
Gene ordering in partitive clustering using microarray expressions 1019

J. Biosci. 32(5), August 2007

1. Introduction

The recent advances in DNA array technologies have

resulted in a signifi cant increase in the amount of genomic

data. The most powerful and commonly used technique is

that involving microarray, which has enabled the monitoring

of the expression levels of more than thousands of genes

simultaneously. A key step in the analysis of gene expression

data is the identifi cation of groups/clusters of genes that

manifest similar expression patterns. This translates to the

algorithmic problem of clustering and ordering of gene

expression data.

The present article deals with the tasks of ordering genes

within clusters obtained from self-organizing map (SOM)

(Tamayo et al 1999). Although there is a rich literature on

gene ordering in hierarchical clustering framework (Eisen

et al 1998; Biedl et al 2001; Bar-Joseph et al 2001), there is

no work addressing and evaluating the importance of gene

ordering for gene expression analysis in partitive clustering

framework, to the best knowledge of the author. Partitive

clustering methods determine unique clusters but do not

order genes within cluster and the relationships among the

genes in a particular cluster are generally lost. To obtain

this relationship among genes in clusters, we propose a

Gene ordering in partitive clustering using microarray expressions

SHUBHRA SANKAR RAY
1,*, SANGHAMITRA BANDYOPADHYAY

2 and SANKAR K PAL
1

1Center for Soft Computing Research: A National Facility, 2Machine Intelligence Unit, Indian Statistical Institute,

Kolkata 700 108, India

*Corresponding author (Fax, 91-33-2578 8699; Email, shubhra_r@isical.ac.in)

A central step in the analysis of gene expression data is the identifi cation of groups of genes that exhibit similar

expression patterns. Clustering and ordering the genes using gene expression data into homogeneous groups was

shown to be useful in functional annotation, tissue classifi cation, regulatory motif identifi cation, and other applications.

Although there is a rich literature on gene ordering in hierarchical clustering framework for gene expression analysis,

there is no work addressing and evaluating the importance of gene ordering in partitive clustering framework, to the

best knowledge of the authors. Outside the framework of hierarchical clustering, different gene ordering algorithms are

applied on the whole data set, and the domain of partitive clustering is still unexplored with gene ordering approaches.

A new hybrid method is proposed for ordering genes in each of the clusters obtained from partitive clustering solution,

using microarray gene expressions. Two existing algorithms for optimally ordering cities in travelling salesman

problem (TSP), namely, FRAG_GALK and Concorde, are hybridized individually with self organizing MAP to show

the importance of gene ordering in partitive clustering framework. We validated our hybrid approach using yeast and

fi broblast data and showed that our approach improves the result quality of partitive clustering solution, by identifying

subclusters within big clusters, grouping functionally correlated genes within clusters, minimization of summation of

gene expression distances, and the maximization of biological gene ordering using MIPS categorization. Moreover,

the new hybrid approach, fi nds comparable or sometimes superior biological gene order in less computation time than

those obtained by optimal leaf ordering in hierarchical clustering solution.

Ray S S, Bandyopadhyay S and Pal S K 2007 Gene ordering in partitive clustering using microarray expressions; J. Biosci. 32 1019–1025]

http://www.ias.ac.in/jbiosci J. Biosci. 32(5), August 2007, 1019–1025, © Indian Academy of Sciences 1019

Keywords. Computational biology; evolutionary algorithms; genomics; linear programming; proteomics; soft computing

Abbreviations used: GA, genetic algorithm; MIPS, Munich Information for Protein Sequences; NF, nearest-neighbor; SOM, self-organizing

map; TSP, traveling salesman problem

Shubhra Sankar Ray, Sanghamitra Bandyopadhyay and Sankar K Pal1020

J. Biosci. 32(5), August 2007

novel hybrid method where, an existing pure gene ordering

algorithm called “FRAG_GALK” (Ray et al 2007), is used

to order genes in each clustering solution of SOM (Tamayo

et al 1999). For the purpose of comparison, instead of

FRAG_GALK, an existing traveling salesman problem

(TSP) solver Concorde (Applegate et al 2003) using linear

programming, and optimal leaf ordering in hierarchical

clustering solution (applied over the whole data set not

partitive clustering solution) by Bar-Joseph et al (2001),

are also used. Utility of the new hybrid algorithm is shown

in improving the quality of the clusters provided by any

partitive clustering algorithm by,

• identifi cation of subclusters within big clusters,

• grouping functionally correlated genes within

clusters,

• the maximization of biological gene ordering using

MIPS categorization, and

• using less computation time than those obtained

by optimal leaf ordering in hierarchical clustering

solution.

2. Existing approaches

2.1 Distance measure

The most popular and probably most simple measures for

fi nding global similarity between genes are the Pearson

correlation, a statistical measure of linear dependence

between random variables.

Let X=x
1
, x

2
, … , x

k
 and Y=y

1
, y

2
, … , y

k
 be the expression

vectors of the two genes in terms of log-transformed

microarray gene expression data obtained over a series

of k experiments. Using Pearson correlation the distance

between gene X and Y can be formulated as

C
x,y

 = 1 – P
x,y

, (1)

where P
x,y

 represents the centered Pearson correlation and is

defi ned as

where X and σ
x
 are the mean and standard deviation of the

gene X, respectively.

2.2 Gene ordering methods

Hierarchical clustering does not determine unique clusters.

Thus the user has to determine which of the subtrees are

clusters and which subtrees are only a part of a bigger

cluster. So in the framework of hierarchical clustering a

gene ordering algorithm helps the user to identify clusters

by means of visual display and interpret the data (Bar-Joseph

et al 2001), whereas, in partitive clustering clusters are

identifi ed by the algorithm automatically and the solutions

are robust and not sensible to noise (Tamayo et al 1999)

like hierarchical clustering. For partitive clustering based

approaches as well as for hierarchical clustering approaches

microarray gene ordering (MGO) within clusters using

gene expression information is necessary for the following

reasons:

 (i) Gene ordering helps to identify subclusters in big

clusters by means of visual inspection of the ordered

gene expression data (Bar-Joseph et al 2001).

 (ii) Genes that are adjacent in a linear ordering are

often functionally co-regulated and involved in

the same cellular process (Bar-Joseph et al 2001).

Biological analysis is often done in the context of

this linear ordering.

(iii) The relationships among the genes in a particular

cluster generated by partitive clustering algorithms

are generally lost. This relationship (closer or

distant) among genes within clusters can be

obtained using gene ordering approaches.

(iv) It provides smooth display of clustered genes,

where the functionally related genes are nearer in

the ordering.

Ideally, one would like to obtain a linear order of all genes

that puts similar genes close to each other; such that for

any two consecutive genes the distance between them is

small. So, gene ordering problem is similar to TSP (Pal et al

2006) where, cities are ordered instead of genes (Biedl et al

2001; Ray et al 2007; Tsai et al 2004). Let {1,2, … , n} be

the labels of the n cities and C = [c
i,j
] be an n × n distance

matrix where c
i,j
 denotes the distance of traveling from city

i to city j. The TSP is the problem of fi nding the shortest

closed route among n cities, having as input the complete

distance matrix among all cities. The total cost A of a TSP

tour is given by

The objective is to fi nd a permutation of the n cities, which

has minimum distance. Similarly, an optimal gene order

can be obtained by minimizing the summation of gene

expression distances (or maximizing summation of gene

expression similarities) between pairs of adjacent genes in

a linear ordering 1,2,..., n. This can be formulated as (Biedl

et al 2001)

where n is the number of genes and c
i,j+1

 is the distance/

similarity between two genes i and i + 1 obtained from

P
k

x X y Y

x y

x

ii

yi

k

,
,=

−⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
−⎛

⎝
⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟=
∑1

1 σ σ
(2)

A n C C

i

n

i i n
() .= +

=

−

, + ,∑
1

1

1 1 (3)

F n C

i

n

i i
() = ,

=

−

, +∑
1

1

1 (4)

Gene ordering in partitive clustering using microarray expressions 1021

J. Biosci. 32(5), August 2007

distance/similarity matrix. The formula (eq. 4) for optimal

gene ordering is the same as used in TSP, except the

distance from the last gene to fi rst gene, which is omitted,

as the tour is not a circular one. In the related investigations,

FRAG_GALK (Ray et al 2007) and HeSGA (heterogeneous

selection genetic algorithm (Tsai et al 2004), was applied to

order genes of the whole dataset, and consequently clustering

information was missing from the ordering solution.

A method of ordering genes for a partitive clustering

solution is currently missing. Here, we defi ne the summation

of gene expression distances for a partitive clustering

solution as

where k is the total number of clusters, n
j
 is the number of

genes in cluster j, and C j

i,j+1
 is the distance/similarity between

two genes i and i + 1 in cluster j.

In this investigation we have used two different gene

ordering algorithms, FRAG_GALK (Ray et al 2007) and

Concorde’s TSP solver (Applegate et al 2003), to order genes

of individual clusters found by SOM, as they can obtain the

optimal order of cities to many of the TSPLIB instances; the

largest having 13,509 and 15,112 cities, respectively. While

FRAG_GALK is a genetic algorithm (GA) (Pal et al 2006)

based TSP solver, Concorde is a linear programming based

TSP solver and much slower than FRAG_GALK. Here we

briefl y discuss the various steps used in FRAG_GALK,

which are also available in Ray et al (2007). The steps are:

Step 1: Create the string representation (chromosome of

GA) for a gene order (an array of n integers), which is a

permutation of 1, 2, ······ , n with nearest-neighbor (NF)

heuristic. Repeat this step to form the initial population of

GA.

Step 2: The NF heuristic is applied on each chromosome

probabilistically.

Step 3: Each chromosome is upgraded to local optimal

solution using chained LK heuristic (Applegate et al 2003)

probabilistically.

Step 4: Fitness of the entire population is evaluated and

elitism is used, so that the fi ttest string among the child

population and the parent population is passed into the child

population.

Step 5: Using the evaluated fi tness of entire population,

linear normalized selection procedure is used.

Step 6: Chromosomes are now distributed randomly and

modifi ed order crossover operator is applied between two

consecutive chromosomes probabilistically.

Step 7: Simple inversion mutation (SIM) is performed on

each string probabilistically.

Step 8: Generation count of GA is incremented and if it is

less than the maximum number of generations (predefi ned)

then from step 2 to step 6 are repeated.

3. Materials and methods

3.1 Description of data sets

In the present investigation, data sets like cell cycle (Sherlock

et al 2001), yeast complex (Eisen et al 1998; Bar-Joseph et

al 2001), all yeast (Eisen et al 1998; Website: Eisenlab:

http://rana.lbl.gov./EisenData.htm) and fi broblast (Iyer

et al 1999) are chosen. Table 1 shows the name of the data

sets, number of genes in each dataset, number of biological

gene categories, name of experiment types and number of

time points under each type, and fi nally the total number of

time points for a particular dataset. The fi rst three data sets

of Saccharomyces cerevisiae consist of 652, 979 and 6221

genes, and 184, 79 and 80 time points, respectively. The genes

in the three data sets are classifi ed according to the top level

classifi cation (hierarchical structure) of Munich Information

for Protein Sequences (MIPS) (http://www.mips.com) into

16, 16, and 18 categories, respectively. For the cell cycle

data, fi rst we have downloaded 652 cell cycle regulated

gene names from the MIPS website. These gene names are

then uploaded in Stanford Microarray Database (Sherlock

et al 2001) and corresponding gene expression values are

downloaded with default parameters by selecting all the cell

cycle, sporulation, heat shock and diauxic shift experiments.

The fi broblast dataset consists of 517 genes and 18 time

points related to the response of human fi broblasts to serum.

According to gene omnibus (GO) annotation, 517 fi broblast

genes are distributed in 1347 categories. After downloading,

the order of genes (along with their expression vectors) is

randomized in each dataset to remove initial gene order

bias.

F n C

j

k

i

n

i i

j

j

1

1 1

1

1
() = ,

= =

−

, +∑ ∑ (5)

Table 1. Summary for different microarray data sets

Dataset No. of genes Category Experiments performed Total

Cell cycle 652 MIPS 16 Cell cycle 93 Sporulation 9 Shock 56 Diauxic shift 26 184

Yeast complex 979 MIPS 16 Cell cycle

18+14+15

Sporulation 7+4 Shock 6+4+4 Diauxic shift 7 79

All yeast 6221 MIPS 18 Cell cycle 60 Sporulation 13 Diauxic shift 7 80

Fibroblast 517 GO 1347 Serum

response 12

Cycloheximide 6 18

Shubhra Sankar Ray, Sanghamitra Bandyopadhyay and Sankar K Pal1022

J. Biosci. 32(5), August 2007

3.2 New hybrid algorithm for ordering genes in

partitive clustering

It is mentioned in § 2.2 that, FRAG_GALK is applied

separately on each of the gene clusters found by SOM to

identify subclusters within large clusters, and to group the

functionally correlated genes within clusters. The number of

nodes/clusters of SOM are chosen according to the number

of MIPS categories (top level of hierarchical tree) for yeast

data, and available information in Sharan et al (2003) for

fi broblast data.

4. Biological interpretation

In case of cell cycle, yeast complex, and all yeast data

the MIPS functional categorization is available for most

of the genes. The categorization is hierarchical in nature

and allows a gene to belong to more than one category. A

biological score, that is different from the similarity/distance

measures, is used to evaluate the fi nal gene ordering. Each

gene that has undergone MIPS categorization can belong

to one or more category, while there are many unclassifi ed

genes also (no category). A vector V(g) = (ν
1
, ν

2
, … , ν

j
) is

used to represent the category status of each gene g, where j

is the number of categories. The value of ν
j
 is 1 if gene g is in

the jth category; otherwise is zero. Based on the information

about categorization, the score of a gene order for multiple

class genes is defi ned as (Tsai et al 2004)

where N is the number of genes, g
i
 and g

i+1
 are the adjacent

genes and G(g
i
, g

i+1
) is defi ned as

where V(g
i
)

k
 represents the kth entry of vector V(g

i
).

For example consider the genes g
1
, g

2
, … , g

5
, which

are classifi ed into 15 categories and represented by the

following vectors:

V(g
1
) = (1,0,1,1,0,0,0,0,0,0,0,0,0,0,0)

V(g
2
) = (1,1,1,1,0,0,0,0,0,0,0,0,0,0,0)

V(g
3
) = (0,0,1,0,0,0,0,0,1,0,0,0,0,0,0)

V(g
4
) = (0,0,0,1,1,0,0,0,0,1,0,0,0,0,0) and

V(g
5
) = (0,0,0,0,1,0,0,0,0,1,0,0,0,0,0).

Considering the gene order g
1
,g

2
,g

3
,g

4
,g

5
,

G(g,g
2
) = 3, G(g

2
,g

5
) = 1, G(g

3
,g

4
) = 0, G(g

4
,g

5
) = 2, and

S(n) = G(g
1
,g

2
) + G(g

2
,g

3
)+ G(g

3
,g

4
)+ G(g

4
,g

5
)

= 3 + 1 + 0 + 2 = 6

Using scoring function S(n), a gene ordering would have

a higher score when more genes within the same group are

aligned next to each other. So higher values of S(n) are better

and can be used to evaluate the goodness of a particular gene

order.

5. Experimental results

Experiments of gene ordering are conducted in Matlab 7 on

Sun Fire V 890 (1.2 GHz and 8 GB RAM). The codes for Bar-

Joseph et al’s (2001) leaf ordering in hierarchical clustering

solution are downloaded from (Venet 2003). Performance of

the proposed FRAG_GALK for gene ordering is compared

mainly with Concorde’s linear programming algorithm and

Bar-Joseph et al’s method. SOM is available in Expander

(Sharan et al 2003) and used with 16, 16, and 18 clusters

for clustering cell cycle, yeast complex, and all yeast data

sets, respectively, as genes in these datasets are classifi ed

according to MIPS into 16, 16, and 18 functional categories.

For fi broblast data SOM is used with 6 clusters as 6 gene

clusters are identifi ed in Sharan et al (2003). Finally FRAG_

GALK and Concorde are applied separately on the gene

clusters obtained by SOM, and Bar-Joseph et al’s method is

applied on the average linkage based hierarchical clustering

solution for each dataset.

5.1 Relevance of gene ordering in partitive clustering

To show the utility of the hybrid method in identifying

different subclusters within big clusters and grouping the

functionally correlated genes within clusters, here for

illustration, the visual displays are presented for fi broblast

(Figure 1a, b) and yeast complex (Figure 1c, d) data. Using

SOM fi broblast genes are fi rst clustered in 6 clusters (stated

previously). Visual display of these 6 clusters is shown in

fi gure 1a. Observing this visual pattern no subcluster can be

identifi ed in each cluster. After applying FRAG_GALK on

each cluster, closely related genes with similar expressions

are aligned next to each other as shown in Figure 1b. Gene

ordering here suggests that 2 or more subclusters exists at

least in clusters 1, 4 and 6, and it will be useful to increase

the number of nodes of SOM to at least 9 for fi broblast data.

Note that, Iyer et al (1999) identifi ed 10 clusters of genes for

this data using average linkage clustering.

Yeast Complex data is fi rst clustered in 16 groups using

SOM. Visual display of fi rst 6 clusters/groups is shown

in fi gure 1c. When the genes are ordered in each cluster

with FRAG_GALK, 4, 4, 5, and 2 distinct subclusters

are identifi ed using visual display in clusters 2, 3, 4, and

5 respectively. Genes names along with their functional

categories (indexes) for each subcluster within cluster 4 are

shown in table 2 for the purpose of illustration. Names of

S n G g g

i

N

i i
() ,= (),

=

−

+∑
1

1

1 (6)

G g g V g V g
i i

k

j

i k i k
, ()+

=
+()= () ,∑1

1

1 (7)

Gene ordering in partitive clustering using microarray expressions 1023

J. Biosci. 32(5), August 2007

the functional categories corresponding to their indexes are

shown in table 3. These subclusters of highly coregulated

genes cannot be identifi ed if SOM is used alone. For example,

all the 9 genes in the 3rd subcluster of cluster 4 (YBR010W,

YNL031C, YBL003C, YDR225W, YDR224C, YNL030W,

YBR009C, YBL002W and YPL256C) are involved in cell

cycle and DNA processing, transcription, and protein with

binding function or cofactor requirement. While using SOM

these 9 genes are distributed in the cluster 4, after ordering

genes in cluster 4 of SOM with FRAG_GALK, they (the

9 genes) are tightly grouped and identifi ed easily using

visual display. With all these ordered and clustered genes

one can easily zoom in a useful small subset of genes in a

cluster which cannot be done alone with partitive clustering

methods. In a similar way, subclusters within big clusters are

identifi ed by Concorde for all the data sets.

5.2 Comparative Performance of Algorithms

The ultimate goal of an ordering algorithm is to order the

genes in a way that is biologically meaningful. In this

regard, table 4 compares the performance of our proposed

two hybrid approaches using FRAG_GALK and Concorde

with Bar-Joseph’s (Bar-Joseph et al 2001) leaf ordering

in hierarchical clustering solution in terms of the F
1
 value

Figure 1. Comparing SOM with ‘SOM+FRAG_GALK’ for Fibroblast data (a and b respectively) and Yeast Complex data (c and

d respectively). The expression profi les are represented as lines of coloured boxes using Expander (Sharan et al 2003), each of which

corresponds to a single experiment.

(a) (b) (c) (d)

Table 2. Gene subclusters found by SOM+FRAG_GALK and their functional category indexes in cluster 4 for yeast complex data

Cluster Subcluster Genes Functional index

4 1 YLR093C, YNL121C, YLR170C, YML112W, YBR160W, YBR171W, YLR378C,

YML019W, YPL234C, YOR039W

6

2 YKR068C, YLL050C, YGL200C, YML012W, YPL218W, YKL080W, YDR086C,

YNL153C, YKL122C, YLR292C, YGL112C, YLR268W YLR447C

6 and 9

3 YBR010W, YNL031C, YBL003C, YDR225W, YDR224C, YNL030W, YBR009C,

YBL002W, YPL256C

3, 4, and 7

4 YJL025W, YPR101W, YMR061W, YGR195W, YOR244W, YLR105C, YDL043C,

YPR056W, YPR057W

4

5 YGL100W, YNL261W, YKL144C, YNL151C, YJL008C, YER148W 7

Shubhra Sankar Ray, Sanghamitra Bandyopadhyay and Sankar K Pal1024

J. Biosci. 32(5), August 2007

(eq. 5), S value (eq. 6), and computation time. The

performance of an algorithm is better if F
1
value is smaller

and S value is larger. For Fibroblast data, no biological score

is provided as genes in the same biological group for this data

are rare. From the biological scores (table 4), it is evident

that FRAG_GALK provides biologically comparable gene

order with respect to Concorde and sometimes superior

gene order than ‘leaf ordering in hierarchical clustering

solution’ by Bar-Joseph et al (2001), for all datasets in least

computational time. For example, FRAG_GALK took 125

seconds to order all yeast data (6221 genes) as compared to

Concorde and Bar-Joseph et al’s method which took 2272

and 1989 seconds respectively.

6. Conclusion

A hybrid method of gene ordering in partitive clustering and

its utility in fi nding useful subgroups of genes within cluster,

grouping functionally correlated genes within clusters,

maximization of biological gene ordering using MIPS

categorization, and minimization of computation time, are

demonstrated. The hybrid approach not only determines

unique clusters, but also preserves the biologically

meaningful relationships among the genes within clusters.

Moreover, the hybrid method using SOM with FRAG_

GALK not only requires less computation time (125 s for

18 clusters of all yeast data) but also less amount of RAM

(0.1 GB RAM for clusters with 1000 genes) than original

Bar-Joseph’s method (1989 s and 2 GB RAM for all yeast

data). With the hybrid approaches one can easily zoom in a

useful small subset of genes in a cluster, which cannot be

done alone with partitive clustering methods.

In FRAG_GALK, parallel searching (with large

population in genetic algorithm) for optimal gene order in

gene clusters (closely related genes) is performed. While this

results in reduced searching time for FRAG_GALK than

Concorde and Bar-Joseph’s method, in terms of biological

score FRAG_GALK is comparable with Concorde and

sometimes superior to Bar-Joseph’s method. It is evident

from the experimental results that, the combination of

partitive clustering and FRAG_GALK is a promising tool

for microarray gene expression analysis.

References

Applegate D, Bixby R, Chvtal V and Cook W 2003 Concorde

Package. [Online], www.tsp.gatech.edu/concorde/downloads/

codes/src/co031219.tgz

Bar-Joseph Z, Gifford D K and Jaakkola T S 2001 Fast optimal

leaf ordering for hierarchical clustering; Bioinformatics 17

2229

Biedl T, Brejov B, Demaine E D, Hamel A M and Vinar T

2001 Optimal arrangement of leaves in the tree representing

hierarchical clustering of gene expression data (Technical

report, Department of Computer Sciemce, University of

Waterloo)

Eisen M B, Spellman P T, Brown P O and Botstein D 1998 Cluster

analysis and display of genome-wide expression patterns; Proc.

Natl Acad. Sci., USA 95 14863–14868

Iyer V R, Eisen M B, Ross D T, Schuler G, Moore T, Lee J C F,

Trent J M, Staudt L M et al 1999 The transcriptional program

in the response of human fi broblasts to serum; Science 283

83–87

Pal S K, Bandyopadhyay S and Ray S S 2006 Evolutionary

computation in bioinformatics: A review; IEEE Trans. Systems

Man Cybernetics Part C 36 601–615

Ray S S, Bandyopadhyay S and Pal S K 2007 Genetic operators

for combinatorial optimization in TSP and microarray gene

ordering; Appl. Intelligence 26 183–195

Sharan R, Maron-Katz A and Shamir R 2003 CLICK and

EXPANDER: a system for clustering and visualizing gene

expression data; Bioinformatics 19 1787–1799

Sherlock G, Hernandez-Boussard T, Kasarskis A, Binkley G,

Matese J C, Dwight S S, Kaloper M, Weng S et al 2001

The Stanford microarray database; Nucleic Acids Res. 29

152–155

Table 3. Indexes and corresponding functional category

Functional index Corresponding functional category

1 Metabolism

2 Energy

3 Cell cycle and DNA processing

4 Transcription

5 Protein synthesis

6 Protein fate (folding, modifi cation,

destination)

7 Protein with binding function or cofactor

requirement

8 Protein activity regulation

9 Cellular transport, transport facilitation and

transport routes

Table 4. Summation of gene expression distances (F
1
),

biological score (S), and computation time of ordering in seconds

(within parenthesis) for different algorithms

Data sets

Algorithm Cell cycle Yeast complex All yeast

SOM 442.94

354

547.16

792

3446.60

1730

SOM +FRAG_

GALK

301.72

386 (0.7)

330.54

1011 (1.13)

1919.15

2356 (125)

SOM

+concorde

301.72

386 (3.41)

330.54

1011 (15.26)

1919.15

2356 (2272)

Bar-Joseph 300.51

381 (1.8)

330.17

1024 (3.34)

1920.82

2350 (1989)

Gene ordering in partitive clustering using microarray expressions 1025

J. Biosci. 32(5), August 2007

Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky

E, Lander E S and Golub T R 1999 Interpreting patterns of gene

expression with self-organizing maps: Methods and application

to hematopoietic differentiation; Proc. Natl. Acad. Sci. USA 96

2907–2912

 Tsai H K, Yang J M, Tsai Y F and Kao C Y 2004 An evolutionary

approach for gene expression patterns; IEEE Trans. Info. Tech.

Biomed. 8 69–78

Venet D 2003 MatArray: a Matlab toolbox for microarray data;

Bioinformatics 19 659–660

ePublication: 28 June 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

