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Various uncertainties involved in pattern recognition problems and the relevance of fuzzy set theory in handling them
are, first of all, explained. This is followed by different image ambiguity measures based on fuzzy entropy-and fuzzy
geometry of image subsets, and a discussion on the flexibility in choosing membership functions. Some illustrations of
commonly used fuzzy image processing operations are then provided, along with their significance, features and
applications to some real life problems, e.g., motion frame analysis, character recognition, IRS image analysis. Most of
the algorithms and tools described here were developed by the author with his colleagues. An extensive bibliography is

also provided.
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1 Introduction

Pattern recognition and machine learning form a
major area of research and development that
encompasses the processing of pictorial and other
non-numerical  information  obtained from
interaction between science, technology and
society. A motivation for this spurt of activity in
this field is the need for the people to communicate
with computing machines in their natural mode of
communication. Another important motivation is
that scientists are also concerned with the idea of
designing and making intelligent machines that can
carry out certain tasks as ' we human beings do. The
most salient outcome of these is the concept of
future generation computing systems.

Machine recognition of patterns can be viewed
as a two-fold task, consisting of learning the
invariant and common properties of a set of
samples characterizing a class, and of deciding that
a new sample is a possible member of the class by
noting that it has properties common to those of the
set of samples. Therefore, the task of pattern
recognition by a computer can be described as a
transformation from the measurement space M to
the feature space F and finally to the decision space
D.

When the input pattern is a gray tone image,
some processing tasks such as enhancement,
filtering, noise reduction, segmentation, contour

extraction and skeleton extraction are performed in
the measurement space, in order to extract salient
features from the image pattern. This is what is
basically known as image processing. The ultimate
aim is to make its understanding, recognition and
interpretation from the processed information
available from the image pattern. Such a complete
image recognition/interpretation system is called a
vision system which may be viewed as consisting
of three levels namely, low level, mid level and
high level corresponding to M, F and D with an
extent of overlapping among them.

In a pattern recognition or vision system,
uncertainty can arise at any phase of the aforesaid
tasks resulting in from the incomplete or imprecise
input information, the ambiguity/vagueness in
input image, the ill-defined and/or overlapping
boundaries among the classes or regions, and the
indefiniteness in defining/extracting features and
relations among them. Any decision taken at a
particular level will have an impact on all higher
level activities. It is therefore required for a
recognition system to have sufficient provision for
representing these uncertainties involved at every
stage, so that the ultimate output (results) of the
system can be associated with the least uncertainty
(and not be affected or biased very much by the
earlier or lower level decisions).

The present paper describes various fuzzy set
theoretic tools and explores their effectiveness in
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representing/describing various uncertainties that
might arise in an image recognition system and the
ways these can be managed in making a decision.
Some examples of uncertainties that arise often in
the process of recognizing a pattern are given in
Section 2. Section 3 provides a definition of image,
and describes various fuzzy set theoretic tools for
measuring information on grayness ambiguity and
spatial ambiguity in an image. Concepts of bound
functions and spectral fuzzy sets characterising the
flexibility in membership functions are discussed in
Section 4. Their applications to formulate some
low level vision operations (e.g., enhancement,
segmentation, skeleton extraction and edge
detection), whose outputs are crucial and
responsible for the overall performance of a vision
system, are then presented in Section 5. Some real
life applications (e.g., motion frame analysis,
character recognition and remote sensing image
analysis) of these methodologies and tools are
described in Section 6. Sections 7 and 8 provide the
discussion and conclusions respectively.

2 Uncertainties in a Recognition System
and Relevance of Fuzzy Set Theory

Some of the uncertainties which one encounters
often while designing a pattern recognition or
vision'? system will be explained in this section.
Let us consider, -first of all, the problem of
processing and analyzing a gray tone image
pattern. A gray tone image possesses some
ambiguity within the pixels due to the possible
multivalued levels of brightness. This pattern
indeterminacy is due to inherent vagueness rather
than randomness. The conventional approach to
image analysis and recognition consists of
segmenting (hard partitioning) the image space into
meaningful regions, extracting its different features
(e.g. edges, skeletons, centroid of an object),
computing the various properties of and
relationships among the regions, and interpreting
and/or classifying the image. Since the regions in
an 1mage are not always crisply defined,
uncertainty can arise at every phase of the aforesaid
tasks. Any decision taken at a particular level will
have an impact on all higher level activities.
Therefore, a recognition system (or vision system)
should have sufficient provision for representing
the uncertainties involved at every stage i.e., in
defining image regions, its features and relations
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among them, and in their matching, so that it
retains as much as possible the information content

of the original input image for making a decision at
the highest level. The ultimate output (result) of the
system will then be associated with least
uncertainty (and unlike conventional systems it will
not be biased or affected very much by the lower
level decisions). For example, consider the problem
of object extraction from a scene. Now, the
question is “How can someone define exactly the
target or object region in a scene when its boundary
is ill-defined?” Any hard thresholding made for its
extraction will propagate the associated uncertainty
to the following stages, and this might affect its
feature analysis and recognition. Similar is the case
with the tasks of contour extraction and skeleton
extraction of a region.

From the aforesaid discussion, it becomes
therefore convenient, natural and appropriate to
avoid committing ourselves to a specific (hard)
decision (e.g., segmentation/thresholding, edge
detection and skeletonization) by allowing the
segments or skeletons or contours to be fuzzy
subsets of the image; the subsets being
characterized by the possibility (degree) of a pixel
belonging to them. Prewitt’ first suggested that the
results of image segmentation should be fuzzy
subsets, rather than ordinary subsets. Similarly, for
describing and interpreting ill-defined structural
information in a pattern, it is natural to define
primitives (line, comer, curve etc.y and relations
among them using labels of fuzzy sets. For
example, primitives which do not lend themselves
to precise definition may be defined in terms of
arcs with varying grades of membership from 0 to
1 representing its belonging to more than one class.
The production rules of a' grammar may similarly
be fuzzified to account for the fuzziness in physical
relation among the primitives; thereby increasing
the generative power of a grammar for syntactic
recognition® of a pattern.

‘The incertitude in an image pattern may be
explained in terms of grayness ambiguity or spatial
(geometrical) ambiguity or both. Grayness
ambiguity means “indefiniteness” in deciding a
pixel as white or black. Spatial ambiguity refers to
“indefiniteness” in shape and geometry (e.g., in
defining centroid, sharp edge, perfect focusing etc.)
of a region. There is another kind of uncertainty
which may arise from the subjective judgement of
an operator in defining the grades of membership
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of the object regions. This has been explained in
Section 4 in terms of flexibility in membership
function.

Let us now consider the problem of determining
the boundary or shape of a class from its sampled
points or prototypes. There ar¢ various
approaches®™ described in the literature which
attempt to provide an exact shape of the pattern
class by .determining the boundary such that it
contains (passes through) some of the sample
points. This need not be true. It is necessary to
extend the boundaries to some extent to represent
the possible uncovered portions by the sampled
points. The extended portion should have lower
possibility to be in the class than the portions
explicitly highlighted by the sample points. The
size of the extended regions should also decrease
with the increase¢ of the number of sample points.
This leads one to define a multivalued or fuzzy
(with continuum grade of belonging) boundary of a
pattern class®’. Similarly, the uncertainty in
classification or clustering of image points or
patterns may arise from the overlapping nature of
the various classes or image properties. This
overlapping may resuit from fuzziness or
randomness. In the conventional classification
technique, it is usually assumed that a pattern may
belong to only one class, which is not necessarily
true. A pattern may have degrees of membership in
more than one class. It is, therefore, necessary to
convey this information while classifying a pattern
or clustering a data set.

In the following section we will be explaining
various fuzzy set theoretic tools for image analysis
(which were developed based on the realization
that many of the basic concepts in pattern analysis,
e.g., the concept of an edge or a corner, do not lend
themselves to precise definition).

3 Image Ambiguity and Uncertainty Measures

An L level image X (MxN) can be considered as an
array of fuzzy singletons, each having a value of
membership denoting its degree of possessing
same property (e.g., brightness, darkness, edginess,
blurredness, texture, etc.). In the notation of fuzzy
sets one may therefore write that

X={uxXmn):m=12, ... . M;n=12,..,N}; ... (1)

where uy (Xmn) O, tm, denotes the grade of
possessing such a property u by the (m, n)th pixel.
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This property u of an image may be defined using
global information or local information or
positional information or a combination of them
depending on the problem. Again, the aforesaid
information can be used in a number of ways (in
their various functional forms), depending on
individuals opinion and/or the problem to his hand,
to define a requisite membership function for an
image property. Basic principles and operations of
image processing and pattern recognition in the
light of fuzzy set theory are available in reference
10.

Let us now explain the various image
information measures (arising from both fuzziness
and randomness) and tools, and their relevance to
different operations for image processing and
analysis. These are classified mainly in two groups,
namely grayness ambiguity and spatial ambiguity.

3.1 Grayness. Ambiguity Measures

The definitions of some of the measures which
were formulated to represent grayness ambiguity in
an image X with dimensioh MxN and levels L
(based on individual pixel as well as a collection of
pixels) are listed below.

rth Order Fuzzy Entropy :
H' (X)=(-1/K)S {u(s])log {u(s]))

+{I-p (s og{l-u(s)}} i=12,.k

e

where s/ denotes the ith combination (sequence)
of r pixels in X; k is the number of such sequences;
and (s]) denotes the degree to which the
combination-s; , as a whole, poSsesses some image

property 4.

Hybrid Entropy:

H, (X)=-P,logE, - P, logE, . (3)
with

Ew :(1/W)ZZIUM eXp(l ":umn)

B, =(UUMN) Y Y (0~ 1) exp(Upy). oo (4)

m=1,2, ..M n=1,2 ..., N
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Here u,,, denotes the degree of “whiteness” of the
(m,n)th pixel. P, and P, denote probability of
occurrences of white (tm,=1) and black (Lm,=0)
pixels respectively; and E, and E, denote the
average likeliness (possibility) of interpreting a
pixel as white and black respectively.

Correlation:

Cyy 1y) =1—4[ZZ{/‘1IM" "ﬂchu}Z:l/(Xl +X,)

=1if X, +X, =0
. (3)
with

X\ :Zz{zlulmn _1}2

X, =3 02u,, -1} .. (6)

m=1,2,...M:n=1,2,...N.

Here um, and 4 »,,, denote the degree of possessing
the properties y; and 4, respectively by the (m,n)th
pixel and C (u, p») denotes the correlation
between two such properties x4 and s (defined
over the same domain).

These expressions eqs. (2-6) are the versions
extended to the two dimensional image plane from
those defined'"'? for a fuzzy set. H" (X ) gives a
measure of the average amount of difficulty in
taking a decision whether any subset of pixels of
size r possesses an image property or not. Note
that, no probabilistic concept is needed to define it.
If =1, H (X) reduces to (non-normalized) entropy
as defined by De Luca and Termini". H,,(X), on
the other hand, represents an amount of difficulty
in deciding whether a pixel possesses a certain
property i., or not by making a prevision on its
probability of occurrence. (It is assumed here that
the fuzziness occurs because of the transformation
of the complete white (0) and black pixels (1)
through a degradation process; thereby modifying
their values to lie in the intervals [0, 0.5] and [0.5,
1] respectively). Therefore, if u,, denotes the
fuzzy set ‘object region’ then the amount of
ambiguity in deciding x,, a member of object
region is conveyed by the term hybrid entropy
depending on its probability of occurrence. In the
absence of fuzziness (i.e., with exact
defuzzification of the gray pixels to their respective
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black or white version), Hj, reduces to the two state
classical entropy of Shannon'®, the states being
black and white. Since a fuzzy set is a generalized
version of an ordinary set, the entropy of a fuzzy
set deserves to be a generalized version of classical
entropy by taking into account not only the
fuzziness of the set but also the underlying
probability structure. In that respect, H,, can be
regarded as a  generalized entropy such that
classical entropy becomes its special case when
fuzziness is properly removed.

Note that egs. (2) and (3) are defined using the
concept of logarithmic gain function. Similar
expressions using exponential gain function i.e.,
defining the entropy of an n-state system have been
given by Pal and Pal*™'®,

H =Zpi et i=12,..,n ()

All these terms, which give an idea of
‘indefiniteness’ or fuzziness of an image may be
regarded as the measures of average intrinsic
information which is received when one has to
make a decision (as in pattern analysis) in order to
classify the ensembles of patterns described by a
fuzzy set.

H' (X) has the following properties:
Pr1: H' attains a maximum if z,=0.5 for all i.
Pr 2 : H' attains a minimum if 4=0 or 1 for all i.

Pr3:H > H* " where H* " is the rth order
entropy of a sharpened version of the fuzzy set (or
an image).
Pr 4 : H' is, in general, not equal to H ", where
H' is the rth order entropy of the complement set.
Pr5:H <H™'whenall 4 € [0.5, 1].

H">H"" whenall 4 € [0, 0.5].

The ‘sharpened’ or ‘intensified’ version of X is
such that

,ux‘ (xmn ) 2 :u:( (xmn) lf /ux (xmn)205

and

. (8)

Hyxs ('xmn)gﬂx (xmn) if Hy (xm)SO.S.

When rf‘=l, the property Pr 4 is valid only with the
‘equal’ sign. The property Pr 5 (which does not
arise for r=1) implies that H " is a monotonically
non-increasing function of  for y; € [0,0.5] and a
monotonically nondecreasing function of r for u;
€ [0.5, 1] (when the ‘min’ operator has been used



FUZZY MODELS FOR IMAGE PROCESSING

to get the group membership value). When .all y;
values are the same, H' (X)=H*(X)=...=H " (X).
This is because of the fact that the difficulty in
taking a decision regarding possession of a
property on an individual is the same as that of a
group selected therefrom. The value of H " would,
of course, be dependent on the y; values.

Again, the higher the similarity among
singletons (supports) the quicker is the
convergence to the limiting value of H”. Based on
this observation, an index of similarity of supports
of a fuzzy set may be defined as S=H '/H * (when
H*=0, H' is also zero and S is taken as 1).
Obviously, when g € [0.5, 1] and the min operator
is used to assign the degree of possession of the
property by a collection of supports, S will lie in
[0,11as H" < H"'. Similarly, when x4 € [0, 0.5], S
may be defined as H%/H ' so that S lies in [0, 1].
The higher the value of S the more alike (similar)
are the supports of the fuzzy set with respect to the
fuzzy property u. This index of similarity can
therefore be regarded as a measure of the degree to
which the members of a fuzzy set are alike'.

Therefore, the value of 1st order fuzzy entropy
(H ") can only indicate whether the fuzziness in a
set is low or high. In addition to this, the value of
H', r > 1 also enables one to infer whether the
fuzzy set contains similar supports (or elements) or
not. The similarity index thus defined can be
successfully used for measuring inter class and
intraclass ambiguity (i.e., class homogeneity and
contrast) in pattern recognition and image
processing problems.

H' (X) is regarded as a measure of the average
ariount of information (about the grey levels of
pixels) which has been lost by transforming the
classical pattern (two-tone) into a fuzzy (gray)
pattern X. Further details on this measure with
respect to image processing problems are available
in_references (10), (20-22). It is to be noted that H'
(X) reduces to zero whenever 4, is made 0 or 1 for
all (m, n), no matter whether the resulting

- defuzzification (or transforming process) is correct
or not. In the following discussion it will be clear
how H,, takes care of this situation.

Let us now discuss some of the properties of H,,
(X). In the absence of fuzziness when MNP, pixels
become completely black (4»,=0) and MNP, pixels
become completely while (yn.=1), then E,=P,,
E,=P, and H,, boils down to the two state classical
entropy

comp () =
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H =-P,logP, - P, logh,, . 9
the states being black and white. Thus H,, reduces
to H, only when a proper defuzzification process is

applied to detect (restore) the pixels. lH w—H

can therefore be treated as an objective function for
enhancement and noise reduction. The lower the
difference, the lesser is the fuzziness associated
with the individual symbol and the higher will be
the accuracy in classifying them as their original
value (white or black). (This property is lacking
with the H' (X) measure and the measure of Xie
and Bedrosian® which always reduces to zero or
some constant value irrespective of the
defuzzification process). In other words,
{H w —H.| represents an amount of information
which was lost by transforming a two tone image
to a gray tone.

For a given P, and P, , (P,+Py=1,0< P, , P, <
1), of all possible defuzzifications, the proper
defuzzification of the image is the one for which
H,, is minimum.

If 4,,,=0.5 for all (m,n) then E,=E,

and H,=log (0.5 exp 0.5) ... (10)
ie; H; takes a constant value and becomes
independent of P, and P,. This is logical in the
sense that the machine is unable to make a decision
on the pixels since all 4, values are 0.5.

4

3.2 Spatial Ambiguity Measures Based on Fuzzyy
Geometry of Image

Many of the basic geometric properties of and
relationships among regions has been generalized
to fuzzy subsets. Such an extension, called fuzzy
geometry’* %, includes the topological concept of
connectedness, adjacency and surroundedness,
convexity, area, perimeter, compactness, height,
width, length, breadth, index of area coverage,
major axis, minor axis, diameter, extent,
elongatedness, adjacency and degree of adjacency.
Some of these geometrical properties of a fuzzy
digital image subset (characterized by piecewise
constant membership function gy (x,,) or simply u)
are listed below with illustrations. These may be
viewed as providing measures of ambiguity in the
geometry (spatial domain) of an image.

Compactness:**
a(y)
[P (W)

.. (1)
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where Index of Area Coverage:***’
a(u)=) u
d .. (12 __a :
M =% bt - 4G o 1P 104CW =N (D

Here, a(u) denotes area of u, and p(u), the
perimeter of u, is just the weighted sum of the
lengths of the arcs 4 (i, j, k)** along which the
region £«i) and z(j) meet, weighted by the absolute

difference of these values. Physically, compactness
means the fraction of maximum area (that can be
encircled by the perimeter) actually occupied by
the object. In the non fuzzy case, the value of
compactness is maximum for a circle and is equal
to 1/4z In the case of the fuzzy disc, where the
membership value is only dependent on its distance
from the center, this compactness value is 2 1/47.
Of all possible fuzzy discs compactness is therefore
minimum for its crisp version.

Height and Width:**

h(u)=% max p,, .. (13)

and

W) =3, max g, .. (14)

So, height/width of a digital picture is the sum of

the maximum membership values of each
row/column.

Length and Breadth™*?’:

1(u>=m3x[z /J,,n) .. (15)
and

b(,u)zmjix(Zymn). .. (16)

The length/breadth of an image fuzzy subset gives
its longest expansion in the column/row direction.
If 42 1s crisp, 44,,=0 or 1; then length/breadth is the
maximum number of pixels in a column/row.
Comparing egs. (15) and (16) with (13) and (14)
we notice that the length/breadth takes the
summation of the entries in a column/row first and
then maximizes over different columns/rows
whereas, the height/width maximizes first the
entries in a column/row and then sums over
different columns/rows.

In the nonfuzzy case, the JOAC has value of 1
for a rectangle (placed along the axes of
measurement). For a circle this value is
m?/Q2r * 2r)=m4. IOAC of a fuzzy image repre-
sents the fraction {which 'may be improper also) of
the maximum area (that can be covered by the
length and breadth of the image) actually covered
by the image.

Again, note the following reiationships,

I(X)/ h(X)<1
and

b(X)/ mX)<1.
When equality holds for eq. (18) the object is either
vertically or horizontally oriented. Similarly, major

axis, minor axis, center of gravity and density are
also defined in reference 27.

... (18)

Degree of Adjacency.”’

The degree to which two crisp regions S and 7 of
an image are adjacent is defined as

a(S$,7)= Y. ! x !
pesrs) 1+ |u(p)—r(g)| 1+d(p)
... (19)
Here d(p) is the shortest distance between p and ¢,
q is a border pixel (BP) of T and p is a border pixel
of S. The other symbols have the same meaning as
in the previous discussion.

The degree of adjacency of two regions is
maximum (=1) only when they are physically
adjacent i.e., d(p)=0 and their membership values
are also equal i.e., (p)=r(q). If two regions are
physically adjacent then their degree of adjacency
is determined only by the difference of their
membership values. Similarly, if the membership
values of two regions are equal their degree of
adjacency is determined by their physical distance
only. The readers may note the difference between
eq. (19) and the adjacency definition™.

4 Flexibility in Membership Functions

Since the theory of fuzzy sets is a generalization of
the classical set theory, it has greater flexibility to
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capture faithfully the wvarious aspects of
incompleteness or imperfection (i.e. deficiencies)
in information of a situation. The flexibility of
fuzzy set theory is associated with the elasticity
property of the concept of its membership function.
The grade of membership is a measure of the
compatibility of an object with the concept
represented by a fuzzy set. The higher the value of
membership, the lesser will be the amount (or
extent) to which the concept represented by a set
needs to be stretched to fit an object.

Since the grade of membership is both subjective
and dependent on context, some difficulty of
adjudging the membership value still remains. In
order words, the problem is how to assess the
membership of an element to a set. This is an issue
where opinions vary, giving rise to uncertainties.
Two operators, namely “Bound Functions™ and
“Spectral Fuzzy Sets™ have been defined to
analyze the flexibility and wuncertainty in
membership function evaluation. These are
explained below along with their significance in
image analysis and pattern recognition problems.

Consider, for example, a “bright image” which
may be considered as a fuzzy set. This is
represented by an S-type function which is -a
nondecreasing function of gray value. Now, the
question is, “can any such nondecreasing function
be raken to represent the above fuzzy set?”.
Inituitively, the answer is ‘no’. Bounds for such an
S-type membership function z have been reported”
based on the properties of fuzzy correlation''. The
correlation measure between two membership
functions x; and i relates the variation in their
functional values.

The significance - of the bound functions in
selecting an S-type function x for image
segmentation problem has been reported’’. It has
been shown that for detecting a minimum in the
valley region of a histogram, the window length w
of the function u : [0, w]— [0,1] should be less
than the distance between two peaks around that
valley region. The ability to make the fuzzy set
theoretic approach flexible and robust will be
demonstrated further in Section 5.

The concept of spectral fuzzy sets is used where,
instead of a single unique membership function, a
set of functions reflecting various opinions on
membership elements is available so that each
membership grade is attached to one of these
functions. By giving due respect to all the opinions
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available for further processing, it reduces the
difficulty (ambiguity) in selecting a single function.
A spectral fuzzy subset F having n supports is
characterized by a set or a band (spectrum) of r
membership functions (reflecting » opinions) and
may be represented as

F=U;[Uup (x;)/ %], x

i=12,..r;

ey,

J

j=12,..,n ... (20)

where r, the number of membership functions, may
be called the cardinality of the opinion set.

;1} (x;) denotes the degree of belonging of x; to

the set F according to the ith membership function.
The various properties and operations related to it
have been defined by Pal and Das Gupta®™. The
incertitude or ambiguity associated with this set is
two-fold, namely ambiguity in assessing a
membership value to an element (d;) and
ambiguity in deciding whether an element can be
considered to be a member of the set or not (d,).

The (dis) similarity between the concept of
spectral fuzzy sets and those of the other tools such
as probabilistic fuzzy set, interval-valued fuzzy set,
fuzzy set of type 2 or ultra fuzzy set’’*® (which
have also considered the difficulty in settling a
definite degree of fuzziness or ambiguity) has been
explained in reference (30).

The concept has been found to be significantly
useful®® in segmentation of ill-defined regions
where the selection of a particular threshold
becomes questionable as far as its certainty is
concerned. In other words, questions may arise
like, “where is the boundary” or “what is the
certainty that a level 1, say is a boundary between
object and background’. The opinions on these
queries may vary from individual to individual
because of the differences in opinion in assigning
membership values to the various levels. In
handling this uncertainty, the algorithm gives due
respect to various opinions on membership of gray
leveis for object region, minimizes the image
ambiguity d(=d,+d;) over the resulting band of
membership functions and then makes a soft
decision by providing a set of thresholds (instead of
a single one) along with their certainty values. A
hard (crisp) decision obviously corresponds to one
with maximum d value i.e., the level at which
opinions differ most. The problems of edge
detection and skeleton extraction (where
incertitude arises from ill-defined regions and
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various opinions on membership values), and any
expert system type application (where differences
in experts’ opinions leads to an uncertainty) may
also be similarly handled within this framework.

5 Some Examples of Fuzzy Image Processing
Operations

Let us now describe some algorithms to show how
the aforesaid information measures and
geometrical properties can be incorporated in
handling uncertainties in various operations e.g.,
gray level thresholding, enhancement, contour
detection and skeletonization by avoiding hard
decisions, and providing output in both fuzzy and
nonfuzzy (as a special case) versions. It is to be
noted that these low level operations (particularly
image segmentation and object extraction) play a
major role in an image recognition system. As
mentioned in Section 2, any error made in this
process might propagate to feature extraction and
classification.

5.1 Enhancement in Property Domain

The objective of enhancement techniques. is to
process a given image so that the result is more
suitable than the original for a specific application.
The term ‘specific’ is of course, problem oriented.
The techniques used here are based on the
modification of pixels in the fuzzy property domain
of an image'***?'.

The contrast intensification operator on a fuzzy
set A generates another fuzzy set A’=INT(A) in
which the fuzziness is reduced by increasing the
values of u,(xn,) which are above 0.5 and
decreasing those which are below it. Define this
INT operator by a transformation 7T; of the
membership function 4, as

Tl (:umn ) = Tl,(-umn ) = 2/1:," b
= Tt py) =1-20~ 1, ),
05<u,, <1
m=1,2,...M,n=1,2,...N
In general, each u,, in X (eq. 1) may be modified

to 4'm. to enhance the image X in the property
domain by a transformation function 7, where

Bon =T, (Yn) =T (Hn), 0 18,,, 0.5
=T (Upn), 0.55 4, <1

r=12,...
The transformation function 7, is defined as

0<py,, <05
@21

.22
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successive applications .of T; by the recursive
relationship®
Ts’(lumn) =I‘l {T-l(#mn )}’ s=

12, ... (23)

and T,(P,,,) represents the operator INT defined in
eq. (21).

As r increases, the enhancement function (curve)
N’ Ly~ 4" mn plane tends to be stepper because of the
successive application of INT. In the limiting case,
as r >, T, produces a two-level (binary) image.
It is to be noted here that, corresponding to a
particular operation of 7", one can use any of the
multiple operations of 77, and vice versa, to attain
a desired amount of enhancement. Similarly, some
other enhancement functions can be used
independently instead of these used in eq. (21).

The -membership plane u,, for enhancing
contrast around a cross-over point may be obtained

ﬁ_omll,ZO

y,,,,,=G(xm,,)=[1+(i—xm!/Fd)F']” ... (28)
Where the position of cross-over points

bandwidth and hence the symmetry of the curve are
determined by the fuzzifiers F, and F; When
X =Xmax (Maximum level in X), u,, represents an S
type function. When x=any arbitrary level /, y,,
represents a 7 type function.

After enhancement in the fuzzy property
domain, the enhanced spatial domain x, , may be

" obtained from
X =GNy @< py, <1

... (25)
where a is the value of y,,, when X, =0.
. Note that the aforesaid method provides a basic
module of fuzzy enhancement. In practice one may
use it with other smoothing, noise cleaning or
enhancement operations for tésulting in desired
outputs. An extension of this concept to enhance
the contrast among various ill-defined regions
using multiple applications of z and (1-7)
functions has been described in references (21) and
(37) for edge detection of X-ray images. The edge
detection operators involve max and min
operations. The article at reference (38)
demonstrates, in this regard, an attempt to use a
relaxation (iterative) algorithms for fast image
enhancement utilizing various orders of S
functions; convergence has also been analyzed.
Fuzzy image enhancement technique has also
been applied recently by Krell et al® for
enhancing the quality of images taken by electronic
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postal imaging device needed by clinicians to
verify the shape and the location of ‘therapy beam’
with respect to the patients anatomy. Other
enhancement operators recently developed are
available in references (40) and (41).

5.2 Optimum Enhancement Operator Selection

When an image is processed for visual
interpretation, it is ultimately up to the viewers to
judge its quality for a specific application and how
well a particular method works. The process of
evaluation of image quality therefore becomes
subjective which makes the definition of a well
processed image an elusive standard for
comparison of algorithm performance. Again, it is
customary to have an iterative process with human
interaction in order to select an appropriate
operator for obtaining the desired processed output.
For example, consider the case of contrast
enhancement using a nonlinear functional mapping.
Not every kind of nonlinear function will produce a
desired (meaningful) enhanced version. The
questions that automatically arise are “Given an
arbitrary image which type of nonlinear functional
form will be best suited without prior knowledge
on image statistics (e.g., in remote applications like
space autonomous operations where frequent
human interaction is not possible) for highlighting
its object?” and. “Knowing the enhancement
function how can one quantify the enhancement
quality for obtaining the optimal one?”. Regarding
the first question, even if the image statistics are
given, it is possible only to estimate approximately
the function required for enhancement and the
selection of the exact functional form still needs
human interaction in an iterative process. The
second question, on the other hand, needs
individual judgement which makes the optimum
decision subjective.

The method of optimization of the fuzzy
geometrical ‘properties and entropy has been
found® to be successful, when applied on a set of
different images, in providing quantitative indices
in order to avoid such human iterative interaction
in selecting an appropriate nonlinear function and
to make the task of subjective evaluation objective.

5.3 Threshold Selection (Fuzzy Segmentation)

Given an L level image X of dimension MxN
with minimum and maximum gray values /,,;, and

Imax respectively, the algorithm for its fuzzy
segmentation into object and background may be
described as follows:

Step 1. Construct the membership plane using the
standard S function as

H = (D) = S(U; a@,b,0) - .. (26)
or,
Mo =u()=1-8(; a,b,c) ... 27

(depending on whether the object regions possess
higher or lower gray values) with cross-over point
b and band width Ab=bp-a=c-b.

Step 2. Compute the parameter /(X), where I(X)
represents either grayness ambiguity or spatial
ambiguity, as stated in Section 3, or both.

Step 3: Vary b between [,,;, and /,,, and select those
b for which /(X) has local minima or maxima
depending on /(X). (Maxima correspond to the
correlation measure only.) Among the local
minima/maxima, let the global one have cross-over
point at s.

The levzl s, therefore, denotes the cross over
point of the fuzzy image plane g, which “has
minimum grayness and/or geometrical ambiguity.
The pn, plane then can be viewed as a fuzzy
segmented version of the image X. For the purpose
of nonfuzzy segmentation, we can take s as the
threshold (or boundary) for classifying or
segmenting an image into object and background.

Faster methods of computation of the fuzzy
parameters are explained in reference (27). Note
that w=2Ab is the length of the window (such that
[0, w]—> [0,1]) which was shifted over the entire
dynamic range. As w decreases, the possibility of
detecting some undesirable thresholds (spurious
minima) increases because of the smaller value of
Ab. On the other hand, an increase in w results in a
higher value of fuzziness and thus leads towards
the possibility of losing some of the weak minima.
The criteria regarding the selection of membership
functions and the length of window (i.e., w) have
been reported in references (29) and (31) assuming
continuous functions for both histogram and
membership function. It is shown that, x should
satisfy the bound criteria derived based on the
correlation (Section 4). Another way of handling
this uncertainty using spectral fuzzy sets for
providing a soft decision is explained in reference
(30).



82

(Y I S .

-~

Fig. I Inverse 7 function (solid line) for computing object and
background entropy

Let us now describe another way of extracting an
object by minimizing higher order entropy (eq. 2)
of both object and background regions using.an
inverse 7 function as shown by the solid line in
Fig. 1. Unlike the previous algorithm, the
membership functien does not need any parameter
selection to control the output.

Suppose s is the assumed threshold so that the
gray level ranges [l.,s] and [s+1, L] denote,
respectively, the object and background of the
image X. The inverse n-type function to obtain w,,
values of X is generated by taking union of
Slx; {sHL-s)}, s, L] and 1-S[x; I, s, (s+s-1)],
where S denotes the standard S function. The
resulting function as shown by the solid line,
makes 4 lie in [0.5, 1]. Since the ambiguity
(difficulty) in deciding a level as a member of the
object or the background is maximum for the
boundary level s, it has been assigned a
membership value of 0.5. Ambiguity decreases as
the grav value moves away from s on either side.
The u,, thus obtained denotes the degree of
belonging of a pixel x,, to either object or
background. Since s is not necessarily the mid
point of the entire gray scale, the membership
function may not be a symmetric one. Therefore,
the task of object extraction is to:

Step 1. Compute the rth order fuzzy entropy of

the object H| the background Hj
considering only the spatially adjacent sequences
of pixels present within the object and background
respectively. Use the ‘min’ operator to get the
membership value of a sequence of pixels.

and

Step 2. Compute the total rth order fuzzy
entropy of the partitioned image as H, =H,+Hp.

Step 3: Minimize H with respect to s to get
the threshold for object background classification.

SANKAR K PAL

Referring back to the Section 3.1, it is seen that
H? reflects the homogeneity among the, supports in
a set, in a better way than H' does. The higher the
value of r, the stronger is the validity of this fact.
Thus, considering the problem of object-
background classification, the improper selection
ol the threshold is more strongly reflected by H
than H'.

The methods of object extraction (or
segmentation) described above are all based on
gray level thresholding. Another way of doing this
task is by pixel classification. The details on this
technique using fuzzy c-means, fuzzy isodata, fuzzy
dynamic clustering and fuzzy relaxation are
available in references (2), (10), (43-50). The
fuzzy c-means (FCM) algorithm is a well known
clustering algorithm used for pixel classification.
Here we describe it in brief.

Fuzzy segmentation results in fuzzy partitions
of X={x, x5 ... x,}, where X denotes a set of n
unlabeled column vectors in R” (i.e., each element
of X 1s a p dimensional feature vector). A fuzzy c-
partition (¢ is an integer, 1 < ¢ < n) is the matrix
U=l =120 , ¢ k=1, n which
satisfies the following constraints:

Uy €[01],D g =1, ard 0< Z,uik <n, foralli & k.
i=l k=1
Here the kth column of U represents
membership values of x, to the ¢ fuzzy subsets and
1= (X,) denotes the grade of membership of x, in
the ith fuzzy subset.

The FCM algorithm searches the
minimum of the following objective function:

local

LUN=Y3 ()" —vilh 1sms

k=1i=1
where U is a fuzzy c-partition of X, ]

|, is any
inner product norm, V={v,, v, .........v.} 1s a set of
cluster centers, v, € R’, and m € {1, o} is the
weighting exponent on each fuzzy membership.

For m>1 and x, # v, for all I, k, it has been shown
that J,(U, ¥) may be minimized only if

2

' 2 \m-1
=13, bl _v'”;’
“x" —ijA

j=1
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The FCM algorithm, when Euclidian distance
norm is considered, can only be used for
hyperspherical clusters with approximately equal
dimensions. To cope with clusters having large
variability in cluster shapes, densities, and the
number of data points in each cluster, Gustafson
and Kessel’' used the scaled Mahalanobis distance
in the FCM algorithms. By the use of a distance
measure derived from maximum likelihood
estimation methods, Gath and Geva*? obtained an
algorithm which is effective even when the
clusters are ellipsoidal in shape and unequal in
dimension. As the value of ¢ i.e., the number of
clusters is not always known, several cluster

validity criteria have been suggested in the
literature to find the optimum number of clusters.
These include partition coefficient, classification
entropy, properties coefficient, total within class
distance of clusters, total fuzzy hyper volume of
clusters, and partition density of clusters®*.

Generalizing FCM algorithm further, Dave®
proposed the fuzzy c shells (FCS) algorithm to
search for clusters that are hyper ellipsoidal shells.
One of its advanced versions is seen to be better
than Hough transformation (in terms of memory
and speed of computation) when used for ellipse
detection. It is also shown™ that the use of fuzzy
memberships improves the ability to attain global
optima compared to the use of hard membership.
For the same purpose, Krishnapuram et al.”
proposed another algorithm which is claimed to be
less time consuming than that of Dave.

For further information readers may consult
references (56) to (58). Cannon et al.*’ describe a
modified version of the FCM, which incorporate
supervised training data. The article of Cannon et
al.”’ describes an approach that reduces the
computation required for the FCM, by utilising
look up tables, by a factor of six. Another
simplified form of FCM in this line is mentioned
in reference (58). Before leaving this section, we
mention about the work in reference (59) which
defines the concept of fuzzy objects and describes
algorithms for their extraction.
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5.4 Contour Detection

Edge detection is also an image segmentation
technique where the contours/boundaries of various
regions are extracted based on the detection of
discontinuity in grayness. Here we present a
method for fuzzy edge detection using an edginess
measure based on H ' (eq. 2) which denotes an
amount of difficulty in deciding whether a pixel

can be called an edge or not”. Let N2, be a 3x3
neighbourhood of a pixel at (x,y). The edge-entropy
HE, of the pixel (x,y), giving a measure of edginess

at (x,y), may be computed as follows. For every
pixel (x,y), compute the average, maximum and

minimum values of gray levels over Niy. Let us

denote the average, maximum and minimum values
by Avg. Max, Min respectively. Now define the
following parameters.

D=max{Max-Avg, Avg-Min} .. (28)
B=Avg .. (29)
A=B-D .. (30)
C=B+D -(3D)

A 7-type membership function (Fig. 2) is then
used to compute i, for all (x,y) € NJ,, such that
H(A)=p(C)=0.5 and p(B)=1. It is to be noted that
Ly 2 0.5. Such a g, therefore, characterises a
fuzzy set “pixel intensity close to its average
value”, averaged over N;, are either equal or close
to each other (i.e., they are within the same region),
such a transformation will make all z,=1 or close
to 1. In other words, if there is no edge, pixel
values will be close to each other and the u values
will be close to one (1), thus resulting in a low
value of H'. On the other hand, if there is an edge
(dissimilarity in gray values over N; ), then the u

values will be more away from unity; thus resulting
in a high value of H'. Therefore, the entropy H

1

Fig. 2 7z function for computing edge entropy
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over N}, can be viewed as’a-measure of edginess
(HE,) at the point (x,y). The higher the value of

HE,, the stronger is the edge intensity and the
easier is its detection. Such an entropy plane will
represent the fuzzy edge detected version of the
image.

The proposed entropic measure is less sensitive
to noise because the use of a dynamic membership
function based on a local neighbourhood. The

method is also not sensitive to the direction of
edges. Other edginess measures and algorithms
based on fuzzy set theory are available
elsewhere'*?'’

5.5 Fuzzy Skeleton Extraction

Let us now explain two methods for extracting
the fuzzy skeleton (skeleton having ill-defined
boundary) of an object from a gray tone image
without getting involved into its (questionable)
hard thresholding. The first one is based on
minimization of the parameter /OAC (eq. 17) or
compactness (eq. 11) with respect to a-cuts (a-cut
of a fuzzy set 4 comprises all elements of X whose
membership value is greater than or equal to a,
0 < a <1) over a fuzzy ‘core line’ (or skeleton)
plane. The membership value of a pixel to the core
line plane depends on its property of possessing
maximum intensity, and property of occupying
vertically and horizontally middle positions from
the s-edges (pixels beyond which the membership
value in the fuzzy segmented image becomes less
than or equal to g& > 0) of the object™. If a non-
fuzzy (or crisp) single pixel width skeleton is
deserved, it can be obtained by a contour tracing
algorithm® which takes into account the direction
of contour. Note that the original image can not be
reconstructed, like the other conventional
techniques of gray skeleton extraction®**® from
the fuzzy skeleton obtained here.

The second method is based on fuzzy medial
axis transformation (FMAT)*® using the concept of
fuzzy disks. A fuzzy disk with center P is a fuzzy
set in which membership depends only on the
distance from P. For any fuzzy set f, there is a
maximal fuzzy disk gP’ <f centered at every point
P, and fis the sup of the gP’s. (Moreover, if f is
fuzzy convex, so is very gP’, but not conversely.)
Let us call a set Sy of points f-sufficient if every gP’
< g0 for some set of Q in S; evidently fis then the
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sup of the gQ”’s. In particular, in a digital image,
the set of O’s at which gf is a (non-strict) local
maximum is f-sufficient. This set is called the
fuzzy medial axis of f; and the set of gQ'’s is called
the fuzzy medial axis transformation (FMAT) of f.
These definitions reduce to the standard one, if fis
a crisp set.

For a gray tone image X (denoting the non-
normalized fuzzy “bright image” plane), the FMAT

algorithm computes, first of all, various fuzzy disks
centered at the pixels and then retains a few (as
small as possible) of them, as designated by gQ’s,
so that their union can represent the entire image X.
That is, the pixel value at any point ¢ can be
obtained from a union operation, as ¢ has
membership value equal to its own gray value (i.e.,
equal to its non-normalized membership value to
the bright image. plane) in one of those retained
disks.

Note that the above representation is redundant
i.e., some more disks can further be deleted without
affecting the reconstruction. The redundancy in
pixels (fuzzy disks) from the fuzzy medial axis
output can be reduced by considering the criterion

gP’ (t) < sup g% (1), i=1,2...instead of gP o <
g0/(H). In other words, elimiante many other gP g

for which there exists a set of g0 7’s whose sup is
greater than or equal to g

Let REMAT denote the FMAT after reducing its
redundancy. The fuzzy medial axis is seen to
provide a good skeleton of the darker (higher
intensity) pixels in an image apart from its exact
representation. FMAT of an image can be
considered as its core (prototype) version for the
purpose of image matching. It is to be mentioned
here that such a representation may not be
economical in a practical situation. The details on
this feature and the possible approximation in order
to make it practically feasible are available in
reference (64).

Note that the membership values of the disks
contain the information of image statistics. For
example, if the image is smooth the disk will not
have abrupt change in its values. On the other
hand, it will have abrupt change in case the image
has salt and pepper noise or edginess. The concept
of fuzzy MAT can therefore be used as spatial
filtering (both high pass and low pass) of an image
by manipulating the disk values to the extent
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desired and then putting them back while
reconstructing the processed image. A gray scale
thinning algorithm is described in reference (50)
and (65) based on the concept of fuzzy
connectedness between two pixels; the dark regions
can be thinned without ever being explicitly
segmented.

6 Some Applications

Here we provide a few applications of the
methodologies and tools described before.

6.1 Motion Frame Analysis and Scene
Abstraction
With rapid advancements in multimedia

technology, it is increasingly common to have time
varied data like video as computer data types.
Existing data base systems do not have the
capability of search within such information. It is a
difficult problem to automatically determine one
scene from another because there are no precise
markers that identify where they begin and end.
Moreover, divisions of scenes can be subjective,
especially if transitions are subtle. One way to
estimate scene transitions is to approximate the
change of information between each of two
successive frames by computing the distance
between their discriminatory properties.

A solution is provided in reference (66) to the
problem of scene estimation/abstraction of motion
video data in the fuzzy set theoretic framework.

Using various fuzzy geometrical and information
measures (Section 3) as image features, an
algorithm is developed to compute the change of
information in each of two successive frames to
classify scenes/frames. Frame similarity is
measured in terms of weighted distance in fuzzy
feature space. This categorization process of raw
input visual data can be used to establish structure
for correlation. The investigation not only attempts
to determine the discrimination ability of the
fuzziness measures for classifying scenes, but also
enhances the capability of nonlinear, frame-
accurate access to video data for applications such
as video editing and visual document archival
retrieval systems in multimedia environments.
Such an investigation is recently carried out in
NASA Johnson Space Center, X,

A set of digitised videos of previous space
shuttle missions obtained from NASA/JSC was
used (Fig. 3). The scenes were named payload
deployment, onboard astronaut, remote manipu-
lator arm, and mission control room. Experiments
were conducted for various combinations of
uncertainty, orientation, and shape measures. As an
illuétration; Fig. 4 shows a result when {entropy,
compactness, length/height} was considered as a
feature set for computing distance between two
successive frames. Here the abscissa represents the
total number of frame distances, in the sampled
time series, and the ordinate is the compound
distance value between two successive images.

Fig. 3 A payload deployment sequence of four scenes as input data
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Each scene consists of six frames. Therefore, there
is a change of scene at every sixth index on the
abscissa. The scene separation is denoted with
vertical grid lines. The effectiveness of the
aforesaid fuzzy geometrical parameter is also
demonstrated recently”’ for recognising over-
lapping finger prints with a multilayer perceptron.

6.2 Hand-written Character Recognition

Hand-written characters, like all pattems of
human origin, are examples of ill-defined patterns.
Hence the recognition of hand-written characters is
a very promising field for the application of pattern
recognition techniques using the fuzzy approach. It
has been claimed that the concept of vagueness
unerlying fuzzy theory is more appropriate for
describing the inherent variability of such systems
than the probabilistic concept of randomness. An
important application of handwriting recognition is
to build efficient man-machine interface for
communicating with the computer by human
beings. There are several attempts made for
handwritten character recognition in different
languages. Here we mention a pioneeing
contribution of Kickert and Koppelaar®, the
subsequent developments based on this and then a
recent attempt made for fuzzy feature description
in this context.

The 26 capital letters of the English alphabet
constituting the set

L={H lk=12,......,26}

length/heighty

are seen to be composed of the elements of the
following set of ‘ideal’ elements®®

Vi=ta/fi=1, 2, ..., 7}= 4, |\, = ()€}

Where € is a null segment whose use will be
explained shortly. Also, there is a set P of eleven
ordered recognition routines capable of recognizing
the ‘ideal’ segments. Each element of P can be
considered as a portion of a context-free grammar
having productions of the form

A —»aBorA —»a,whereac VA, Bev,,

V, being the non-terminal elements of the
grammer.

Each of the eleven recognition routines is
applied sequentially to any unknown pattern S to be
recognized as one of the members of L. Each
routine attempts. to recognize a given segment in a
given structural context. If successful, the
application of the rules in P results in a parsing of .S
as a vector of segments S = (xy, x,,....., X,), Where
x,eVn

Each letter, then, is defined by its vector of
segments. Let us assume that the vectors are
padded out with null segments € so that all letters
are defined by vectors of equal length. Each letter,
therefore, can be defined as follows:

H=(bk,, ............. ,bk), k=12
where bk=a; for some i, i=1, 2,
=j th segment of the & th letter.
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The element of fuzziness is introduced by
associafing with each segment g, € V; a fuzzy set
on the actual patten space With each g, is
associated a fuzzy membership function x,; so that,
given a segment x; of a pattern S, g,(x;) is a
measure of the degree to which the segment x;
corresponds to the ideal segment a;.

The recognition procedure is now simply
explained. The sequence of recognition rules is
executed, evaluating all possible parsings of the
input pattern. For each H, for which a parse can be
made, the result is a sequence (x; Xp, ............. X,)
of segments. The membership of S in H, is the
mtersection in the sense of fuzzy sets of the
memberships of the segments x;

LH(S)=min [bk,(X,), .oeeve.... , bk, (x,)]

Finally, the pattern is recognized as letter H,, if

HH(E)=ual uH(S)

This approach was criticised by Stallings® who
developed a Bayesian hypothesis-testing scheme
for the same problem. Given a pattern S,
hypothesis H, is that the writer intended letter H,.
Associated with each decision is a cost C; which is
the cost of choosing H, when H, is true. The
parsing of the pattern is performed as before. Only
a probability is associdted with each segment for a
given letter. Regarding unknown densities the
author® suggests the use of maximum likelihood
tests. Since both membership function and
probability density functions are maps into the
interval [0,1], the only difference is the use of
min/max operators, where, the author argues, the
‘min’ operator loses a lot of information and is
drastically affected by one low value. The author
claims that though frequentistic probability is not
appropriate in dealing with pattern variability,
subjective probability is perfectly suitable and
more intuitively obvious than “grade of
membership’. ‘

In a rejoinder”, it is argued that fuzzy set theory
is more flexible than is assumed in reference (69)
where all arguments are directed against a
particular case®. Recalling the idea of collectives
(from property sets), where the arithmetic average
replaces ‘min’, there remains little difference
between the schemes in references (68) and (69).
In a reply, Stalling insisted that the Bayesian

approach is superior since it offers a convenient
way for assignment of costs to errors and gains to
correct answers. For the recognition of hand-
written English capital letters, the readers may
also refer to the work described in reference (71).

Existing computational recognition methods use
feature extraction to assign a pattern to a prototype
class. Therefore, the recognition ability depends on
the selection procedure. To handle with the
inherent uncertainties/imprecision in handwritten
characters, Malaviya and. Peters’ have introduced
recently a fuzziness factor in the definition of
selected pattern features. The fuzzy features are
confined to their meaningfulness with the help of a
multi-stage feature aggregation.  These can be
combined in a set of linguistic rules, which form
the fuzzy rule-base for handwritten information
recognition. Note that the concept of introducing
fuzziness in the definition and extraction of
features and in their relations is not new. A
detailed discussion is available in Pal and
others®"” for extraction of primitives for X-ray
identification and character recognition in terms of
gentle, fair and sharp curves. A similar
interpretation of the shape parameters of triangle,
rectangle and quadrangle in terms of member-
ship for “approximate isosceles triangles”,
“approximate equilateral triangles” and “approxi-
mate right triangle” and so on has also been made™
for their classification in a colour image. However,
the work in”? is significant from the point that it
has described many global, positional and
geometrical features to account for the variabilities
in pattems and these are supported with
experimental results.

In order to represent the uncertainty in physical
relations among the primitives, the production
rules of a formal grammar are fuzzified to account
for the fuzziness in relation among the primitives,
thereby increasing the generative power of a
grammar. Such a grammar is called fuzzy
grammar’> .

It has been observed™ that the incorporation of
the element of fuzziness in defining ‘sharp’, ‘fair’
arfd ‘gentle’ curves in the grammars enables one to
work with a much smaller number of primitives.
By introducing fuzziness in the physical relations
among the primitives, it was also possible to use
the same set of production rules and non-terminals



at each stage. This is expected to reduce, to some
extent, the time required for parsing in the sense
that parsing needs to be done only once at each
stage, unlike the case of the non-fuzzy approach,
where each string has to be parsed more than once,
in general, at each stage. However, this merit has
to be balanced against the fact that the fuzzy
grammars are not as simple as the corresponding

nonfuzzy grammars.

6.3 Detecting Man-Made Objects from Remote
Sensing Images

In a remotely sensed image, the regions
(objects) are usually ill-defined because of both
grayness and spatial ambiguities. Moreover, the
gray value assigned to a particular pixel of a
remotely sensed image is the average reflectance
of different types of ground covers present in the
corresponding pixel area [36.25 m-36.25 m for the
Indian Remote Sensing (IRS) imagery]. Therefore,
a pixel may represent more than one class with a
varying degree of belonging.

A multivalued recognition system’™” formu-
lated based on the concept of fuzzy sets has been
used recently for detecting curved structure from
IRS images®. The system is capable of handling
various imprecise inputs and in providing multiple
class choices corresponding to any input.
Depending on the geometric complexity®® and the
relative positions of the pattern classes in the
feature . space, the entire feature space is
decomposed into some overlapping regions. The
sysiem uses Zadeh’s compositional rule of
inference® in order to recognize the samples. The
recognition system is initially applied on an IRS
image to classify (based on the spectral knowledge
of the image) its pixels into six classes
corresponding to six land cover types namely,
pond water, turbid water, concrete structure,
habitation, vegetation and open space. The green
and infrared band information, being sensitive than
other band images to discriminate various land
cover types, are used for the classification.

The clustered images are then processed for
detecting the narrow concrete structure curves.
These curves include basically the roads and
railway tracks. The width of such attributes has an
upper bound which was considered there to be 3
pixels for practical reasons. So all the pixels lying
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on the-concrete structure curves with width not
more than 3 pixels were initially considered as the
candidate set for the narrow curves. Because of the
low pixel resolutions (36.25 m-36.25 m for IRS
imagery) of the remotely sensed images, all
existing portions of such real curve segments may
not be reflected as concrete structures and as a
result, the candidate pixel set may constitute some
broken curve segments. In order to identify the
curves in a better extent, a traversal through the
candidate pixels was used. Before traversing
process, one also needs to thin the candidate curve
patterns so that a unique traversal can be made
through the existing curve segments with candidate
pixels. Thus, the total procedure to find the narrow
concrete structure curves consists of three parts
(1) selecting the candidate pixels for such curves,
(i) thinning the candidate curve patterns and
(i1i) traversing the thinned patterns to make some
obvious connections between different isolated
curve segments. The multiple choices provided by
the classifier in making a decision are utilized to a
great extent in the traversal algorithm. Some of the
movements are governed by only the second and
combined choices.

After the traversal, the noisy curve segments
(i.e., with insignificant lengths) are discarded from
the curve patterns. The residual curve segments
represent the skeieton version of the curve
patterns. To complete the curve pattern, the
concrete structure pixels lying in the 8
neighbouring positions corresponding to the pixels
on the above obtained narrow curve patterns are
now put back. The resultant image represents the
narrow concrete structure curves corresponding to
an image frame®.

The results are found to agree well with the
ground truths. The classification accuracy of the
recognition system™* is not only found to be
good, but also its ability of providing multipie
choices in making decisions is found to be very
effective in detecting the road like structures from
IRS images.

7 Discussion

The problem image processing and recognition
under fuzziness and uncertainty has been
considered. The role of fuzzy logic in representing
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and managing the uncertainties in these tasks was
explained. Various fuzzy set theoretic tools for
mgasuring information on grayness ambiguity and
spatial ambiguity in an image were listed along
with their characteristics. Some examples of image
processing operations (e.g., segmentation, skeleton
extraction and edge detection), whose outputs are
responsible for the overall performance of a
recognition (vision) system, were considered in
order to demonstrate the effectiveness of these
tools in providing both soft and hard decisions.
The significance of retaining the gray information
in the form of class membership for soft decision
is evident. Uncertainty in determining a
membership function in this regard and the tools
for its management were also stated. Finally a few
real life applications of these methodologies are
described.

8 Conclusion

Gray information is expensive and informative.
Once 1t is thrown away, there is no way to get it
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