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Abstract

Models for the behavior of ants and pedestrians are studied in an unified way in this
paper. Each ant follows pheromone put by preceding ants, hence creating a trail on
the ground, while pedestrians also try to follow others in a crowd for efficient and
safe walking. These following behaviors are incorporated in our stochastic models
by using only local update rules for computational efficiency. It is demonstrated
that the ant trail model shows an unusual non-monotonic dependence of the aver-
age speed of the ants on their density, which can be well analyzed by the zero-range
process. We also show that this anomalous behavior is clearly observed in an ex-
periment of multiple robots. Next, the relation between the ant trail model and the
floor field model for studying evacuation dynamics of pedestrians is discussed. The
latter is regarded as a two-dimensional generalization of the ant trail model, where
the pheromone is replaced by footprints. It is shown from simulations that small
perturbations to pedestrians will sometimes avoid congestion and hence allow safe
evacuation.
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1 Introduction

Modelling of self-driven particles is a recently progressing research area in
physics, and opens a new paradigm in statistical physics [1,2]. Self-driven par-
ticles, such as vehicles, pedestrian and ants, do not necessarily satisfy Newton’s
third law, i.e., the law of action and reaction. This is mainly because the force
acting among such particles has a psychological or social origin, and hence the
reaction differs from one individual to another. Therefore the behavior of these
particles is not well described by the usual framework of mechanics or (equi-
librium) statistical physics. Nevertheless in the case of collective motion, some
aspects of the behavior have similarities with those seen in Newtonian par-
ticles, such as phase transitions, cluster formation and occurrence of domain
walls [1,2].

There are several attempts to describe such self-driven particles for the last
several decades, ranging from differential equations with some social forces
[3,4], to cellular automaton (CA) models with various update rules [5,2]. In
this paper, we show modellings of ants and pedestrians by a cellular automaton
approach in an unified way. We demonstrate similarities between ants on a trail
and pedestrians in evacuations, since both try to follow others through sniffing
pheromone on a trail, and information from one’s eyes and ears, respectively.
The behavior of pedestrians is usually not simple in normal situations, but in
emergency cases like evacuation from a building on fire, people rush to exits
and only simple motions are observed. In this paper we restrict ourselves to
the case of evacuation in the modelling of pedestrians. For this case, we show
that human behavior can be modeled by a naturally extended model of ants.

The paper is organized as follows. In Sec. 2, we introduce our model of traffic
of ants on a trail, and discuss its dynamical properties such as loose cluster
formation and anomalous flow-density relation by using a solvable stochas-
tic model. We have also performed an experiment on our ant trail model by
developing a multiple robots system. In Sec. 3, a stochastic model of pedes-
trian dynamics is presented, which is called the floor field model. We discuss
the relation of the floor field model and the ant trail model, and show simu-
lated results of the model by taking into account the inertia of pedestrians.
Concluding remarks and future problems are given in Sec. 4.



2 Traffic of ants

2.1  Ant trail model

Let us first define the ant trail model (ATM) which is a simple model for
an unidirectional motion of ants on a trail. The ants communicate with each
other by dropping a chemical called pheromone on the substrate as they move
forward [6]. The pheromone sticks to the substrate long enough for the other
following ants to pick up its smell and follow the trail.

First we divide the one-dimensional trail into L cells, each of which can accom-
modate at most one ant at a time. We will use periodic boundary conditions,
that is, we consider an ant trail of a circuit type. The lattice cells are labeled
by the index i (i = 1,2, ..., L), and we associate two binary variables S; and
o; with each site i. S; takes the value 0 or 1 depending on whether the cell is
empty or occupied by an ant. Similarly, o; = 1 if the cell ¢ contains pheromone;
otherwise, o; = 0. Since a unidirectional motion is assumed, ants do not move
backward in this model. Their hopping probability becomes higher if it smells
pheromone ahead of it. The state of the system is updated at each time step
in two stages. In stage I, ants are allowed to move, and stage II corresponds to
the evaporation of pheromone. In each stage the dynamical rules are applied
in parallel to all ants and pheromones, respectively.

Stage I: Motion of ants

An ant at cell ¢ that has an empty cell in front of it, i.e., S;(¢) = 1 and
Si+1(t) = 0, hops forward with probability @ if 0,41 (t) = 1 and ¢ if ;44 (t) = 0.
Here we assume ¢ < ) for consistency with real ant-trails where pheromone
works as an attractive chemical for ants on a trail.

Stage II: Evaporation of pheromones

At each cell i occupied by an ant after stage I a pheromone will be created,
ie., o;(t+1)=1if S;(t+ 1) = 1. On the other hand, any free pheromone at
a site 7 not occupied by an ant will evaporate with the probability f per unit
time, i.e., if S;(t+1) =0, 0;(t) = 1, then o;(t + 1) = 0 with probability f and
o;(t +1) = 1 with probability 1 — f.

The rules can be written in a compact form as the following coupled equations:
Sj(t 4 1) =55(t) + min(n;—1(2), S;-1(£), 1 — 5;5(t))

— min(n,(t), S(6), 1 — Sy (1)), (1)
0 (t + 1) = max(S;(t + 1), min(o, (), &(1)), (2)



where § and 7 are stochastic variables defined by &;(t) = 0 with probability
f and &;(t) = 1 with probability 1 — f, and n;(t) = 1 with probability p =
q+ (Q — q)oj1(t) and n;(t) = 0 with probability 1 — p. We point out that
egs. (1) and (2) reduce to the asymmetric simple exclusion process (ASEP)
[7], which is one of the exactly solvable models, if p is a constant, i.e., p does
not depend on o. If we further consider the deterministic limit p = 1, then
this model reduces to the Burgers CA [8], which is also exactly solvable.

2.2  Numerical results

The ASEP with parallel updating has been used often as a simple model of
vehicular traffic on single-lane highways [5]. The most important quantity of
interest in the context of flow properties of the traffic models is the fundamen-
tal diagram, i.e., the flow-versus-density relation, where flow is the product of
the density p and the average speed V. Thus it is interesting to compare the
fundamental diagram of the ATM with that for vehicular traffic.

.2
0.25 0.7
0.2 0.6
°
§ 0.5
0.15 7
E o 0.4
(TR
0.1 Sos
>
<02
0.05
0.1
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Density Density

(a) (b)

Fig. 1. The average flow (a), speed (b) of the ants are plotted against their densities
for the parameters QQ = 0.75,¢q = 0.25 and L = 500. The discrete data points cor-
respond to f = 0.0005(<), 0.001(0), 0.005(e), 0.01(A), 0.05(0), 0.10(x), 0.25(+),
0.50(). The cases f = 0 and f = 1 are also displayed, which are identical to the
ASEP corresponding to the effective hopping probabilities ) and ¢, respectively.

Numerical results of the fundamental diagrams of the ATM is given in Fig. 1(a).
The density-dependence of the average speed of the ATM is also shown in
Fig. 1(b). We first observe that the diagram does not possess particle-hole
symmetry. In the ASEP the flow remains invariant under the interchange of
p and 1 — p; this particle-hole symmetry leads to a fundamental diagram that
is symmetrical about p = % In the ATM, particle-hole symmetry is seen in
the special cases of f = 0 and f = 1 from Fig. 1(a). In these two special
cases the ant-trail model becomes identical to the ASEP with parallel updat-
ing corresponding to the effective hopping probabilities @ (for f = 0) and ¢
(for f = 1), respectively.

Next, over a range of small values of f, it exhibits an anomalous behavior



in the sense that, unlike common vehicular traffic, V' is not a monotonically
decreasing function of the density p (Fig. 1(b)). Instead a relatively sharp
crossover can be observed where the speed increases with the density. In the
usual form of the fundamental diagram (flow vs. density) this transition leads
to the existence of an inflection point (Fig. 1(a)).

By a detailed study of the spatio-temporal behavior in the steady-state, we
were able to distinguish three different density regimes [9]. At low densities
a loosely assembled cluster is formed and propagates with the probability ¢
(Fig. 2). The leading ant in the cluster which hops with probability ¢ will de-
termine the velocity of the cluster. Homogeneous mean field theories fail in this
region since these theories always assume that ants are uniformly distributed,
which is not true in the case of the ATM [9].

Fig. 2. Spatial-temporal behaviors of loose clusters in the low density case (p = 0.16).
Parameters are Q = 0.75,¢ = 0.25, f = 0.005. We see the loose clusters emerge from
the random initial configuration, which will eventually merge after sufficiently long
time into one big loose cluster.

In the intermediate density regime, the leading ant occasionally hops with
probability @) instead of ¢, because it becomes possible to feel the pheromone
which is dropped by the last ant in the preceding cluster. This arises from the
fact that, due to the periodic boundary conditions, the gap size between the
last and leading ant becomes shorter as the cluster becomes larger, so that
the leading ant is likely to find the pheromone in front of it. This increase of
the average speed in this intermediate-density region (Fig. 1(b)), leads to the
anomalous fundamental diagram.

Finally, at high densities, the mutual hindrance of the ants dominates the
flow behavior leading to a homogeneous state similar to that of the ASEP.
In this regime the loose cluster does no longer exist and ants are uniformly
distributed after a long time. Thus homogeneous mean field theories give a
good result in accounting the fundamental diagram only in this regime [9].



2.3  Analytical results

The ATM is closely related to the zero-range process (ZRP), which is known as
one of the exactly solvable models of interacting Markov processes [10,11]. The
ZRP consists of the moving particles of the exclusion process. The hopping
probability of a particle depends on the number of cells to the particle in
front. Hence the ZRP is regarded as a generalization of ASEP. In the ATM,
the hopping probability v can be expressed as

u=q(l—g)+Qg, (3)

where g(z) = (1 — f)*/V (Fig. 3). Assuming that a gap size of successive ants
is x, g represents the probability that there is a surviving pheromone on the
first site of a gap [12]. Thus, since in the ATM the hopping probability w is

1

hopping probability
© o o
N o @

o
[N

0 10 20 30 40 50
headway

Fig. 3. Hopping probability versus the number of cells between successive ants.
Parameters are @ = 0.75,¢ = 0.25, f = 0.1 and V =1 in (3).

related to x, we may utilize the exact results for the ZRP [11]. The average
velocity V' of ants is then calculated by

L—

V= u(x)p(x) (4)

r=1

where L and M are the system size and the number of ants respectively (hence
p = M/L is the density), and p(z) is the probability of finding a gap of size
x, which is given by




Since the ATM is formulated with parallel update, the form of h(x), as calcu-
lated in (5), is given by [13]

1 —wu(1) for z=
M) =3 1—u(l) & 1—uly) L (6)
g }1 w(y) for x>0

The partition function Z is obtained by the recurrence relation

Z(L, M) = Lf Z(L—x—1,M — 1)h(z), (7)

z=0

with Z(z,1) = h(x — 1) and Z(z,z) = {h(0)}*, which is easily obtained by
(5) with the normalization Y p(x) = 1.
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Fig. 4. The fundamental diagram of the ATM with the parameter L = 200. Param-
eters are (Q = 0.75,q = 0.25, f = 0.005. The smooth thin curve is the theoretical
one, while the zigzaged thick one is the numerical data.

Next we draw the fundamental diagram of the ATM by using (4) and changing
p from 0 to 1. It is given in Fig. 4 with L = 200. The thick black curve is
the numerical data and the smooth thin black one is the theoretical curve in
each figure with the specified value of L. We see that the theoretical curves
are almost identical to the numerical ones, thus confirming that the steady

state of the ATM is described by the ZRP.

2.4  Multiple robots experiment

Next we set up an experimental system of our ant model by using multiple
robots that can communicate with each other through pheromone-like inter-
action. In this experiment, a virtual pheromone system (V-DEAR) [14] was
introduced, in which chemical signals are mimicked by the graphics projected



on the floor, and the robots decide their action depending on the color infor-
mation of the graphics.
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Fig. 5. A schematic view and photo of V-DEAR. (a) The system is composed of
Liquid Crystal Projector to project the Computer Graphics and the CCD camera
to trace the position of the robots in the field. (b) Each robot has sensors on the
top to detect the color and brightness of the field.

Fig. 5 shows the schematic and photo of V-DEAR. Each robot moving on the
field detects the color and brightness of the field from sensors on the top, and
determines its actions autonomously based on the conditions of the Computer
Graphics (CG) on the floor. Combining the position information of the robots
acquired from the CCD camera and the projected CG by the projector, we
can achieve the dynamic interaction between the environment and robots.

Each robot leaving a pheromone moves in the same direction on the circum-
ference of a circle with diameter 520 mm (Fig. 6, left). The robot immediately
behind it traces the pheromone, hence it follows the leader. The speed of each
robot v(z) is given by

Vo for p(z,t) >
o) = @ otz ®)
V, for p(z,t) < pwm

where x is the position on the circumference, p(x,t) is the concentration of
pheromone at the position and py, is a constant (Fig. 6, middle). If a robot
catches up with the robot in front, then the robot in the rear stops moving
for 1 sec (Fig. 6, right).
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Fig. 6. Interactions between robots through the color CG projected on the floor.
Marking, tracing and collision are schematically depicted.
The dynamics of the virtual pheromone is described as

dp(z,t)
dt

IP—fp(iL’,t), (9>

where f is the rate of evaporation and P the injection concentration given
by P = By if a robot exists at x, and P = 0 if not. p(z,t) is expressed
by the gradation of the white color CG which ranges from 0 to 255. In this
experiment, we set Vo =7 cm/s, V, = 1.4 cm/s, py, = 127, and Py = 250.

The experiment was carried out with groups of 4 to 17 robot teams, with
f=0,0.03, 0.05 and 1.00. All experiments were performed one time and had
a duration of 3 minutes. As initial condition, robots were distributed evenly
on the circle.

Fig. 7. Loose cluster formation by six robots on a circle.

Fig. 7 shows an example of loose cluster formation of robots in this exper-
iment. The maximal group size of robots on the circumference is 22, hence
Fig. 7 corresponds to a density of 6/22. Flow is defined as the number of
robots crossing a fixed point on the circumference during the experimental
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Fig. 8. Fundamental diagram of the robots experiments for f = 0,0.03,0.05 and 1.
We see that the velocity increases sharply for the small but finite values of f, which
is similar to fig.1.

duration. The fundamental diagram of our experiment is given in Fig. 8. It
shows anomalous features very similar to Fig. 1, although the robot exper-
iment is subject to various perturbations. From Fig. 8 the average velocity
surely increases only in the small f cases. Thus we confirm in this experiment
that our finding on the anomalous behavior in the ATM is robust and may
happen in nature if the evaporation rate of pheromone is sufficiently low.

3 Modelling of evacuations

3.1 Floor field model

We consider a model for pedestrians in evacuation in this section by using a
cellular automaton approach. The model is called the floor field model [15]
(FFM), which is successfully used up to now for modelling panic behavior of
people evacuating from a room. The two-dimensional space is discretized into
cells of size 40 cm x 40 cm which can either be empty or occupied by one
pedestrian. Each pedestrian can move to one of the unoccupied Neumann-
neighbor cells (7, ) or stay at the present cell at each time step ¢t — ¢ +
1 according to certain transition probabilities p;; as explained below. The
important step for this model is to introduce two kinds of floor fields: The
static floor field S describes the shortest distance to an exit door. The field
strength S;; is set inversely proportional to the distance from the door. The
other one is the dynamic floor field D, which is a virtual trace left by the
pedestrians similar to the pheromone in chemotaxis. It has its own dynamics,
namely diffusion and decay, which leads to broadening, dilution and finally
vanishing of the trace.

The update rules of the FFM have the following structure:

(1) The dynamic floor field D is modified according to its diffusion and decay
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rules, controlled by the parameters o and 9.

(2) For each pedestrian, the transition probabilities p;; for a move to an
unoccupied neighbor cell (i,j) are determined by the two floor fields.
The values of the fields D (dynamic) and S (static) are weighted with
two sensitivity parameters kp and kg:

pij ~ exp (kpDyj) exp (ksSi;) Pr(i, 7)&i;. (10)

Here P represents the inertia effect [16] given by P;(i,j) = exp (k) for
the direction of one’s motion in the previous time step, and Py(i,7) = 1
for other cells, where k; is the sensitivity parameter. ;; is responsible for
the exclusion in a cell; if the target cell is occupied by another pedestrian
or an obstacle, then we set §;; = 0, while §;; = 1 if it is free.

(3) Each pedestrian chooses randomly a target cell based on the transition
probabilities p;; determined by (10).

(4) Whenever two or more pedestrians attempt to move to the same target
cell, the movement of all involved particles is denied with probability
w € [0,1], i.e. all pedestrians remain at their site. Which one is allowed
to move is decided using a probabilistic method [17].

(5) The pedestrians who are allowed to move perform their motion to the
target cell chosen in step 3. D at the origin cell (i,j) of each mowving
particle is increased by one: D;; — D;; + 1.

The above rules are applied to all pedestrians at the same time (parallel up-
date).

Let us now briefly explain the similarities between the FFM and the ATM.
Considering a one-dimensional variant of the FFM, the hopping probability
(10) of moving forward for a pedestrian at cell 7 is simply written as p; ~
exp(kpD;i1), where D;.; is the number of footprints at the next cell i + 1.
Here assuming a unidirectional motion of pedestrians, the static floor field
and inertia can be omitted in (10). Thus the FFM takes into account the
concentration of multiple pheromones, i.e., footprints at a cell. In the ATM,
p; takes only two values, ) and ¢, depending on D;,; = 1 or 0 respectively.
Thus if we restrict the binary values for D as D — min(1, D), then the one-
dimensional FFM directly corresponds to the ATM if we choose the hopping
probability as

pi = qexp(kpmin(1, D;yq)) (11)

where kp = 1InQ/q.
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3.2 Model parameters and their physical relevance

There are several parameters in the FFM which are listed below with their
physical meanings.

(1) ks € [0,00) - -+ The coupling to the static field characterizes the knowl-
edge of the shortest path to the doors, or the tendency to minimize the
costs due to deviation from a planned route.

(2) kp € [0,00) - - - The coupling to the dynamic field characterizes the ten-
dency to follow other people in motion (herding behavior). The ratio
kp/ks may be interpreted as the degree of panic. It is known that people
try to follow others particularly in panic situations [3].

(3) kr € [0,00) --- This parameter determines the strength of inertia which
suppresses quick changes of the direction of motion. It also reflects the in-
dividual’s tendency to avoid unnecessary acceleration of the speed during
walking.

(4) p € [0,1]--- The friction parameter controls the resolution of conflicts
in clogging situations. Both cooperative and competitive behavior at a
bottleneck are well described by adjusting p [18].

(5) a,d €[0,1]--- These constants control diffusion and decay of the dynamic
floor field. It reflects the randomness of people’s movement and the visible
range of a person, respectively. If the room is full of smoke, then § takes
large value due to the reduced visibility.

3.3  Simulations

We focus on measuring the total evacuation time by changing the parameter
kr. The size of the room is set to 100 x 100 cells. Pedestrians try to keep their
preferred velocity and direction as long as possible for minimizing their effort.
This is taken into account by adjusting the parameter k;. In Fig. 9, total
evacuation times from a room without any obstacles are shown as function of
kp in the cases k; = 0 and k; = 3. We see that it is monotonously increasing in
the case ky = 0. This is because any perturbation from other people becomes
large if kp increases, which causes the deviation from the minimum route.
Introduction of inertia effects, however, changes this property qualitatively,
and the minimum time appears around kp = 1 in the case k; = 3. This is well
explained by taking into account the physical meanings of k; and kp. If k;
becomes larger, people become less flexible and all of them try to keep their
own minimum route to the exit according to the static floor field regardless of
congestion. For the (unrealistic) case of very large values of k; their motion
will be completely determined by inertia and thus they might not be able to
find the exit at all. By increasing kp, disturbances from other people become
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relevant through the dynamic floor field. This perturbation makes one flexible
and hence contributes to avoid congestion, especially at the exit. Large kp
again works as strong perturbation as in the case of k; = 0, which diverts
people from the shortest route largely. Note that if we take sufficiently large
kr, then the effect of kp becomes relatively weak and smooth evacuation will
be prevented due to the strong clogging at the exit.
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Fig. 9. Total evacuation time vs. coupling kp to the dynamic floor field for different
values of k;. The room is a simple square without obstacles and 50 simulations are
averaged for each data point. Parameters are p = 0.04, kg =2, a = 0.2, 6 = 0.2 and

n=0.

4 Conclusion

In this paper, we have studied simple models for ants and pedestrians in an
unified way. Ants on a trail follows pheromone dropped by its preceding ants,
and pedestrians also follow others in a crowded or panic situation mainly for
safe and efficient reasons. We have proposed stochastic cellular automaton
models of both ants on a trail and pedestrians in evacuation.

The ant trail model shows an anomalous flow-density relation, which can be
analyzed by a ZRP. We have shown that this behavior is also seen in an
experiment of multiple robots. It is interesting to see whether the fundamental
diagrams remains anomalous when we introduce more then two velocities in
(8). Since the velocity of ants in reality allows more gradations, it is important
to test how robust the anomaly predicted by the simple model is.

Some generalizations of the ATM have been recently studied: For open bound-
ary conditions, we have a similar phase diagram where the critical point de-
pends on the evaporation probability f [19]. A simple bidirectional general-
ization is also proposed in [20]. It is interesting to compare the fundamental
diagram recently obtained in an experiment with bidirectional leaf-cutting
ants [21] with that of the bidirectional model. The FEM can be regarded as a
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two-dimensional generalization of the ATM, where the pheromone is replaced
by footprints. By using the FFM it is shown that the small perturbation to
pedestrians can reduce the total evacuation time in some cases.

Finally, it is interesting to study how a trail of ants between their nest and a
food source is created by extending the ATM to two spatial dimension. Then
we can directly compare the behaviors of ants and pedestrians by using the
two models, and hopefully we will find good strategies of evacuation from the
behaviors of ants that have “swarm intelligence” [22].
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