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Abstract—This paper presents a novel technique to simultaneously estimate the depth map and the focused image of a scene, both at

a super-resolution, from its defocused observations. Super-resolution refers to the generation of high spatial resolution images from a

sequence of low resolution images. Hitherto, the super-resolution technique has been restricted mostly to the intensity domain. In this

paper, we extend the scope of super-resolution imaging to acquire depth estimates at high spatial resolution simultaneously. Given a

sequence of low resolution, blurred, and noisy observations of a static scene, the problem is to generate a dense depth map at a

resolution higher than one that can be generated from the observations as well as to estimate the true high resolution focused image.

Both the depth and the image are modeled as separate Markov random fields (MRF) and a maximum a posteriori estimation method is

used to recover the high resolution fields. Since there is no relative motion between the scene and the camera, as is the case with most

of the super-resolution and structure recovery techniques, we do away with the correspondence problem.

Index Terms—Super-resolution, depth from defocus, space-variant blur identification, restoration, Markov random field.

�

1 INTRODUCTION

AVAILABILITY of high spatial resolution images is often
desirable in most computer vision applications. Be it

remote sensing, medical imaging, robot vision, industrial
inspection, or video enhancement (to name a few), operat-
ing on high resolution images leads to a better analysis in
the form of fewer misclassifications, better fault detection,
more true-positives, etc. However, acquisition of high
resolution images is severely constrained by the drawbacks
of sensors that are commercially readily available. Thus,
images acquired through such sensors suffer from aliasing
and blurring. Aliasing occurs as a consequence of insuffi-
cient density of the detector array, which causes frequencies
above the Nyquist rate to alias. An imaging sensor having a
dense detector array is too expensive to be considered as an
alternative to generate high resolution images. Blurring
occurs due to integration of the sensor point spread
function (PSF) at the sensor surface. Blurring due to the
relative motion between the camera and the scene and the
optical out-of-focus blur add to the degradations. Reducing
the pixel size in order to pack more photodetectors results
in shot noise. The minimum pixel size beyond which the
existence of shot noise becomes visible is estimated to be
approximately 50 �m2 [1]. Hence, one must resort to image
processing methods to construct a high resolution image
from one or more available low resolution images. Super-
resolution refers to the process of producing a high spatial
resolution image from several low resolution images. It

includes upsampling the image, thereby increasing the
maximum spatial frequency that can be represented and
removing degradations that arise during the image capture,
viz., aliasing and blurring. Many researchers have tackled
the super-resolution problem, both for still and video
images, e.g., [2], [3], [4], [5] (see [6] for details). In this
paper, we present a new approach to super-resolution
generation of both the intensity map and the scene structure
(depth), simultaneously, using the depth related defocus as
the cue.

It was Pentland who first suggested that measuring the
amount of blurring at a given point in the image could lead
to computing the depth to the corresponding point in the
scene, provided the parameters of the lens system, like
aperture, focal length and lens-to-image plane distance, are
known [7]. Given two images of a scene recorded with
different camera settings, we obtain two constraints on the
spread parameters of the point spread functions corre-
sponding to the two images. One of the constraints is
obtained from the geometry of image formation, while the
other is obtained from the intensity formation in the
defocused images. These two constraints are simulta-
neously solved to determine distances of objects in the
scene [8].

In this paper, we expand the scope of super-resolution to
include high resolution depth information in a scene in
addition to recovering intensity values. As mentioned
earlier, one of the degradations in a low resolution image
is the sensor related blur, which appears as a consequence
of the low resolution point spread function of the camera.
Blurring can also arise due to relative motion between the
camera and the scene. In the case of real aperture imaging,
we know that the blur at a point is a function of the depth of
the scene at that point. Thus, we notice that blur is a natural
cue in a low resolution image formed by a real-aperture
camera. We exploit this blur to recover the depth map
through the depth from defocus formulation; moreover, we
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propose how the depth map can be estimated at a higher
resolution than one that can be normally extracted from
such observations. We call such a dense spatial depth map a
super-resolved depth. In addition to this, we propose how to
simultaneously estimate the true, high resolution focused
image of the scene. This process may be called super-
resolved space varying restoration. The two stage process of
identifying the blur and deconvolving the observed image
with the corresponding PSF performs unsatisfactorily in the
presence of noise [9]. In this paper, we present a new
concept where these two tasks, namely, the super-resolved
depth recovery and the super-resolved space varying image
restoration, have been combined through the interplay of
two separate Markov random fields (MRFs)—one repre-
senting the depth map and the other representing the
intensity field.

This paper is organized as follows: In Section 2, we briefly
review the prior work in depth from defocus (DFD) and the
super-resolution techniques. We model the formation of the
low resolution depth and image fields in Section 3 and
describe the proposed method to simultaneously extract the
super-resolved depth and the image fields in Section 4.
Experimental results and conclusions are presented in
Sections 5 and 6, respectively.

2 RELATED WORK

The basic premise of depth from defocus is that, since the
degree of defocus is a function of lens setting and the depth
of the scene, it is possible to recover the latter if the amount
of blur can be estimated, provided the lens setting is known.
An out-of-focus point light source images into a blurred
circle [10], whose radius is described by a blur parameter �
defined as

� ¼ � r v
1

f
� 1

v
� 1

u

� �
; ð1Þ

where f is the focal length, u is the distance of the object
point from the lens, v is the distance between the lens and
the image detector, r is the radius of the lens aperture, and �
is a camera constant that depends on its optics and the CCD
array resolution. The above relationship is valid primarily

in geometric optics and when the lens suffers from no
abberations. Hence, these assumptions are implied through-
out in this paper. Fig. 1 illustrates the formation of the
image of an object point as a circular patch due to the
dislocation of the image plane from the focusing plane.
Since the depth at various points in the scene may be
varying continuously, � would also vary all over the image
accordingly. The shift-varying PSF of the optical system is
modeled as a circularly symmetric 2D Gaussian function

hði; j;m;nÞ ¼ 1

2��2ðm;nÞ exp � i2 þ j2

2�2ðm;nÞ

� �
: ð2Þ

In the literature, we encounter two kinds of blur, viz., the
Gaussian blur and the pillbox (circular) blur. We have used
the Gaussian blur here for computational ease, although the
circular blur will work equally as well. As a matter of fact,
any single-parameter class of PSF can be handled under the
current formulation.

Early investigations of the DFD problem were carried
out by Pentland [10], where he compared two images
locally, one of which was formed with a pin-hole aperture
and then recovered the blur parameter through deconvolu-
tion in the frequency domain. In [11], Subbarao removed
the constraint of one of the images being formed with a pin-
hole aperture by allowing several camera parameters like
aperture, focal length, and lens-to-image plane distance to
vary simultaneously. Prasad et al. [12] formulate the DFD
problem as a 3D image restoration problem. The defocused
image is modeled as the combinatorial output of the depths
and intensities of the volume elements (voxels) of an
opaque 3D object. Klarquist et al. propose a maximum
likelihood (ML)-based algorithm that computes the amount
of blur as well as the deconvolved images corresponding to
each subregion [13]. In [14], Gökstorp estimates blur by
obtaining local estimates of the instantaneous frequency,
amplitude, and phase, using a set of Gabor filters in a
multiresolution framework. In [15], Watanabe and Nayar
describe a class of broadband rational operators which are
capable of providing invariance to the scene texture.
Schechner and Kiryati address the similarities in DFD and
stereo techniques on the basis of the geometric triangulation

2 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 9, SEPTEMBER 2003

Fig. 1. Illustration of out-of-focus image formation.



principle in [16]. An active ranging device that uses an
optimized illumination pattern to obtain an accurate and
high resolution depth map is described by Nayar et al. in
[17]. In [18], Rajagopalan and Chaudhuri use the complex
spectrogram and the pseudo-Wigner distribution for
recovering the depth within the framework of the space-
frequency representation of the image. In [19], they extend
this approach to impose smoothness constraints on the blur
parameter to be estimated and use a variational approach to
recover the depth. In [20], a MAP-MRF framework is used
for recovering the depth as well as the focused image of a
scene from two defocused images. However, the recovered
depth map and the scene image are at the same resolution
as the observations. Part of the current proposal derives its
origin from this paper. Other techniques for depth recovery
and issues related to optimal camera settings are described
in [8]. The DFD problem can also be viewed as a special case
of the space-variant blur identification problem since,
eventually, it is the blur at a point that acts as the cue for
determining the depth in the scene at that point. Space
variant blur identification methods have been described in
[21], [22], and [23].

In this paper, our aim is not only to recover the depth
from defocused images, but also to do so at a higher spatial
resolution, besides generating the super-resolved image of
the scene. Thus, given a sequence of low resolution blurred
observations of size M1 �M2, we wish to generate a dense
depth map of size, say, qM1 � qM2, where q is the
upsampling factor. We call this the super-resolved depth
estimate. Clearly, by doing this, we get a more accurate
description of the depth in the scene, which eventually
leads to a better performance of the task at hand.

Now, we review some of the prior works on super-
resolution imaging. Tsai and Huang [2] were the first to
propose a frequency domain approach to reconstruction of
a high resolution image from a sequence of undersampled
low resolution, noise-free images. Kim et al. discuss a
recursive algorithm, also in the frequency domain, for the
restoration of super-resolution images from noisy and
blurred images [24]. A minimum mean squared error
approach for multiple image restoration, followed by
interpolation of the restored images into a single high
resolution image is presented in [25]. Ur and Gross use the
Papoulis-Brown generalized sampling theorem to obtain an
improved resolution picture from an ensemble of spatially
shifted pictures [26]. However, these shifts are assumed to
be known by the authors. An iterative backprojection
method is used in [3] wherein a guess of the high resolution
output image is updated according to the error between the
observed and the low resolution images obtained by
simulating the imaging process. But, back-projection meth-
ods can be used only for those blurring processes for which
such an operator can be calculated. A projection onto
convex sets (POCS)-based method is described in [27]. A
MAP estimator with Huber-MRF prior is described by
Schultz and Stevenson in [28]. Elad and Feuer [29] propose
a unified methodology for super-resolution restoration
from several geometrically warped, blurred, noisy, and
downsampled images by combining ML, MAP, and POCS
approaches. An adaptive filtering approach to super-
resolution restoration is described by the same authors in
[30]. Chiang and Boult [31] use edge models and a local blur
estimate to develop an edge-based super-resolution algo-
rithm. Recently, Rajan and Chaudhuri have proposed a

generalized interpolation scheme and used it to generate
super-resolution images from photometric stereo [32], [33].

Shekarforoush et al. use MRFs to model the images and
obtain a 3D high resolution visual information (albedo and
depth) from a sequence of displaced low resolution images
[4]. The effect of sampling a scene at a higher rate is
acquired by having interframe subpixel displacements. But,
they do not consider blurred observations. Cheeseman et al.
describe another Bayesian approach for constructing a
super-resolution surface by combining information from a
set of images of the given surface [34]. However, their
model includes registration parameters, the PSF, and
camera parameters that are estimated first and, subse-
quently, the surface reconstruction is carried out. In both
these cases, the issue of registration has to be addressed
since they involve camera displacement. Errors in registra-
tion are reflected in the quality of the super-resolved image
generated as well as in the depth estimate. Hence, if we can
avoid any relative motion between the camera and the
scene, we would be able to do away with the correspon-
dence problem. This is precisely what is achieved by
resorting to using the defocus cue as is commonly done in
the depth from defocus approach. However, the restoration
problem becomes a space varying one and the accuracy
would depend on how well we can estimate the blur
parameter.

3 LOW RESOLUTION IMAGE AND BLUR FORMATION

We now discuss the formation of a low resolution image
from a high resolution description of the scene. Note that
the problem we solve here is actually the inverse. It should
be noted here that, through the choice of the term super-
resolved depth or the intensity, we mean the enhancement
in the spatial resolution and not that of the quantization
levels of the depth or the intensity map.

The actual model of the low resolution observation is as
follows: A high resolution image of the scene is formed by
the camera optics and this image is defocused due to
varying depth components in the scene. The defocused
scene is now sensed optically by the low resolution CCD
elements. A sensor noise is now added to these measure-
ments and one obtains the observed image.

Let us now refer to Fig. 2 for an illustration of the above
model. Let zðk; lÞ and �ðk; lÞ be the true high resolution
intensity and blur (parameterized) maps, respectively. Due
to depth related defocus, one obtains the blurred but high
spatial resolution intensity map fðk; lÞ. Suppose the low
resolution image sensor plane is divided into M1 �M2

square sensor elements and fgði; jÞg, i ¼ 0; . . . ;M1 � 1 and
j ¼ 0; . . . ;M2 � 1 are the low resolution intensity values. For
a decimation ratio of q, the high resolution grid (images z
and f) will be of size qM1 � qM2. The forward process of
obtaining fgði; jÞg from ffðk; lÞg is written as [28]
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Fig. 2. Low resolution image formation from high resolution image and

due to defocus blur.



gði; jÞ ¼ 1

q2

Xðqþ1Þi�1

k¼qi

Xðqþ1Þj�1

l¼qj

fðk; lÞ; ð3Þ

i.e., the low resolution intensity is the average of the high

resolution intensities over a neighborhood of q2 pixels. This

decimation model simulates the integration of light in-

tensity that falls on the high resolution detector. It should be

mentioned here that the above relationship assumes that the

entire area of the pixel is used for light sensing and nothing

is used for electrical wiring or insulation. Thus, we assume

the fill-factor for the CCD array to be unity.
The process of blurring the high resolution image zðk; lÞ

due to defocus is modeled by

fðk; lÞ ¼
X
u

X
v

zðu; vÞhðk; l;u; vÞ; ð4Þ

where fð�Þ is the defocused version of the high resolution

image and hð�; �Þ is the space variant blurring function given

in the previous section.

The space varying blurring function is dependent only
on a single blur parameter �. However, in the present
context, this blur describes a high resolution description of
the depth field compared to the spatial resolution at which
the scene is observed. The addition of white Gaussian noise
at the CCD sensor completes the low resolution observation
model and is illustrated in Fig. 2.

We now cast the super-resolution problem in a restoration
framework. There are p observed images ymði; jÞ, each of size
M1 �M2. These images are defocused, decimated, and noisy
versions of a single high resolution image zðk; lÞ of size
qM1 � qM2. If ym is the M1M2 � 1 lexicographically ordered
vector containing pixels from the low resolution image
ymði; jÞ, then a vector f of size q2M1M2 � 1 containing pixels
of the high resolution defocused image can be formed by
placing each of the q � q pixel neighborhoods sequentially so
as tomaintain the relationship between a low resolution pixel
and its corresponding high resolution pixel. This relationship
can also be represented throughadecimationmatrixDof size
M1M2 � q2M1M2 consisting of q2 values of 1

q2 in each row, the
exact form of which can be found in [28].
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Fig. 3. (a) and (b) Two of the defocused low resolution Taj images. (c) The true high resolution blur. (d) The estimated super-resolved blur. (e) The

super-resolved Taj image.



Let H be the blur matrix corresponding to the space
variant blurring function hðk; l;u; vÞ in (4). We reiterate that
this function is governed by the high resolution blur �ðk; lÞ.
Thus, for the mth low resolution observation, the blur
matrix Hm is a function of �mðk; lÞ, where the earlier
notation is modified to include a subscript for the
observation number. The blur field is now lexicographically
ordered to obtain a vector sm. The blur matrix Hm ¼ HðsmÞ
corresponding to the mth observation can now be formed,
but, due to the space varying nature of the blur, it does not
possess a block Toeplitz structure. The image formation
model is now compactly written as

ym ¼ DHðsmÞzþ nm; m ¼ 1; . . . ; p; ð5Þ

where HðsmÞs are the high resolution space varying
blurring matrix (PSF) of size q2M1M2 � q2M1M2, D is the
decimation matrix, nm is theM1M2 � 1 noise vector, and p is
the number of low resolution observations. Thus, the model
consists of a collection of low resolution images, each of
which differs from the others in the blur matrix, which is

akin to changing the focus of a stationary camera looking at
a stationary scene.

It is interesting to note what happens when one inter-
changes the order of the two operators,D andH, given in (5).
If one expresses the low resolution observation as

ym ¼ HðsmÞDzþ nm;

the size of the blur matrix H is now much reduced. This
allows a much faster computation of the fields s and z,
albeit the corresponding blur (or depth) is estimated at a
lower resolution. However, the interchanging of the two
operators H and D may not always be mathematically valid
as H and D may not commute. The operators would
commute if the decimation does not introduce any aliasing,
i.e., the super-resolved depth map should be a fairly smooth
one except possibly at the points of discontinuity preserved
through the introduction of line fields (see the next section).
Experimental observations suggest that, for many practical
applications, the above formulation yields quite an accep-
table accuracy. In order to derive the computational benefit,
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Fig. 4. (a) and (b) Two of the defocused low resolution Graveyard images. (c) The true high resolution blur. (d) The estimated super-resolved blur.

(e) The original high resolution Graveyard image. (f) The super-resolved Graveyard image.



one may start with the above equation, the solution of

which will serve as a very good initial guess for the correct

model given in (5).

4 SUPER-RESOLVED SCENE AND DEPTH

RECOVERY

4.1 Stochastic Models of Fields:

Markov random fields (MRFs) have emerged as a popular

stochastic model for images due to its ability to capture local

dependencies and its equivalence to the Gibbs random field

(GRF) [35]. Let X be a random field over an arbitrary N �N

lattice of sites L ¼ fði; jÞj1 � i; j � Ng. From the Hammers-

ley-Clifford theorem [36],which proves the equivalence of an

MRF and a GRF, we have P ðX ¼ xÞ ¼ 1
K e�UðxÞ, where x is an

instance ofX,K is the partition function given by
P

x e
�UðxÞ,

and UðxÞ is the energy function given by UðxÞ ¼
P

c2C VcðxÞ.

VcðxÞdenotes thepotential function for clique c andC is the set
of all cliques.

The presence or absence of discontinuities conveys

important information such as change in surface orienta-

tion, depth, texture, etc. The concept of line fields on a dual

lattice consisting of sites corresponding to vertical and

horizontal line fields was introduced in [37]. The horizontal

line field element lði; jÞ connecting site ði; jÞ to ði; j� 1Þ aids
in detecting a horizontal edge, while the vertical line field

element vði; jÞ connecting site ði; jÞ to ði� 1; jÞ helps in

detecting a vertical edge. We have chosen lði; jÞ and vði; jÞ to
be binary variables over the line fields L and V . The on-state

of the line-process variable indicates that a discontinuity, in

the form of a high gradient, is detected between neighbor-

ing points, e.g.,

lði; jÞ ¼ 1 if jxði; jÞ � xði� 1; jÞj > Threshold; else lði; jÞ ¼ 0:
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Fig. 5. Experimentation with discontinuous blur variation. (a) and (b) Two of the low resolution Sail images. (c) The true high resolution blur. (d) The

estimated super-resolved blur. (e) The original high resolution Sail image. (f) The super-resolved Sail image.



Each turn-on of a line-process variable is penalized by a
quantity � so as to prevent spurious discontinuities. Thus,
for the so-called weak membrane model [38], the energy
function for the random process X with discontinuity fields
L and V is written as

Uðx; l; vÞ ¼
X
c2C

Vcðx; l; vÞ

¼
X
i;j

½ðxði; jÞ�xði; j� 1ÞÞ2ð1� vði; jÞÞ þ ðxði; jþ 1Þ

� xði; jÞÞ2ð1� vði; jþ 1ÞÞ þ ðxði; jÞ � xði� 1; jÞÞ2

ð1� lði; jÞÞþðxðiþ 1; jÞ�xði; jÞÞ2ð1� lðiþ 1; jÞÞ�
þ �½lði; jÞ þ lðiþ 1; jÞ þ vði; jÞ þ vði; jþ 1Þ�:

ð6Þ

We use this particular energy function in our studies. Any
other form of energy function can also be used without
changing the solution modality proposed here.

4.2 Maximum a posteriori (MAP) Solution:

In [39] and [40], the depth of a scene is modeled as an MRF.
This is justified because the change in depth of a scene is
usually gradual and, hence, depth can be said to exhibit a
local dependency. Since the space varying blurring para-
meter � in (1) is a function of the scene depth, we expect it to
exhibit similar local dependencies and model it by an MRF.
Thus, we model both the high resolution image zðk; lÞ and
the blur process �ðk; lÞ as separate Markov random fields.
Let S and Z denote the random fields corresponding to the
high-resolution space-variant blur parameter �ðk; lÞ and the
high-resolution focused image zðk; lÞ over the qM1 � qM2

lattice of sites L, respectively. One may notice there that we
are modeling the blur as an MRF and not the depth field
because the DFD problem is essentially a shift-varying blur
estimation problem. The modeling of the blur field
simplifies the mathematical relationship. One may, how-
ever, model the depth field directly in conjunction with (1)
and is expected to obtain similar results. We assume that S
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Fig. 6. Another experiment with step-discontinuous blur. (a) and (b) Two of the low resolution Sail images with step variation in blurs. (c) The true

high resolution blur. (d) The estimated super-resolved blur. (e) The super-resolved Sail image.



can take B possible levels and Z can take C possible levels.

Although the fields S and Z are actually continuous, the

blur field is quantized to reduce the number of acceptable

configurations in the combinatorial minimization, while the

intensity field is usually quantized to 256 gray levels. One

may use a nonlinear quantization scheme for the levels of S

for better results, but this is not pursued in this exercise.
The a posteriori conditional joint probability of S and Z

is given by P ½S ¼ s; Z ¼ zjY1 ¼ y1; . . . ; Yp ¼ yp�, where the

Yms denote the random fields corresponding to the mth

observed image. From Bayes’ rule,

P ½S ¼ s; Z ¼ zjY1 ¼ y1; . . . ; Yp ¼ yp� ¼
P ½Y1 ¼ y1; . . . ; Yp ¼ ypjS ¼ s; Z ¼ z�P ½S ¼ s; Z ¼ z�

P ½Y1 ¼ y1; . . . ; Yp ¼ yp�
:

ð7Þ

The random fields S and Z are assumed to be statistically

independent in this study as they refer to two independent

processes, namely, the depth and intensity processes. It may

be worth mentioning that the assumption of statistical

independence of the two fields S and Z may not always be

valid. In many cases, the intensity and the depth maps are

related, for example, in shape from shading or texture

applications where the shading may depend on perspective

effects or object geometry. In the absence of any knowledge of

the cross covariance matrix between the two fields, we

assume them to be independent. Since the denominator in (7)

is not a function of s or z, the MAP problem of simultaneous

estimationofhigh resolutionspace-variantblur identification

and super-resolved image can be posed as:
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Fig. 7. Experimentation for readability of text image. (a) and (b) Two of the low resolution Text images. (c) The true high resolution blur. (d) The

estimated super-resolved blur. (e) The original high resolution Text image. (f) The super-resolved Text image.



max
s;z

P ½Y1 ¼ y1; . . . ; Yp ¼ ypjS ¼ s; Z ¼ z�P ½S ¼ s�P ½Z ¼ z�:

ð8Þ

Note that the random fields S and Z are high resolution,

while the observations are low resolution. Since S and Z are

both modeled as MRFs, the priors P ½S ¼ s� and P ½Z ¼ z�

have a Gibbs distribution given by

P ½S ¼ s� ¼ 1

Ks
exp �

X
c2Cs

V s
c ðsÞ

( )
ð9Þ

and

P ½Z ¼ z� ¼ 1

Kz
exp �

X
c2Cz

V z
c ðzÞ

( )
; ð10Þ

where Ks and Kz are normalizing constants known as
partition functions, Vcð:Þ is the clique potential, and Cs and
Cz are the set of all cliques in S and Z, respectively. Thus,
the posterior energy function to be minimized is obtained
by taking the log of posterior probability and assuming the
noise to be i.i.d. Gaussian

U ¼
Xp
m¼1

jjym �DHðsmÞzjj2

2�2�
þ
X
c2Cs

V s
c ðsÞ þ

X
c2Cz

V z
c ðzÞ; ð11Þ

where �� is the noise variance.

RAJAN AND CHAUDHURI: SIMULTANEOUS ESTIMATION OF SUPER-RESOLVED SCENE AND DEPTH MAP FROM LOW RESOLUTION... 9

Fig. 8. (a) and (b) Two of the low resolution Buddha images. (c) The true high resolution depth. (d) The estimated super-resolved depth. (e) The

super-resolved Buddha image.



Smoothness is an important assumption underlying a

wide range of physical phenomena. However, careless

imposition of the smoothness criterion can result in

undesirable, oversmoothed solutions. This could happen

at points of discontinuities either in the image or in the

depth map. Hence, it is necessary to take care of disconti-

nuities. Smoothness constraints on the estimates of the

space-variant blur parameter and the intensity process are

encoded in the potential function. As mentioned earlier,

preservation of discontinuities is done through line fields

[37]. We introduce separate line fields for these two

processes. After incorporating the first order weak-mem-

brane model, the posterior energy function to be minimized

is now defined as

U ¼
Xp
m¼1

jjym �DHðsmÞzjj2

2�2
�

þ
X
i;j

½�sess þ �sesp�

þ
X
i;j

½�zezs þ �zezp�;
ð12Þ

where the smoothness (ess and ezs) and the penalty (esp and

ezp) terms have been defined in (6) earlier. Parameters � and

� correspond to the relative weights of the smoothness term

and the penalty term necessary to prevent occurance of

spurious discontinuities.
When the energy function is nonconvex, there is a

possibility of the steepest descent type of algorithms getting

trapped in a local minima. Hence, simulated annealing is

used to minimize the energy function and to obtain the MAP

estimates of the high resolution space-variant blur and the

super-resolved image simultaneously. Simulated annealing

applies a sampling algorithm such as the Metropolis
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algorithm or Gibbs sampler, successively, at decreasing
values of a temperature variable T . In this work, we have
chosen a linear cooling schedule, i.e., T ðtÞ ¼ � T ðt�1Þ, where �
is typically between 0.8 and 0.99. The parameters for theMRF
models are chosen by trial and error and the optimization is
done through sampling the configuration spaces Z and S
alternately. The details of the optimization process can be
found in [41].

It is interesting to note the effect of the value of p in (12)
in super-resolving the fields. For an upsampling factor of q,
one requires estimating 2q2 parameters (intensity and depth
values) per pixel. Hence, one would ideally like to have
p � 2q2. However, this would be tantamount to using only
the first (data fitting) term of the equation and it does not
exploit the power of model-based restoration techniques.
Due to the punctuated smoothness terms, one can obtain a
very good estimate of both the fields, even when p < 2q2.
Imposition of the penalty for the line detection saves the
algorithm from the possibility of excessive smoothing. This
is demonstrated in the next section.

5 EXPERIMENTAL RESULTS

In this section, we illustrate the efficacy of the proposed
algorithm for simultaneous super-resolved blur identifica-
tion and image reconstruction through several examples of
simulation and real data.

5.1 Simulation Experiments

We note that, since the blur is a function of depth, it suffices
to recover the distribution of the blur parameter over the
image. In all simulation experiments, only five low
resolution images were considered ie, p < 2q2 for q ¼ 2. In
addition to the space variant blur, each low resolution
observation was also corrupted with additive white
Gaussian noise of variance 5.0. The low resolution blur
was estimated from any two of the five observations using
the complex spectrogram method described in [18] which
offers a good initial estimate of the blur with a very little
computation. A square window of size 16� 16 was used for
the purpose. A zero order hold expansion of the estimated

low resolution blur yields the initial estimate of the high

resolution blur. The bilinear interpolation of the least
blurred image was chosen as the initial estimate of the true

focused image. The number of discrete levels for the space
variant blur parameter (�) was taken as 128. For the

intensity process, 256 levels were used, which is the same as
the CCD dynamic range. Further, in all experiments, we

have used a upsampling factor of q ¼ 2. The parameters
involved in the simulated annealing algorithm while

minimizing (12) are as follows:

. �s and �z—relative weights of the smoothness term
for the space-variant blur parameter and the super-
resolved image processes, respectively.

. �s and �z—penalty term for presence of disconti-
nuities in blur and super-resolved image processes,
respectively.

. �s and �z—thresholds for the line fields correspond-
ing to the blur parameter and intensity processes,
respectively.

. T0—initial temperature.

. �—cooling schedule (rate of cooling).

. �s and �z—variances of the Gaussian samplers for
the blur and the intensity processes, respectively.

In order to carry out the simulation experiments, we
adopt the following strategy: First, we consider the image to

have been taken with a pin-hole camera, implying that we
obtain a focused image of the scene. Next, we assign an
arbitrary depth map to the scene. Since the depth at a point

in the scene is a function of the amount of blur at that point,
the depth and the blur are deemed to be analogous. Using

the space varying blur, we carry out a space varying
convolution with the scene map to obtain a defocused

image. What we are doing, in essence, is mapping a texture
to a particular depth map. Appropriate noise sequences are

added to obtain the observations.

Figs. 3a and 3b show two of the five low resolution

observations of the Taj image. In general, we display two of

the least blurred observations during the simulation

experiments. The blur parameter in these defocused images
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Fig. 10. The super-resolved depth estimates in the “blocks world.”



is related through �mþ1ði; jÞ ¼ 0:75 �mði; jÞ; m ¼ 1; . . . ; 4.

We recall that such a linear relationship between the blurs

exists when defocused images of a scene are obtained using

different values of the camera parameters. The true high

resolution blur �ðk; lÞ ¼ a expð� ðk�64Þ2þðl�64Þ2
2b2 Þ, 0 � k; l < 128,

which is plotted in Fig. 3c. In our experiment, the values are

a ¼ 1:0 and b ¼ 35:0. As mentioned earlier, we have chosen

a decimation factor of q ¼ 2. The original Taj image is

blurred using the space-varying Gaussian blurring kernels

formed from the blurs given above and then sampled

down. White Gaussian noise is now added to the observa-

tions. The estimated values of the super-resolved blur

parameters are shown in Fig. 3d. The values of the

parameters used in the simulated annealing (SA) algorithm

are �s ¼ 1; 000:0, �s ¼ 15:0, �s ¼ 0:15, �s ¼ 1:2, �z ¼ 0:005,

�z ¼ 5:0, �z ¼ 25:0, �z ¼ 3:0, � ¼ 0:975, and T0 ¼ 3:0. The

rms error in the estimate of the blur is only 0.033. It is to be

noted here that no attempt has been made in this study to

obtain the best parameter set for the optimization purpose.

The algorithm has been able to determine the super-

resolved blur parameter quite accurately. The super-

resolved Taj image is shown in Fig. 3f. Compare this to

the original high resolution Taj image given in Fig. 3e. We

also observe that the quality of the estimated super-resolved

image is also good, especially in the region of the main

entrance and near the minarets. Note that the technique has

worked well even in the case of a fairly nontextured image

such as the Taj image.
We next consider a blur profile in the form of a ramp

function. The blur varies linearly from a value of 0.02 at
the left edge of the image to 0.97 at the right edge. Two
of the least blurred low resolution Graveyard images
generated using our observation model are shown in
Figs. 4a and 4b. Once again the blurs are related through
�mþ1ði; jÞ ¼ 0:75 �mði; jÞ; m ¼ 1; . . . ; 4, and the true high
resolution blur �ðk; lÞ is plotted in Fig. 4c. As before, the
initial estimate of the super-resolved blur is the zero
order hold expansion of the low resolution estimate of the
blur determined using the complex spectrogram method.
The bilinearly interpolated, least blurred image is the
initial estimate of the super-resolved focused image. The
super-resolved blur parameters and the super-resolved
Graveyard image are shown in Figs. 4d and 4f, respec-
tively. The rms error in the estimate for the super-
resolved blur is again only 0.019, yielding an average
estimation error of about 4 percent. The parameters of the
SA algorithm are kept the same as in the last experiment.
We observe that the degradations in the observations are
eliminated in the super-resolved image. Note that steps in
the far end are now clearly visible. Compare the
reconstructed image with the original high resolution
image given in Fig. 4e.

In both the above experiments, the field representing the
blur process can be assumed to be sufficiently smooth so as
to preclude the use of line fields for the blurring process
altogether. In order to see how the method performs for
discontinuities in the blur process, we consider next the case
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where the blurring is constant over a certain contiguous
region of the image and then varies linearly over a second
region and, finally, is constant again over the remaining
part of the image. Two such blurred observations of the Sail
image are shown in Figs. 5a and 5b. The true depth profile
is shown in Fig. 5c, where the constant blur regions are of
widths 32 pixels each. The estimated super-resolved blur
parameters are shown in Fig. 5d and the super-resolved
image in Fig. 5e. The rms error in the estimation of super-
resolved blurs is only 0.020. The super-resolved image
recovery technique has performed quite well. The numerals
on the sail as well as the thin lines are clearly discernible.
Two sailors are clearly identifiable in the super-resolved
image, which compares very favorably with the original
picture given in Fig. 5e.

For a higher degree of discontinuity, we consider a step
profile for the variation in blur/depth in the same Sail
image. Two of the defocused sail images resulting from the
space varying convolution of the step form of blur variation
with the original scene map are shown in Figs. 6a and 6b.
The true variation of blur is plotted in Fig. 6c. The estimated
super-resolved blur and image are shown in Figs. 6d and
6e, respectively. Since the blur variation is highly discontin-
uous, we observed slightly reduced values of �s ¼ 500 and
�s ¼ 10 (i.e., less demand for smoothness and lowering the
penalty for introducing a discontinuity in the depth field).
The rms error in the blur estimates is 0.068, which is slightly
on the higher side compared to the previous cases. Still the
image reconstruction is very good.

Next, we present the results of our technique on low
resolution observations of a Text image. The purpose of the
experimentation is to subjectively judge the improvement in
readability after the super-resolution restoration. Each
observation of size 41� 207 is blurred by a space varying
blur, which has a similar variation as in the previous
example, viz., step variation. Two of the five low resolution
images are shown in Figs. 7a and 7b. The true high
resolution blur parameters are shown in Fig. 7c. Due to the
step-like variation in the blur profile, we notice the text
getting progressively blurred from the left edge to the right
edge of the input images. The estimated super-resolved blur
parameters and the super-resolved text image are shown in
Figs. 7d and 7e, respectively. The rms error for the blur

parameters in this case is 0.051. The same parameter set
used in the previous experiment is used for the optimiza-
tion purpose. Since the image field is also very discontin-
uous, a similar change in the values of �z and �z tends to
yield partly improved results. The super-resolved blur
recovery is very encouraging. The text in the super-resolved
image is easily readable. All these experiments substantiate
our claim that both these fields can, indeed, be super-
resolved.

We also experimented on the efficacy of the proposed
technique by varying the number of available observations
(p). It was found that, with further increase in p, there is
barely any improvement in the quality of the restored fields.
However, when we reduced the number of observations,
there was some degradation in the quality of the output.
The improvement tends to saturate for a value of p ¼ 4 or 5
when q ¼ 2.

Finally, we test our algorithm on data sets containing
ground truth of the depth values in the image. Specifically,
we used the Buddha image from the SAMPL database of
Ohio State University, which contains the range image as
well as the actual intensity image. Low resolution observa-
tions were generated by defocusing the original intensity
image with blurs that were calculated from the ground
truth depth values and the camera parameters used in the
experiments on real data (see Section 5.2 below). Two of the
five low resolution images are shown in Figs. 8a and 8b.
Also shown in Fig. 8c are the true depth values obtained
from the range scanner. The estimated super-resolved
depth map and the super-resolved intensity image are
shown in Figs. 8d and 8e, respectively. The rms error for the
depth estimate in this case is 9.72, yielding a ranging error
less than just 1 percent. The super-resolved depth recovery
is quite satisfactory except around the region of the mouth,
where a small amount of detail appears to be lost. Also, the
super-resolved intensity image of Buddha has been
recovered quite well.

5.2 Experiments with Real Data

The performance of the proposed method was next tested
on real data captured in our laboratory under controlled
conditions. The first experimental setup was the “blocks
world,” where three concrete blocks were arranged at
different depths, the nearest one at a distance of 73 cm,
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Fig. 12. Two of the low resolution Ball images.



another at 82.7 cm, and the farthest block at 96.6 cm. All the
blocks are placed perpendicular to the optical axis of the
camera and, hence, there is no depth variation for a
particular face of a block. Newspaper cuttings were pasted
on the blocks to provide some texture as well as for ease of
evaluation. A Pulnix CCD camera fitted with a Fujinon
HF35A-2 lens of focal length 3.5 cm was used to grab the
images. The lens aperture was kept at F1.7. The camera was
coarsely calibrated using an object at a known depth. Five
low resolution images, each of size 240� 260, were
captured. These are shown in Fig. 9. Depending on the
selection of lens-to-image plane distances, one obtains
different amounts of defocus in different observations.
The estimated super-resolved depths are shown in Fig. 10
and the super-resolved image is shown in Fig. 11. As we can
see, the proposed method has been able to capture the
depth variation quite satisfactorily. The root mean square
error in the estimation of depth is 1.768 cm, which is
equivalent to a ranging error of just 1.96 percent. Also, the
super-resolved image has been recovered quite well as is
evident from the readability of the text on both the blocks.
This is not so in the captured images where the texts on
either or both the blocks are always out-of-focus. The
random dot pattern pasted on the lower block has also been
recovered well.

The second experimental setup consisted of a ball resting
on a block. The selection of the ball as the scene was
motivated primarily to verify the performance of the
proposed method when the scene does not have much
textural content. The block was at a distance of 117 cm from
the camera. The point on the ball nearest to the camera was
at 121.8 cm, while the farthest points, viz., the points lying
on the occluding boundary of the ball, were at 132.3 cm
from the camera. Two of the five low resolution images
each of size 280� 280 are shown in Fig. 12. We have
changed the lens-to-image plane distance in our experi-
ments to obtain the differently defocused observations. This
introduces a small amount of changes in magnification in
successive observations. We neglect the effect in our
studies. The super-resolved depth is shown in Fig. 13 in
which one out of every four points is plotted in order to
avoid clutter. The super-resolved Ball image is shown in

Fig. 14. The proposed technique has been able to capture the
spherical depth variation well together with the depth of
the block on which the ball is resting. The restored image is
also of very good quality as the characters on the spherical
surface are clearly visible.

All these experiments now substantiate our claim that
it is indeed possible to super-resolve both the intensity
and depth maps using the depth related defocus as a
natural cue.

6 CONCLUSIONS

We have described a MAP-MRF framework for simulta-
neously generating the super-resolved depth map and the
super-resolved image from low resolution defocused
observations. This method avoids the correspondence and
warping problems inherent in current super-resolution
techniques involving the motion cue in the low resolution
observations and uses a more natural depth related defocus
as a natural cue in real aperture imaging. Both the super-
resolved blur parameter and the image are modeled as
separate MRFs. It is interesting to note that a large class of
problems in computer vision, such as DFD, super-resolu-
tion, optical flow, shape from shading, etc., can all be solved
in a similar MAP framework. The basic structure of the
solution remains the same. The equations of image
formation are written in conjunction with appropriate
priors and the solution is obtained by optimizing the
resultant energy function. The proposed method is no
exception.

The use of line fields preserves discontinuities in the
super-resolved depth and image fields. We have chosen the
line fields to be binary variables in this study. However, one
can use continuous variables as well without much
changing the problem formulation. The advantage of using
continuous variable line fields lies in having a differentiable
cost function when a gradient-based optimization method
can be used. The super-resolved depth maps have been
generated with a very high accuracy. The quality of the
super-resolved images is also quite good. Through the
restoration process, we are able to obtain a pin-hole
equivalent image (i.e., there is no depth of field) of an
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arbitrary scene using commercially available real-aperture
cameras. Our future research effort would involve integrat-
ing additional cues from multiple cameras to obtain even
better estimates of both the fields.
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