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Abstract

We propose a technique for super-resolution imaging of a scene from observations at different camera zooms.

Given a sequence of images with different zoom factors of a static scene, we obtain a picture of the entire scene at a

resolution corresponding to the most zoomed observation. The high resolution image is modeled through appropri-

ate parameterization and the parameters are learnt from the most zoomed observation. Assuming a homogeneity of

the high resolution field, the learnt model is used as a prior while super-resolving the scene. We suggest the use of

either an MRF or an simultaneous autoregressive (SAR) model to parameterize the field based on the computation

one can afford. We substantiate the suitability of the proposed method through a large number of experimentations

on both simulated and real data.
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I. INTRODUCTION

In most imaging applications, images with high spatial resolution are desired and often re-

quired. Resolution enhancement from a single observation using image interpolation techniques

is of limited application because of the aliasing present in the low-resolution image.Super-

resolution refers to the process of producing a high spatial resolution image from several low-

resolution observations. It includes upsampling the image, thereby increasing the maximum

spatial frequency and removing degradations that arise during the image capture, viz., aliasing

and blurring. The amount of aliasing differs with zooming. This is because, when one captures

the images with different zoom settings, the least zoomed entire area of the scene is represented

by a very limited number of pixels, i.e., it is sampled with a very low sampling rate and the most

zoomed image with a higher sampling frequency. Therefore, the larger the scene coverage, the

lower will be the resolution with more aliasing effect. By varying the zoom level, one observes

the scene at different levels of aliasing and blurring. Thus one can use zoom as a cue for gen-

erating high-resolution images at the lesser zoomed area of a scene. Immersive viewing on the

Internet is one such application where the least zoomed entire scene or a portion of it can be

viewed at a higher resolution by using the zoomed observations.

Researchers traditionally use the motion cue to super-resolve an image. However this method

being a 2-D dense feature matching technique, it requires an accurate registration. Errors in

registration are reflected on the quality of the super-resolved image. Further, it assumes that
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all the frames are captured at the same spatial resolution. Previous research work with zoom

as a cue to solve computer vision problems include determination of depth [1], [2], [3], min-

imization of view degeneracies [4], and zoom tracking [5]. We show in this paper that even

the super-resolution problem can be solved using the zoom as an effective cue by using a simple

MAP-MRF formulation and suitable regularization approaches. The parameters of the MRF and

the SAR that model the high resolution image can be learnt from the zoomed observation. The

basic problem that we address in this paper can be defined as follows: One continuously zooms

in to a scene while capturing its images. The most zoomed-in observation has the highest spatial

resolution. We are interested in generating an image of the entire scene (as observed by the wide

angle or the least zoomed view) at the same resolution as the most zoomed-in observation. We

model the high resolution image either as a homogeneous Markov random field (MRF) or an si-

multaneous autoregressive (SAR) model, the choice being dependent on how much computation

one can afford while learning the parameter set. Through the most zoomed observation, we get

to view a part of the high resolution field. Hence we learn the corresponding field parameters

for the model from this high resolution observation and this prior is later used to super-resolve

the rest of the scene captured at a lower resolution.

The super-resolution idea was first proposed by Tsai and Huang that used the frequency do-

main approach [6]. Kimet al. discuss a recursive algorithm, also in the frequency domain,

for the restoration of super-resolution images from noisy and blurred observations [7]. Ur and

Gross use the Papoulis and Brown generalized sampling theorem to obtain an improved resolu-

tion picture from an ensemble of spatially shifted observations [8]. These shifts are assumed to

be known by the authors. A different approach to the super-resolution restoration problem was

suggested by Peleget al. [9], [10], based on the iterative back projection method. This method

starts with an initial guess of the output image, projects the temporary result to the measure-

ments (simulating them), and updates the temporary guess according to this simulation error. A

set theoretic approach to the super-resolution restoration problem was suggested in [11]. The

main result there is the ability to define convex sets which represent tight constraints on the

image to be restored. Authors in [12] describe a complete model of video acquisition with an

arbitrary input sampling lattice and a nonzero exposure time. They restrict both the sensor blur

and the focus blur to be constant during the exposure. Nget al. develop a regularized con-
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strained total least square solution to obtain a high-resolution image in [13]. They consider the

presence of perturbation errors of displacements around the ideal sub-pixel locations in addition

to noisy observations. Nguyenet al. have proposed circulant block preconditioners to accelerate

the conjugate gradient descent method while solving the Tikhonov-regularized super-resolution

problem [14].

In [15] the authors use a maximumaposteriori (MAP) framework for jointly estimating the

registration parameters and the high-resolution image for severely aliased observations. They

use an iterative, cyclic coordinate-descent optimization to update the registration parameters. A

MAP estimator with Huber-MRF prior is described by Schultz and Stevenson in [16]. Other

approaches include an MAP-MRF based super-resolution technique using blur as a cue [17]. In

[18] the authors recover both the high resolution scene intensity and the depth fields simultane-

ously using the defocus cue. Recently, Rajagopalan and Kiran [19] proposed a frequency do-

main approach for estimating the high resolution image also using the defocus cue. They derive

the Cramer-Rao lower bound for the covariance of the error in the estimate of the super-resolved

image and show that the estimate becomes better as the relative blur between the observations in-

creases. Cheesemanet al. [20] use a Bayesian method for constructing a super-resolved surface

model by combining information from a set of images of the given surface. Their reconstruction

gives the ”emmitance” of the surface, which is a combination of the effects of surface albedo,

illumination conditions and ground slope for landsat images. They specify the surface in terms

of a triangular mesh model for surface geometry and a Lambertian model is used for surface re-

flectance. Elad and Feuer [21] proposed a unified methodology for super-resolution restoration

from several geometrically warped, blurred, noisy and down-sampled measured images by com-

bining maximum likelihood (ML), MAP and POCS approaches. An adaptive filtering approach

to super-resolution restoration is described by the same authors in [22]. They have also devel-

oped a fast super-resolution algorithm in [23] for pure translational motion and space invariant

blur. Chiang and Boult [24] use edge models and a local blur estimate to develop an edge-based

super-resolution algorithm. They also applied warping to reconstruct a high-resolution image

[25] which is based on a concept called integrating resampler that warps the image subject to

some constraints. The super-resolution principle is applied to the face recognition systems as

well [26]. Recently, Lin and Shum determine the fundamental limits of reconstruction-based
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super-resolution algorithms using the motion cue and obtain the magnification limits from the

conditioning analysis of the coefficient matrix [27].

Altunbasaket al. [28] proposed a motion-compensated, transform domain super-resolution

procedure for creating high quality video or still images that directly incorporates the transform

domain quantization information by working in the compressed bit stream. They apply this new

formulation to MPEG-compressed video. In [29] a method for simultaneously estimating the

high-resolution frames and the corresponding motion field from a compressed low-resolution

video sequence is presented. The algorithm incorporates knowledge of the spatio-temporal cor-

relation between low and high-resolution images to estimate the original high-resolution se-

quence from the degraded low-resolution observation. Shechtmanet al. [30] construct a video

sequence of high space-time resolution by combining information from multiple low-resolution

video sequences of the same dynamic scene. They used video cameras with complementary

properties like low-frame rate but high spatial resolution and high frame rate but low spatial

resolution. They show that by increasing the temporal resolution using the information from

multiple video sequences spatial artifacts such as motion blur can be handled without the need

to separate static and dynamic scene components or to estimate their motion. Sunget al. present

a super-resolution algorithm for DCT based compressed images by modeling the registration

error due to the quantization process as additive correlated noise and using appropriate smooth-

ness constraints [31]. Authors in [32] propose a high-speed super-resolution algorithm using the

generalization of Papoulis’ sampling theorem for multichannel data with applications to super-

resolving video sequences. They estimate the point spread function (PSF) for each frame and use

the same for super-resolution. Borman and Stevenson [33] present an MAP approach for multi-

frame super-resolution of video sequence using the spatial as well as temporal constraints. The

spatio-temporal constraints are imposed by using a motion trajectory compensated MRF model,

in which the Gibbs distribution is dependent on pixel variation along the motion trajectory.

Capel and Zisserman [34] have proposed a technique for automated mosaicing with super-

resolution zoom in which a region of the mosaic can be viewed at a resolution higher than any

of the original frames by fusing information from several views of a planar surface in order

to estimate its texture. They have also proposed a super-resolution technique from multiple

views using learnt image models [35]. Their method uses learnt image models either to di-
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rectly constrain the ML estimate or as a prior for a MAP estimate. Authors in [36] describe

image interpolation algorithms which use a database of training images to create plausible high

frequency details in zoomed images. In [37] authors develop a super-resolution algorithm by

modifying the prior term in the cost to include the results of a set of recognition decisions, and

call it as recognition based super-resolution or hallucination. The prior term enforces the con-

dition that the gradient of the super-resolved image should be equal to the gradient of the best

matching training image. Candocia and Principe [38] address the problem of ill-posedness of

the super-resolution by assuming that the correlated neighbors remain similar across scales, and

this apriori information is learned locally from the available image samples across scales. When

a new image is presented, a kernel that best reconstructs each local region is selected automat-

ically and the super-resolved image is reconstructed by simple convolution operation. The last

four cases are examples of learning based super-resolution. Our method can also be classified

under this category. However we use a different type of cue for parameter learning.

We now discuss some of the previous works carried out on estimation of MRF parame-

ters and simultaneous autoregressive (SAR) models for image processing. In [39] authors use

Metropolis-Hastings algorithm to estimate the MRF parameters. Lakshmanan and Derin [40]

have developed a iterative algorithm for MAP segmentation using an ML estimate of the MRF

parameters. Nadabar and Jain [41] estimate the MRF line process parameters using geometric

CAD models of the objects in the scene. Potamianos and Goutsias [42],[43] propose the es-

timation of partition function by approximating the Gibbs random fields (GRF) by a mutually

compatible Gibbs random field (MC-GRF) through the use of Monte Carlo simulations. Their

work concentrates on binary, second order Gibbs random fields. MRF modeling is also used in

texture synthesis. Zhuet al. [44] use the maximum entropy principle to derive a probability

density function for the ensemble of images with the same texture appearance. This density

function has a form of Gibbs distribution and the estimated GRF parameters are used for texture

synthesis and analysis. They extend their work in [45] and describe a stepwise algorithm for

filter bank selection used to extract the features for texture synthesis purpose. Zhu and Liu [46]

propose a method for fast learning of Gibbsian fields using a maximum satellite likelihood esti-

mator which makes use of a set of pre-computed Gibbs models called “satellites” to approximate

the likelihood function. For Further discussion on MRF parameter estimation the readers are re-
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ferred to [47]. Kashyap and Chellappa [48] estimate the unknown parameters for the SAR and

the conditional Markov (CM) models and also discuss the decision rule for the choice of neigh-

bors using synthetic patterns. Authors in [49] use a multiresolution simultaneous autoregressive

model for the texture classification and the segmentation. They derive a rotation invariant SAR

model for the texture classification. Multispectral SAR and MRF models for modeling of color

images and the procedure for parameter estimation are considered in [50].

As discussed in [36], the richness of the real world images would be difficult to capture an-

alytically. This motivates us to use a learning based approach, where the parameters of the

super-resolved image can be learnt from the most zoomed observation and hence can be used

to estimate the super-resolution image for the least zoomed entire scene. We propose the use

of homogeneous MRF to model the high resolution field for learning purposes. However the

learning of MRF parameters is a computationally tedious job. The computation can be dras-

tically reduced if the model is restricted to a linear one such as an SAR [48], although the

corresponding prior becomes weaker due to the restriction imposed on it. The estimates of the

MRF parameters are obtained using a maximum pseudolikelihood (MPL) estimator in order to

reduce the computations. The ML estimates of the SAR model parameters are obtained using

the iterative estimation scheme as the loglikelihood function is nonquadratic. Although we use

the MAP-MRF approach for super-resolution, our work is fundamentally different from those of

[16], [20], [36] in the sense that we learn the field parameters on the fly while the previous works

assume them to be known. Further, all previous methods use observations at the same resolu-

tion. For the proposed method, we use observations at arbitrary levels of resolution (scale) and

these scale factors are estimated while super-resolving the entire scene. It may be interesting

to see that our approach generates a super-resolved image of the entire scene although only a

part of the observed scene has multiple observations. In effect what we do is as follows. If the

wide angle view corresponds to a field of view ofαo, and the most zoomed view corresponds

to a field of view ofβo (whereα > β), we generate a picture of theαo field of view at a spatial

resolution comparable toβo field of view by learning the model from the most zoomed view.

The remainder of the paper is organized as follows. We discuss how one can model the for-

mation of low-resolution images using the zoom as a cue in section II. The maximum pseudo-

likelihood (MPL) estimate of the MRF model parameters and the maximum likelihood estimate
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of the simultaneous autoregressive (SAR) model parameters is discussed in III. The MAP esti-

mation of super-resolved image using the MRF prior and a regularization based approach using

the SAR prior is the subject matter of section IV. We present typical experimental results in

section V and section VI provides a brief summary, along with the future research issues to be

explored.

II. Low Resolution Image Formation

The zooming based super-resolution problem can be cast in a restoration framework. There

arep observed images{Yi}p
i=1 each captured with different zoom settings and are of sizeM×M

pixels each. Figure 1 illustrates the block schematic of how the low-resolution observations of a

same scene at different zoom settings are related to the high-resolution image. Here we consider

that the most zoomed observed image of the sceneYp (p = 3 in the figure) has the highest spatial

resolution. A zoom lens camera system has complex optical properties and thus it is difficult to

model it. As Lavestet al. [2] point out, the pinhole model is inadequate for a zoom lens, and a

thick-lens model has to be used; however, the pinhole model can be used if the object is virtually
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shifted along the optical axis by the distance equal to the distance between the primary and

secondary principal planes of the zoom lens. Since we capture the images with a large distance

between the object and the camera and if the depth variation in the scene is not very significant

compared to its distance from the lens, it is reasonable to assume that the paraxial shift about the

optical axis as the zoom varies is negligible. Thus, we can make a reasonable assumption of a

pinhole model and neglect the depth related perspective distortion due to the thick-lens behavior,

or in other words the scene has a constant depth. We are also assuming that there is no rotation

about the optical axis between the observed images taken at different zooms. However, we do

allow a lateral shift of the optical center as the zooming process may physically shift the camera

position by a small amount.

Since different zoom settings give rise to different resolutions, the least zoomed scene cor-

responding to entire scene needs to be upsampled to the size ofN × N pixels, whereN =

(q1q2 · · ·qp−1)×M andq1,q2, · · · ,qp−1 are the corresponding zoom factors between two suc-

cessively observed images of the sceneY1Y2,Y2Y3, · · · ,Y(p−1)Yp, respectively. GivenYp, the re-

maining(p−1) observed images are then modeled as decimated and noisy versions of this single

high-resolution image of the appropriate region in the scene. The most zoomed observed image

will have no decimation. Letz represent the lexicographically ordered high-resolution image of

sizeN2×1 pixels. If ym is theM2×1 lexicographically ordered vector containing pixels from

differently zoomed imagesYm, the observed images can be modeled as (refer to Figure 2)
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ym = DmRm(z− zαm)+nm, m = 1, · · · , p (1)

wherezαm(x,y) = z(x−αmx,y−αmy) with αm = (αmx,αmy) representing the lateral shift of the

optical center due to zooming by the lens system. The matrixD is the decimation matrix, size

of which depends on the zoom factor. For an integer zoom factor ofq, the decimation matrixD

consists ofq2 non-zero elements of value1
q2 along each row at appropriate locations and has the

form

D =
1
q2




11. . .1 0

11. . .1
...

0 11. . .1




. (2)

However, we do not restrict ourselves to integer zoom factors alone as any practical im-

plementation using an optical zoom mechanism would involve an arbitrary value ofq. Here

Rm(z− zαm) is a cropping operator withzαm representing the lateral shift of the optical center.

The cropping operator is similar to a characteristic function, that crops out�q1q2 · · ·qm−1N�×
�q1q2 · · ·qm−1N� pixel area from the high resolution imagez at an appropriate position. In case

there is no lateral shift while zooming along the optical axis,Rm(z− zαm) would involve crop-

ping from the center. In equation (1),p is the number of observations,nm is theM2×1 noise

vector. We assume the noise to be zero mean i.i.d, and hence the multivariate noise probability

density is given by

P(nm) =
1

(2πσ2)
M2
2

exp

{
− 1

2σ2nT
mnm

}
(3)

whereσ2 denotes the variance of the noise process. Our problem now reduces to estimatingz

givenym’s, which is an ill-posed, inverse problem.

III. Estimation of Priors

In order to obtain a regularized estimate of the high resolution imagez, we must define an

appropriate prior term. An MRF modeling of the fieldz or an SAR model can provide the

necessary prior.
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A. Image Field Modeling

The MRF provides a convenient and consistent way of modeling context dependent entities

such as pixel intensities, depth of the object and other spatially correlated features [47]. This is

achieved through characterizing mutual influence among such entities using conditional proba-

bilities for a given neighborhood. The practical use of MRF models is largely ascribed to the

equivalence between the MRF and the Gibbs distributions (GRF). We assume that the high res-

olution image can be represented by an MRF. LetZ be a random field over an arbitraryN ×N

lattice of sitesL = {(i, j)|0≤ i, j ≤ N −1}. From the Hammersley-Clifford theorem [51] which

proves the equivalence of an MRF and a GRF, we haveP(Z = z) = 1
Zp

e−U(z,θ) wherez is a

realization ofZ, Zp is the partition function given by∑z e−U(z,θ), θ is the parameter that defines

the MRF model andU(z,θ) is the energy function given byU(z,θ) = ∑c∈C Vc(z,θ). Vc(z,θ) de-

notes the potential function associated with a cliquec andC is the set of all cliques. The clique

c consists of either a single pixel or a group of pixels belonging to a particular neighborhood

system. In this paper we consider only the symmetric first order neighborhoods consisting of

the four nearest neighbors of each pixel and the second order neighborhoods consisting of the

eight nearest neighbors of each pixel. For a second order neighborhood model the Gibbs energy

function is given by

U(z,θ) =
N−2

∑
k=1

N−2

∑
l=1

{β1[(zk,l − zk,l+1)2+(zk,l − zk,l−1)2]

+β2[(zk,l − zk−1,l)2+(zk,l − zk+1,l)2]

+β3[(zk,l − zk−1,l+1)2+(zk,l − zk+1,l−1)2]

+β4[(zk,l − zk−1,l−1)2+(zk,l − zk+1,l+1)2]},

i.e., the parameter setθ = [β1,β2,β3,β4]. For a first order neighborhood model we setβ3 =

β4 = 0 and hence the corresponding parameter set isθ = [β1,β2]. We use this particular energy

function in our studies in order to regularize the solution using the estimated prior. Any other

form of energy function can also be used without changing the solution modality proposed here.

The Gibbs density function for the high resolution field can now be written as

P(z,θ) =
1

Zp
exp{−U(z,θ)} . (4)
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Learning of MRF model parameters allows one to obtain the parameters depending on the

choice of clique potentials. We have considered here the clique potential as a function of a finite

difference approximation of the first order derivative at each pixel location. Thus the learned

MRF parameters specify the weightage for smoothness of the super-resolved image. Although

the MRF model for prior constitutes a popular statistical model, and captures the contextual

dependencies very well, the computational complexities with these models are high as one needs

to compute the partition function in order to estimate the true parameters. The computational

burden can be reduced by using a scheme such as the maximum pseudolikelihood as used in our

studies. But to obtain the global minima we still need to use a stochastic relaxation technique,

which is computationally taxing. Also the pseudolikelihood is not a true likelihood except for

the trivial case of nil neighborhood. This motivates us to use a different but a suitable prior.

We can consider the linear dependency of a pixel in a super-resolved image to its neighbors and

represent the same by using simultaneous autoregressive (SAR) model and use this SAR model

as the prior. Although this becomes a weaker prior compared to the general purpose MRF model,

the computation is drastically reduced.

Let z(s) be the gray level value of a pixel at site(i, j) in an N ×N lattice, where(i, j) =

1,2, · · ·N. The SAR model forz(s) can then be expressed as [48]

z(s) = ∑
r∈ Ns

θ(r)z(s+ r)+
√

ρn(s), (5)

whereNs is the set of neighbors of pixel ats. θ(r), r ∈ Ns andρ are unknown parameters

andn(.) is an independent and identically distributed (i.i.d) noise sequence with zero mean and

variance unity. While using a fifth order neighborhood we require a total of 24 parametersθ(i, j).

In order to reduce the computations while estimating these parameters we use a symmetric SAR

model whereθ(r) = θ(−r). It may be mentioned here that we do not discuss the choice of

appropriate order for the neighborhood system for optimal results in this paper.

B. Parameter Learning

Once we define an appropriate prior model for the high resolution image we need to learn the

model parameters from the given observations in order to obtain an elegant solution. We now

suggest how the parameter learning can be effected.
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B.1 MRF Parameter Estimation

We realize that in order to enforce the prior information while estimating the high resolution

imagez, we must know the values of the field parametersθ. Thus the parameters must be learnt

from the given observations themselves. However, we notice that a major part of the scene is

available only at a low resolution. The parameters of the MRF cannot be learnt from these low

resolution observations as the field property is not preserved across the scale or the resolution

pyramid [52]. There is only one observationYp where a part of the scene is available at the

high resolution. Hence, we use the observationYp to estimate the field parameters. The inherent

assumption is that the entire scene is statistically homogeneous and it does not matter which part

of the scene is used to learn the model parameters.

The estimation of the model parameters is, however, a non-trivial task. As discussed in section

I, a large body of literature exists on how to estimate the MRF parameters. Most of these

methods are computationally very expensive. We adopt a relatively faster but an approximate

learning algorithm, known as the maximum pseudo-likelihood (MPL) estimator [39] to estimate

the model parameters. The estimation procedure is briefly explained here.

The parameter estimation formulation for the prior model is based on the following ML opti-

mality criterion

θ̂ = arg max
θ

P(Z = z|θ). (6)

The probability in equation (6) can be expressed as

P(Z = z|θ) =
exp[−U(z|θ)]

∑ζ exp[−U(ζ,θ)]
. (7)

In equation (7) summation is over all possible realizations ofZ. From a computational point of

view, handling equation (7) is practically not possible. Hence to overcome the computational

complexity and to make the parameter estimation problem tractable, we approximate equation

(7) using the pseudolikelihood function (see [53]).

P̂(Z = z|θ) ∆= ∏
k,l

P(Zk,l = zk,l|Zm,n = zm,n,θ), (8)

where(m,n) ∈ η(k, l) form the given neighborhood model (the first order or the second order

neighborhood as chosen in this study). Further it can be shown that equation (8) can be written
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as

P̂(Z = z|θ) ∆= ∏
k,l

[
exp
{−∑c∈C Vc(zk,l,θ)

}
∑zk,l∈G

{
exp
[−∑c∈C Vc(zk,l,θ)

]}
]

, (9)

whereG is the set of intensity levels used. Considering the fact that the fieldz is not available

for learning, and that onlyYp is available, the parameter estimation problem can be recast as

θ̂ = arg max
θ

P̂(Rp(z− zαp) = yp|θ). (10)

We maximize the log likelihood of the above probability by using Metropolis-Hastings algo-

rithm as discussed in [39] and obtain the parameters.

B.2 SAR Parameter Estimation

As discussed in section III-A the MRF model provides a most general approach for image

field modeling. But the computational complexities involved in estimating the MRF parameters

are high. One of the characteristics of an image data is the statistical dependence of the gray level

at a lattice point on those of its neighbors. This statistical dependency can also be characterized

by using an SAR model where the gray level at a location is expressed as alinear combination

of the neighborhood gray levels and an additive noise. Thus we can use an SAR model as a prior

where the computational burden is much less, although it represents a weaker model. In order to

circumvent this weakness, we use a bigger neighborhoodNs in equation (5) to capture the local

dependency. We estimate the SAR model parameters by considering the image as a finite lattice

model and using the iterative scheme as given in [48]. We model the most zoomed image as an

SAR model and obtain the least square (LS) estimate to initialize the parameters. These initial

estimates are then used in the iterative algorithm to obtain the final parameters.

IV. High Resolution Restoration

A. Restoration using MRF Prior

Having learnt the MRF model parameters, we now try to super-resolve the entire scene. In

order to do that we use the MAP estimator to restore the high resolution fieldz. Given the

ensemble of images at different resolutions the MAP estimate ofz is given by

ẑ = arg max
z

P(z | y1,y2, · · · ,yp). (11)
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From Bayesian rule this can be written as

ẑ = arg max
z

P(y1,y2, · · · ,yp | z)P(z)
P(y1,y2, · · · ,yp)

. (12)

Since the denominator is not a function ofz, equation (12) can be written as

ẑ = arg max
z

P(y1,y2, · · · ,yp | z)P(z). (13)

Taking the log of the posterior probability,

ẑ = arg max
z

[logP(y1,y2, · · · ,yp | z)+ logP(z)] (14)

= arg max
z

[
p

∑
m=1

logP(ym | z)+ logP(z)

]
, (15)

sincenm are independent. Now using equations (1) and (3), we get

P(ym | z) =

[
1

(2πσ2)
M2
2

exp

{
−‖ym −DmRm(z− zαm)‖2

2σ2

}]
. (16)

Now the scene to be recovered is modeled as an MRF. Thus using equation (4) for prior proba-

bility and substituting in equation (15) the final cost function is obtained as

ε =

[
λ

p

∑
m=1

‖ym −DmRm(z− zαm)‖2+ ∑
c∈C

Vc(z)

]
. (17)

whereλ is a regularization parameter. Since the model parameterθ has already been estimated,

a solution to the above equation is, indeed, possible. The above cost functions is convex and is

minimized using the gradient descent technique. The initial estimatez(0) is obtained as follows.

Pixels in the bilinearly interpolated least zoomed observed image corresponding to the entire

scene is replaced successively at appropriate places with bilinear interpolation of the other ob-

served images with increasing zoom factors. Finally the most zoomed observed image with the

highest resolution is copied at the appropriate location (see Figure 1) with no interpolation.

B. Restoration using SAR Prior

With the SAR parameters estimated as discussed in section III-B.2 we would like to arrive at a

cost function which has to be minimized to super-resolve the observations. We use a regulariza-

tion based approach which is quite amenable to the incorporation of information from multiple
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(a) (b) (c) (d)

Fig. 3.

observations with the regularization function chosen from the prior knowledge of the function to

be estimated. The prior knowledge here, serves as a contextual constraint used to regularize the

solution. We use the simple linear dependency of a pixel value on its neighbors as a constraint

using the SAR model for the image to be recovered. Here the estimated SAR parameters serve

as the coefficients for the linear dependency. Using a data fitting term and a prior term one can

easily derive the corresponding cost function to be minimized as

ε =


λ

p

∑
m=1

‖ym −DmRm(z− zαm)‖2+∑
i, j

(
z(s)− ∑

r∈Ns

θ(r)z(s+ r)

)2

 . (18)

Hereλ is a regularization parameter which is now proportional toσ2

ρ whereρ is the error variance

for the SAR model (see equation 5). This cost function is also minimized using the gradient

descent with initial estimate asz(0) as discussed in restoration using MRF prior (see section

IV-A).

V. Experimental Results

In this section, we demonstrate the efficacy of the proposed technique to recover the super-

resolved image from observations at different zooms through learning of model parameters.

Initially we experimented on simulated data. A number of images were chosen from the

Brodatz’s album. We observe an image at three levels of zoomq1 = q2 = 2. Figures 3(a-c) show

one such set of observation, where Figure 3(a) shows the entire image at a very low resolution.
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(a) (b)

Fig. 4.

Figure 3(b) shows one-fourth of the region at double the resolution and Figure 3(c) shows only

a small part of Figure 3(a) at the highest resolution.

We use a first order MRF to model the intensity process in Figure 3(c). The estimated values

of the parameters wereβ1 = 6.9 andβ2 = 28.8. Theses parameters were estimated using the

Metropolis-Hastings algorithm by choosing the initial values of the parameters as unity. We

observed the convergence of the algorithm for most of the cases in 1000 iterations, although

there was convergence difficulties for some of the images we considered. Using this parameter

set, we now super-resolve the entire scene in Figure 3(a) to obtain the Figure 4(a). Compare the

result to that obtained using a simple bilinear zooming operation given in Figure 3(d). We notice

that both the images are quite blurred near the periphery. However, the interpolated image is

too blurred to infer about the texture. For the super-resolved image, the restoration upto a zoom

factor q = 2 is quite good. For a zoom factor ofq = 4, one needs to reconstruct 16 pixels for

each observed pixel near the periphery, which is clearly a difficult task. A degradation in the

reconstruction is, thus, quite expected even in the estimated high resolution image. We then use

the SAR model as an alternate prior for super-resolution. We used a fifth order neighborhood

for SAR modeling. The learnt parameters from the most zoomed observation (Figure 3(c))

are used to enforce the dependency of each pixel on its neighbors in the entire scene to be

super-resolved by using the prior. For most of the images convergence of the SAR parameter

estimation algorithm was obtained within 10 iterations and no convergence problem was faced.
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Fig. 5.

The super-resolved image using the estimated parameters is shown in Figure 4(b). We can

clearly see that the super-resolved image is sharper with better details than those obtained either

with the bilinear interpolation or the super-resolved image using the MRF prior shown in Figures

3(d) and 4(a), respectively. The reason for the better estimate using the SAR approach is that we

are using a larger neighborhood with more number of parameters for the model representation.

This is able to capture the prior better then the MRF model as we are constrained to use a very

few cliques during the MRF modeling for reasons of computational difficulties in learning these

model parameters.

In order to show the efficacy of our algorithm for a zoom factor of 2, we now consider two

simulated observations withq = 2 shown in Figure 5(a, b). A first order MRF model was

used to capture the texture in Figure 5(b) and the estimated MRF parameters wereβ1 = 29.96

andβ2 = 38.19. The bilinearly zoomed image is shown in Figure 5(c). The super-resolved

image obtained using the MRF based prior and the SAR prior are given in Figures 5(d, e),

respectively. As can be seen the high frequency details are restored well in the super-resolved

images. The bilinearly interpolated image (see Figure 5(c)) definitely appears blurred compared

to the restored images using the proposed approach (see Figures 5(d, e)). The result obtained

using the SAR prior is better than that of the MRF prior due to the choice of larger neighborhood.

The result is perceptually close to the Brodatz image.

Results for another set of observed textures, shown in Figures 6(a-c) are given in Figures 7(a)

and 7(b), respectively. The zoomed image using the standard bilinear interpolation is shown

in Figure 6(d). The super-resolved images are definitely sharper than the zoomed image. Al-

though the edges at the outer region are not as sharp as it is in the center, they are a lot more

discernible than those in the interpolated image. We also tested our algorithm for MRF based

December 11, 2004 DRAFT



19

TABLE I

q = 2 q = 4

Image BI MRF SAR BI MRF SAR

Approach Approach Approach Approach

D10 20.22 22.20 23.00 16.48 17.85 18.11

D112 23.58 25.32 25.52 18.82 20.78 21.02

D2 22.46 24.22 25.29 18.98 20.69 21.28

D12 18.81 20.47 22.56 14.37 16.89 17.00

prior with four parameters instead of two cliques. Result of the same for a set of observed

textures, given in Figures 8(a-c), is given in Figure 9(a). Once again, a comparison with the

corresponding zoomed image in Figure 8(d) brings out a similar conclusion that upto a zoom

factor q = 2 the results of the proposed super-resolution scheme is very good, but beyond that

the quality of restoration starts degrading. This conforms to the observation made in [54] that

the restoration error increases with an increase in the amount of blurring. This is quite expected

as we are trying to generate 16 pixels from a single pixel using just three observations. However

the peak signal to noise ratio (PSNR) comparison for the proposed approach and the successive

bilinear interpolated image when measured with respect to the original image showed a signifi-

cant increase in all of the above experiments as given in Table I. Further, a comparison between

the super-resolved images presented in Figure 9(a) and Figure 9(b) where the prior term uses a

second order neighborhood shows that there is no perceptual improvement with an additional

order introduced in the prior term. Our experience suggests that the improvement is very gradual

as the order of the MRF parameterization is increased. Ideally one requires a large number of

cliques to learn the prior. However, the computation goes up drastically while learning the scene

prior. Hence we refrain from using a neighborhood structure beyond a second order. One does

not have a similar difficulty while using a larger neighborhood structure in the SAR model based

approach.

In order to quantify the the improvement in spatial resolution using the proposed approaches,

we compute the peak signal to noise ration (PSNR) of the reconstructed image with respect to

the original high resolution image. The result is summarized in Table I for all the above four
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simulation experiments for two different levels of zooming, namelyq = 2 andq = 4. From the

table we observe that the use of MRF prior helps us in improving the PSNR by at least 1.5−2.0

dB as compared to the bilinear interpolation forq = 2. The use of SAR prior helps us to further

improve the PSNR by another 1.0−1.5 dB. We get similar performance improvements forq = 4

also. This justifies the use of learnt priors in super-resolving the image.

We now present our results of experimentation on real data. Unlike in the case of simulation

experiments, the assumption of the homogeneity is not strictly valid for the real data. However in

the absence of availability of any other usable priors, we continue to make use of this assumption

and show that we still obtain a reasonably good super-resolution reconstruction. First we con-

sider a real image which has a texture similar to the simulated texture. This corresponds to the

picture of a bedsheet in a hostel room. Figures 10(a-c) show the observations at three different

levels of camera zoom. However, the zoom levels were carefully chosen such that the relative

zoom factors between two successive observations are againq = 2. It should be noted that the

automatic gain control (AGC) in the camera automatically sets the camera gain in accordance

with the amount of light in the pictured area and the level of zooming. Since we are capturing

regions with different zoom setting, the AGC of the camera yields different average brightness

for differently zoomed observation. Hence in order to compensate for the AGC effect, we used

mean correction to maintain the average brightness of the captured images approximately the

same. This is done for the observationY2 by subtracting its mean from each pixel and adding

(a) (b) (c) (d)

Fig. 6.
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(a) (b)

Fig. 7.

(a) (b) (c) (d)

Fig. 8.

the mean due to its corresponding portion inY1 (refer to Figure 1). Similarly for the observation

Y3 we subtract its mean and add the mean of its portion inY1. We used mean corrected images

in all our experiments. Figure 10(d) shows the zoomed image and the super-resolved images

are shown in Figure 11(a) and Figure 11(b), respectively. Comparison of the figures show more

clear details in the super-resolved image using the SAR prior (see Figure 11(b)) with a slight

improvement in the super-resolved image using the MRF prior. The blur which is clearly visible

in Figure 10(d) indicating the loss of high frequency details is removed in Figure 11(b). The

MRF parameters for this experiment were estimated to beβ1 = 33.77,β2 = 60.19.
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(a) (b)

Fig. 9.

(a) (b) (c) (d)

Fig. 10.

Now we consider an example where the scene has an arbitrary texture. Figures 12(a-c) show

the observations for a house image at three different levels of zoom. Figure 12(d) shows the

zoomed house image and the super-resolved images are shown in Figure 13(a) and Figure 13(b),

respectively. Comparison of the figures show more clear details in the super-resolved images.

The seam is clearly visible in Figure 12(d), but not in Figure 13. The MRF parameters for this

experiment were estimated to beβ1 = 9.1,β2 = 155.3. Again we note that we have assumed the

image texture to be homogeneous over the entire scene. The above assumption is, however, not

strictly valid for the current example, and hence the quantitative improvement in in the super-
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(a) (b)

Fig. 11.

(a) (b) (c) (d)

Fig. 12.

resolution images is not very significant. Nonetheless, we were able to obtain an improved result

using the proposed technique.

Next we consider an example of real data acquisition when the zoom levels are totally ar-

bitrary. Figures 14(a-c) show the corresponding observations. Since the zoom levels were un-

known, they were estimated using a hierarchical cross-correlation technique across the scale,

and were found to beq1 = 1.33 between the observations (a) and (b) andq1q2 = 2.89 between

the observations (a) and (c). A lateral shift of (3,-2) and (6,-10) pixels in the optical centers,

respectively, for the above two cases, were detected. The first order MRF model parameters

were estimated to beβ1 = 337.3, β2 = 463.4 from Figure 14(c). The experimental results of

the super-resolution restoration are given in Figures 14(d, e). Similar conclusions can again be
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(a) (b)

Fig. 13.

(a) (b) (c) (d) (e)

Fig. 14.

drawn from this experiment. The edges of the petals are much sharper in the super-resolved

image.

VI. Conclusions

We have presented a technique to recover the super-resolution intensity field from a sequence

of zoomed observations. The resolution of the entire scene is obtained at the resolution of the

most zoomed observed image which consists of only a small portion of the actual scene. The

high resolution image can be modeled as an MRF or as an SAR one and the model parameters

were estimated from the most zoomed observation. Subsequently, a MAP estimate is used to

restore the super-resolved image for the MRF model and a suitable regularization scheme is

employed for the SAR model. We demonstrate that it is, indeed, possible to obtain a high

resolution image of a scene using zoom as a cue. The future work involves an implementation in
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near real time and solving the problem by using a more realistic thick lens model considering the

effects of perspective distortions, thus extracting the depth field simultaneously. Also it would

be interesting to consider the proper choice of neighborhood and the number of parameters

for optimal restoration using the SAR or the MRF model. Further, we plan to investigate the

usefulness of learning geometric features besides the photometric features to further improve

the quality of the reconstruction.
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FIGURE CAPTIONS

Fig. 1: Illustration of observations at different zoom levels:Y1 corresponds to the least zoomed

andY3 to the most zoomed images. HereZ is the high-resolution image of the same scene.

Fig. 2: Low resolution image formation model is illustrated for three different zoom levels.

View cropping block just crops the relevant part of the high-resolution imageZ as the field of

view shrinks with zooming along with a possible lateral shift.

Fig. 3: (a-c) Observed images (D10) of a texture captured with three different zoom settings

(q1 = 2 andq2 = 2). (d) Zoomed texture image formed by successive bilinear expansion.

Fig. 4: The super-resolved texture image using the learnt (a) MRF prior, and (b) the SAR

model.

Fig. 5: (a, b) Observed images (D112) of another texture captured with two different zoom

settings (q = 2), (c) Zoomed texture image formed by successive bilinear expansion. (d) The

super-resolved image for a zoom factor ofq = 2 using the estimated MRF prior, and (e) using

the SAR model parameters.

Fig. 6: (a-c) Observed images (D2) of yet another texture captured with three different zoom

settings. (d) Zooming by successive bilinear expansion.

Fig. 7: (a) The super-resolution restoration using the learnt MRF prior, and (b) using the SAR

model.

Fig. 8: (a-c) Observed texture (D12) at three different zoom settings. (d) Bilinearly zoomed

texture image.

Fig. 9: (a)The super-resolution restoration using first order MRF prior. (b) Restoration using

a second order neighborhood structure.

Fig. 10: (a-c) Observed images of a bedsheet captured with three different camera zoom

settings. (d) Bilinearly zoomed bedsheet image.

Fig. 11: (a) The super-resolved bedsheet image using the MRF prior. (b) The super-resolved

bedsheet image using the SAR prior.

Fig. 12: (a-c) Observed images of a house captured with three different zoom settings. (d)

Bilinearly zoomed house image.

Fig. 13: (a) The super-resolved house image using the MRF prior. (b) The super-resolved

house image using the SAR prior.
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Fig. 14: (a-c) Observed images of a flower captured with three different unknown zoom

settings. (d) Zoomed image formed using successive bilinear expansion, (e) super-resolved

flower image using the MRF prior.

TABLE CAPTION

TABLE I: Comparison of PSNR in dB for Bilinear interpolation (BI), MRF Approach and

SAR Approach.
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