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1. Introduction 

The recent advances in DNA array technologies have 

resulted in a signifi cant increase in the amount of genomic 

data. The most powerful and commonly used technique is 

that involving microarray, which has enabled the monitoring 

of the expression levels of more than thousands of genes 

simultaneously. A key step in the analysis of gene expression 

data is the identifi cation of groups/clusters of genes that 

manifest similar expression patterns. This translates to the 

algorithmic problem of clustering and ordering of gene 

expression data. 

The present article deals with the tasks of ordering genes 

within clusters obtained from self-organizing map (SOM) 

(Tamayo et al 1999). Although there is a rich literature on 

gene ordering in hierarchical clustering framework (Eisen 

et al 1998; Biedl et al 2001; Bar-Joseph et al 2001), there is 

no work addressing and evaluating the importance of gene 

ordering for gene expression analysis in partitive clustering 

framework, to the best knowledge of the author. Partitive 

clustering methods determine unique clusters but do not 

order genes within cluster and the relationships among the 

genes in a particular cluster are generally lost. To obtain 

this relationship among genes in clusters, we propose a 
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novel hybrid method where, an existing pure gene ordering 

algorithm called “FRAG_GALK” (Ray et al 2007), is used 

to order genes in each clustering solution of SOM (Tamayo 

et al 1999). For the purpose of comparison, instead of 

FRAG_GALK, an existing traveling salesman problem 

(TSP) solver Concorde (Applegate et al 2003) using linear 

programming, and optimal leaf ordering in hierarchical 

clustering solution (applied over the whole data set not 

partitive clustering solution) by Bar-Joseph et al (2001), 

are also used. Utility of the new hybrid algorithm is shown 

in improving the quality of the clusters provided by any 

partitive clustering algorithm by, 

• identifi cation of subclusters within big clusters, 

•  grouping functionally correlated genes within 

clusters, 

•  the maximization of biological gene ordering using 

MIPS categorization, and 

•  using less computation time than those obtained 

by optimal leaf ordering in hierarchical clustering 

solution. 

2. Existing approaches 

2.1 Distance measure 

The most popular and probably most simple measures for 

fi nding global similarity between genes are the Pearson 

correlation, a statistical measure of linear dependence 

between random variables. 

Let X=x
1
, x

2
, … , x

k
 and Y=y

1
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, … , y

k
 be the expression 

vectors of the two genes in terms of log-transformed 

microarray gene expression data obtained over a series 

of k experiments. Using Pearson correlation the distance 

between gene X and Y can be formulated as 

C
x,y

 = 1 – P
x,y 

, (1)

where P
x,y

 represents the centered Pearson correlation and is 

defi ned as 

where X and σ
x
 are the mean and standard deviation of the 

gene X, respectively. 

2.2 Gene ordering methods 

Hierarchical clustering does not determine unique clusters. 

Thus the user has to determine which of the subtrees are 

clusters and which subtrees are only a part of a bigger 

cluster. So in the framework of hierarchical clustering a 

gene ordering algorithm helps the user to identify clusters 

by means of visual display and interpret the data (Bar-Joseph 

et al 2001), whereas, in partitive clustering clusters are 

identifi ed by the algorithm automatically and the solutions 

are robust and not sensible to noise (Tamayo et al 1999) 

like hierarchical clustering. For partitive clustering based 

approaches as well as for hierarchical clustering approaches 

microarray gene ordering (MGO) within clusters using 

gene expression information is necessary for the following 

reasons: 

 (i)  Gene ordering helps to identify subclusters in big 

clusters by means of visual inspection of the ordered 

gene expression data (Bar-Joseph et al 2001). 

 (ii)  Genes that are adjacent in a linear ordering are 

often functionally co-regulated and involved in 

the same cellular process (Bar-Joseph et al 2001). 

Biological analysis is often done in the context of 

this linear ordering. 

(iii)  The relationships among the genes in a particular 

cluster generated by partitive clustering algorithms 

are generally lost. This relationship (closer or 

distant) among genes within clusters can be 

obtained using gene ordering approaches. 

(iv)  It provides smooth display of clustered genes, 

where the functionally related genes are nearer in 

the ordering. 

Ideally, one would like to obtain a linear order of all genes 

that puts similar genes close to each other; such that for 

any two consecutive genes the distance between them is 

small. So, gene ordering problem is similar to TSP (Pal et al 

2006) where, cities are ordered instead of genes (Biedl et al 

2001; Ray et al 2007; Tsai et al 2004). Let {1,2, … , n} be

the labels of the n cities and C = [c
i,j
] be an n × n distance 

matrix where c
i,j
 denotes the distance of traveling from city 

i to city j. The TSP is the problem of fi nding the shortest 

closed route among n cities, having as input the complete 

distance matrix among all cities. The total cost A of a TSP 

tour is given by 

The objective is to fi nd a permutation of the n cities, which 

has minimum distance. Similarly, an optimal gene order 

can be obtained by minimizing the summation of gene 

expression distances (or maximizing summation of gene 

expression similarities) between pairs of adjacent genes in 

a linear ordering 1,2,..., n. This can be formulated as (Biedl 

et al 2001)

where n is the number of genes and c
i,j+1

 is the distance/

similarity between two genes i and i + 1 obtained from 
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distance/similarity matrix. The formula (eq. 4) for optimal 

gene ordering is the same as used in TSP, except the 

distance from the last gene to fi rst gene, which is omitted, 

as the tour is not a circular one. In the related investigations, 

FRAG_GALK (Ray et al 2007) and HeSGA (heterogeneous 

selection genetic algorithm (Tsai et al 2004), was applied to 

order genes of the whole dataset, and consequently clustering 

information was missing from the ordering solution. 

A method of ordering genes for a partitive clustering 

solution is currently missing. Here, we defi ne the summation 

of gene expression distances for a partitive clustering 

solution as 

where k is the total number of clusters, n
j
 is the number of 

genes in cluster j, and C j

i,j+1
 is the distance/similarity between 

two genes i and i + 1 in cluster j. 

In this investigation we have used two different gene 

ordering algorithms, FRAG_GALK (Ray et al 2007) and 

Concorde’s TSP solver (Applegate et al 2003), to order genes 

of individual clusters found by SOM, as they can obtain the 

optimal order of cities to many of the TSPLIB instances; the 

largest having 13,509 and 15,112 cities, respectively. While 

FRAG_GALK is a genetic algorithm (GA) (Pal et al 2006) 

based TSP solver, Concorde is a linear programming based 

TSP solver and much slower than FRAG_GALK. Here we 

briefl y discuss the various steps used in FRAG_GALK, 

which are also available in Ray et al (2007). The steps are: 

Step 1: Create the string representation (chromosome of 

GA) for a gene order (an array of n integers), which is a 

permutation of 1, 2, ······ , n with nearest-neighbor (NF) 

heuristic. Repeat this step to form the initial population of 

GA. 

Step 2: The NF heuristic is applied on each chromosome 

probabilistically. 

Step 3: Each chromosome is upgraded to local optimal 

solution using chained LK heuristic (Applegate et al 2003) 

probabilistically. 

Step 4: Fitness of the entire population is evaluated and 

elitism is used, so that the fi ttest string among the child 

population and the parent population is passed into the child 

population. 

Step 5: Using the evaluated fi tness of entire population, 

linear normalized selection procedure is used. 

Step 6: Chromosomes are now distributed randomly and 

modifi ed order crossover operator is applied between two 

consecutive chromosomes probabilistically. 

Step 7: Simple inversion mutation (SIM) is performed on 

each string probabilistically. 

Step 8: Generation count of GA is incremented and if it is 

less than the maximum number of generations (predefi ned) 

then from step 2 to step 6 are repeated. 

3. Materials and methods 

3.1 Description of data sets 

In the present investigation, data sets like cell cycle (Sherlock 

et al 2001), yeast complex (Eisen et al 1998; Bar-Joseph et 

al 2001), all yeast (Eisen et al 1998; Website: Eisenlab: 

http://rana.lbl.gov./EisenData.htm) and fi broblast (Iyer

et al 1999) are chosen. Table 1 shows the name of the data 

sets, number of genes in each dataset, number of biological 

gene categories, name of experiment types and number of 

time points under each type, and fi nally the total number of 

time points for a particular dataset. The fi rst three data sets 

of Saccharomyces cerevisiae consist of 652, 979 and 6221 

genes, and 184, 79 and 80 time points, respectively. The genes 

in the three data sets are classifi ed according to the top level 

classifi cation (hierarchical structure) of Munich Information 

for Protein Sequences (MIPS) (http://www.mips.com) into 

16, 16, and 18 categories, respectively. For the cell cycle 

data, fi rst we have downloaded 652 cell cycle regulated 

gene names from the MIPS website. These gene names are 

then uploaded in Stanford Microarray Database (Sherlock 

et al 2001) and corresponding gene expression values are 

downloaded with default parameters by selecting all the cell 

cycle, sporulation, heat shock and diauxic shift experiments. 

The fi broblast dataset consists of 517 genes and 18 time 

points related to the response of human fi broblasts to serum. 

According to gene omnibus (GO) annotation, 517 fi broblast 

genes are distributed in 1347 categories. After downloading, 

the order of genes (along with their expression vectors) is 

randomized in each dataset to remove initial gene order 

bias. 
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Table 1. Summary for different microarray data sets

Dataset No. of genes Category                Experiments performed Total 

Cell cycle 652 MIPS 16 Cell cycle 93 Sporulation 9 Shock 56 Diauxic shift 26 184 

Yeast complex 979 MIPS 16 Cell cycle 

18+14+15 

Sporulation 7+4 Shock 6+4+4 Diauxic shift 7 79 

All yeast 6221 MIPS 18 Cell cycle 60 Sporulation 13 Diauxic shift 7 80 

Fibroblast 517 GO 1347 Serum 

response 12 

Cycloheximide 6 18 
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3.2 New hybrid algorithm for ordering genes in 

partitive clustering 

It is mentioned in § 2.2 that, FRAG_GALK is applied 

separately on each of the gene clusters found by SOM to 

identify subclusters within large clusters, and to group the 

functionally correlated genes within clusters. The number of 

nodes/clusters of SOM are chosen according to the number 

of MIPS categories (top level of hierarchical tree) for yeast 

data, and available information in Sharan et al (2003) for 

fi broblast data. 

4. Biological interpretation 

In case of cell cycle, yeast complex, and all yeast data 

the MIPS functional categorization is available for most 

of the genes. The categorization is hierarchical in nature 

and allows a gene to belong to more than one category. A 

biological score, that is different from the similarity/distance 

measures, is used to evaluate the fi nal gene ordering. Each 

gene that has undergone MIPS categorization can belong 

to one or more category, while there are many unclassifi ed 

genes also (no category). A vector V(g) = (ν
1
, ν

2
, … , ν

j
) is 

used to represent the category status of each gene g, where j 

is the number of categories. The value of ν
j
 is 1 if gene g is in 

the jth category; otherwise is zero. Based on the information 

about categorization, the score of a gene order for multiple 

class genes is defi ned as (Tsai et al 2004) 

where N is the number of genes, g
i
 and g

i+1
 are the adjacent 

genes and G(g
i
, g

i+1
) is defi ned as 

where V(g
i
)

k
 represents the kth entry of vector V(g

i
). 

For example consider the genes g
1
, g

2
, … , g

5
, which 

are classifi ed into 15 categories and represented by the 

following vectors: 

V(g
1
) = (1,0,1,1,0,0,0,0,0,0,0,0,0,0,0)

V(g
2
) = (1,1,1,1,0,0,0,0,0,0,0,0,0,0,0)

V(g
3
) = (0,0,1,0,0,0,0,0,1,0,0,0,0,0,0)

V(g
4
) = (0,0,0,1,1,0,0,0,0,1,0,0,0,0,0) and

V(g
5
) = (0,0,0,0,1,0,0,0,0,1,0,0,0,0,0).

Considering the gene order g
1
,g

2
,g

3
,g

4
,g

5
, 

G(g,g
2
) = 3, G(g

2
,g

5
) = 1, G(g

3
,g

4
) = 0, G(g

4
,g

5
) = 2, and

S(n)  = G(g
1
,g

2
) + G(g

2
,g

3
)+ G(g

3
,g

4
)+ G(g

4
,g

5
) 

= 3 + 1 + 0 + 2 = 6 

Using scoring function S(n), a gene ordering would have 

a higher score when more genes within the same group are 

aligned next to each other. So higher values of S(n) are better 

and can be used to evaluate the goodness of a particular gene 

order. 

5. Experimental results 

Experiments of gene ordering are conducted in Matlab 7 on 

Sun Fire V 890 (1.2 GHz and 8 GB RAM). The codes for Bar-

Joseph et al’s (2001) leaf ordering in hierarchical clustering 

solution are downloaded from (Venet 2003). Performance of 

the proposed FRAG_GALK for gene ordering is compared 

mainly with Concorde’s linear programming algorithm and 

Bar-Joseph et al’s method. SOM is available in Expander 

(Sharan et al 2003) and used with 16, 16, and 18 clusters 

for clustering cell cycle, yeast complex, and all yeast data 

sets, respectively, as genes in these datasets are classifi ed 

according to MIPS into 16, 16, and 18 functional categories. 

For fi broblast data SOM is used with 6 clusters as 6 gene 

clusters are identifi ed in Sharan et al (2003). Finally FRAG_

GALK and Concorde are applied separately on the gene 

clusters obtained by SOM, and Bar-Joseph et al’s method is 

applied on the average linkage based hierarchical clustering 

solution for each dataset.

5.1 Relevance of gene ordering in partitive clustering 

To show the utility of the hybrid method in identifying 

different subclusters within big clusters and grouping the 

functionally correlated genes within clusters, here for 

illustration, the visual displays are presented for fi broblast 

(Figure 1a, b) and yeast complex (Figure 1c, d) data. Using 

SOM fi broblast genes are fi rst clustered in 6 clusters (stated 

previously). Visual display of these 6 clusters is shown in 

fi gure 1a. Observing this visual pattern no subcluster can be 

identifi ed in each cluster. After applying FRAG_GALK on 

each cluster, closely related genes with similar expressions 

are aligned next to each other as shown in Figure 1b. Gene 

ordering here suggests that 2 or more subclusters exists at 

least in clusters 1, 4 and 6, and it will be useful to increase 

the number of nodes of SOM to at least 9 for fi broblast data. 

Note that, Iyer et al (1999) identifi ed 10 clusters of genes for 

this data using average linkage clustering.

Yeast Complex data is fi rst clustered in 16 groups using 

SOM. Visual display of fi rst 6 clusters/groups is shown 

in fi gure 1c. When the genes are ordered in each cluster 

with FRAG_GALK, 4, 4, 5, and 2 distinct subclusters 

are identifi ed using visual display in clusters 2, 3, 4, and 

5 respectively. Genes names along with their functional 

categories (indexes) for each subcluster within cluster 4 are 

shown in table 2 for the purpose of illustration. Names of 

S n G g g

i

N
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the functional categories corresponding to their indexes are 

shown in table 3. These subclusters of highly coregulated 

genes cannot be identifi ed if SOM is used alone. For example, 

all the 9 genes in the 3rd subcluster of cluster 4 (YBR010W, 

YNL031C, YBL003C, YDR225W, YDR224C, YNL030W, 

YBR009C, YBL002W and YPL256C) are involved in cell 

cycle and DNA processing, transcription, and protein with 

binding function or cofactor requirement. While using SOM 

these 9 genes are distributed in the cluster 4, after ordering 

genes in cluster 4 of SOM with FRAG_GALK, they (the 

9 genes) are tightly grouped and identifi ed easily using 

visual display. With all these ordered and clustered genes 

one can easily zoom in a useful small subset of genes in a 

cluster which cannot be done alone with partitive clustering 

methods. In a similar way, subclusters within big clusters are 

identifi ed by Concorde for all the data sets. 

5.2 Comparative Performance of Algorithms 

The ultimate goal of an ordering algorithm is to order the 

genes in a way that is biologically meaningful. In this 

regard, table 4 compares the performance of our proposed 

two hybrid approaches using FRAG_GALK and Concorde 

with Bar-Joseph’s (Bar-Joseph et al 2001) leaf ordering 

in hierarchical clustering solution in terms of the F
1
 value

Figure 1. Comparing SOM with ‘SOM+FRAG_GALK’ for Fibroblast data (a and b respectively) and Yeast Complex data (c and 

d respectively). The expression profi les are represented as lines of coloured boxes using Expander (Sharan et al 2003), each of which 

corresponds to a single experiment.

(a)                                        (b)                                        (c)                                     (d)

Table 2. Gene subclusters found by SOM+FRAG_GALK and their functional category indexes in cluster 4 for yeast complex data

Cluster Subcluster Genes Functional index 

4 1 YLR093C, YNL121C, YLR170C, YML112W, YBR160W, YBR171W, YLR378C, 

YML019W, YPL234C, YOR039W 

6 

2 YKR068C, YLL050C, YGL200C, YML012W, YPL218W, YKL080W, YDR086C, 

YNL153C, YKL122C, YLR292C, YGL112C, YLR268W YLR447C 

6 and 9 

3 YBR010W, YNL031C, YBL003C, YDR225W, YDR224C, YNL030W, YBR009C, 

YBL002W, YPL256C

3, 4, and 7 

4 YJL025W, YPR101W, YMR061W, YGR195W, YOR244W, YLR105C, YDL043C, 

YPR056W, YPR057W 

4 

5 YGL100W, YNL261W, YKL144C, YNL151C, YJL008C, YER148W 7 
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(eq. 5), S value (eq. 6), and computation time. The 

performance of an algorithm is better if F
1 
value is smaller 

and S value is larger. For Fibroblast data, no biological score 

is provided as genes in the same biological group for this data 

are rare. From the biological scores (table 4), it is evident 

that FRAG_GALK provides biologically comparable gene 

order with respect to Concorde and sometimes superior 

gene order than ‘leaf ordering in hierarchical clustering 

solution’ by Bar-Joseph et al (2001), for all datasets in least 

computational time. For example, FRAG_GALK took 125 

seconds to order all yeast data (6221 genes) as compared to 

Concorde and Bar-Joseph et al’s method which took 2272 

and 1989 seconds respectively.

6. Conclusion 

A hybrid method of gene ordering in partitive clustering and 

its utility in fi nding useful subgroups of genes within cluster, 

grouping functionally correlated genes within clusters, 

maximization of biological gene ordering using MIPS 

categorization, and minimization of computation time, are 

demonstrated. The hybrid approach not only determines 

unique clusters, but also preserves the biologically 

meaningful relationships among the genes within clusters. 

Moreover, the hybrid method using SOM with FRAG_

GALK not only requires less computation time (125 s for 

18 clusters of all yeast data) but also less amount of RAM 

(0.1 GB RAM for clusters with 1000 genes) than original 

Bar-Joseph’s method (1989 s and 2 GB RAM for all yeast 

data). With the hybrid approaches one can easily zoom in a 

useful small subset of genes in a cluster, which cannot be 

done alone with partitive clustering methods.

In FRAG_GALK, parallel searching (with large 

population in genetic algorithm) for optimal gene order in 

gene clusters (closely related genes) is performed. While this 

results in reduced searching time for FRAG_GALK than 

Concorde and Bar-Joseph’s method, in terms of biological 

score FRAG_GALK is comparable with Concorde and 

sometimes superior to Bar-Joseph’s method. It is evident 

from the experimental results that, the combination of 

partitive clustering and FRAG_GALK is a promising tool 

for microarray gene expression analysis. 
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