contained in equal-time commutators involving time derivatives
pf the currents. These relations show, for example, that in canonical realizations of current-field identities one
needs derivative couplings of the spin-1 field.

I. INTRODUCTION
' 'T is generally assumed' ' that in relativistic local
i - 6eld theories a conserved and symmetric local tensor
operator T„„(x)exists with the property that the genera-
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tors of Poincare transformations may be written as

and

d'x Tp„(x)

Mp = d s/xpTp„( )—x„jp„(x)]. (1.2)

Denoting by p, f, J„, and J,„(defined as J„„=—B„J„—8J'„) local operators with spins 0, rs, 1, and 2, respec-

(1969); M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev.
175, 2195 (1968).
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