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Abstract. The problem of extraction of medial axis transformation of a
gray image with reference to skeletonization, image representation and
uncertainty management in a vision system has been addressed. The Fuzzy
Medial Axis Transformation (FMAT) of a fuzzy set [ is a set of fuzzy disks
whose sup is f. Unfortunately, specifying the FMAT sometimes requires
more storage space than specifying f itself. The present paper describes
some techniques to improve the compact representation of FMAT; thereby
making it practically useful to an image for its skeleton extraction and
compact representation, for shape analysis and template matching, for
representation and retrieval, for uncertainty management in recognition
and for creating new images of various poses. The algorithms involve
reduction of redundancy in FMAT, its approximation, and reduction of
the searching spaces for its computation. Computational aspects for
the convenience of writing an efficient program have been described. Some
applications of the FMAT have also been mentioned.

Keywords. Fuzzy medial axis transformation (FMAT); fuzzy disk; fuzzy
geometry; image processing/representation; skeleton extraction; uncertainty
management.

1. Introduction
The task of pattern recognition by a computer can be viewed as a transformation

from the measurement space M to the feature space F and finally to the decision
space D, i.e.,

» M—->F-D.

When the input pattern is a gray tone image, the measurement space involves some
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important processing tasks such as enhancement, filtering, noise reduction,
segmentation, contour extraction and skeleton extraction, in order to derive salient
features from the image pattern. This is what is basically known as image processing.
The ultimate aim is to use data contained in the image to enable the system to
understand, recognize and interpret the processed information available from the
image pattern. Such a complete image recognition/interpretation system is called a
vision system which may be viewed as consisting of three levels, namely, low level,
mid level and high level.

The relevance of fuzzy set theory in pattern recognition problems has adequately
been addressed in the literature (Bezdek 1981; Kandel 1982; Pal & Dutta Majumder
1986; Bezdek & Pal 1992). It is seen that the concept of fuzzy sets can be used (i) at
the feature level in representing an input pattern as an array of membership values
denoting the degree of possession of certain properties and in representing
linguistically phrased input features, (i) at the classification level in representing
multi-class membership of an ambiguous pattern, and (iii) in providing an estimate
(or a representation) of missing information in terms of membership values. In other
words, fuzzy set theory may be incorporated in handling uncertainties (arising from
deficiencies of information available from a situation; the deficiencies may result from
incomplete, imprecise, ill-defined, not fully reliable, vague, contradictory information)
in various stages of a pattern recognition system. While the application of fuzzy sets
in cluster analysis and classifier design was in the process of development, an important
and related effort in fuzzy image processing and recognition was evolving more or
less in parallel with the aforesaid general developments. This evolution was based
on the realization that many of the basic concepts in image analysis, e.g., the concept
of an edge or a corner or a relation between regions, do not lend themselves well to
precise definition.

A gray tone image possesses ambiguity within pixels due to the possible
multi-valued levels of brightness in the image. This indeterminacy is due to inherent
vagueness rather than randomness. Incertitude in an image pattern may be explained
in terms of grayness ambiguity or spatial (geometrical) ambiguity or both. Grayness
ambiguity means “indefiniteness” in deciding whether a pixel is white or black. Spatial
ambiguity refers to “indefiniteness” in the shape and geometry of a region within the
image.

Conventional approaches to image analysis and recognition (Marr 1982; Rosenfeld &
Kak 1982; Gonzalez & Wintz 1987) consist of segmenting the image into meaningful
regions, extracting their edges and skeletons, computing various features/properties
(e.g., area, perimeter, centroid etc.) and primitives (e.g. line, corner, curve etc.) of and
relationships among the regions, and finally, developing decision rules/grammars for
describing, interpreting and/or classifying the image and its subregions. In a
conventional system each of these operations involves crisp decisions (i.., yes or no,
plack or white, 0 or 1) to make regions, features, primitives, properties, relations and
interpretations crisp.

Since the regions in an image are not always crisply defined, uncertainty can arise
within every phase of the aforesaid tasks. Any decision made at a particular level
will have an impact on all higher level activities. A recognition (or vision) system

‘should have sufficient provision for representing and manipulating the uncertainties
involved at every processing stage; i.e., in defining image regions, features, matching,
and relations among them, so that the system retains as much of the “information
content” of the data as possible. If this is done, the ultimate output (result) of the
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system will possess minimal uncertainty (and unlike conventional systems, it may
not be biased or affected as much by lower level decision components).

For example, consider the problem of object extraction from a scene. Now, the
question is “How can one define exactly the target or object region in a scene when
its boundary is ill-defined?” Any hard thresholding made for the extraction of the
object will propagate the associated uncertainty to subsequent stages (e.g., thinning,
skeleton extraction, primitive selection etc.) and this might, in turn, affect feature
analysis and recognition. Consider, for example, the case of skeleton extraction of a
region through medial axis transformation (MAT). The problem of extracting the
medial axis transformation plays a key role in the field of image processing, analysis
and recognition because of the simplicity of image (and hence object) representation
and skeleton extraction it allows. There has been extensive research done (Rosenfeld &
Kak 1982, p. 191) in extracting the medial axis of a region and skeleton of elongated
objects from a two-tone image. The medial axis transformation of a region in a binary
picture is determined with respect to its boundary. In a gray tone image, the boundaries
are not well defined. Therefore, errors are likely (and hence further increase uncertainty
in the system), if we compute the MAT from the aforesaid hard-segmented version of
the image.

Thus, it is convenient, natural and appropriate to avoid committing ourselves to
a specific (hard) decision (e.g., segmentation/thresholding, edge’ detection and
skeletonization), by allowing the segments or skeletons or contours to be fuzzy subsets
of the image, the subsets being characterized by the possibility (degree) to which each
pixel belongs to them. Similarly, for describing and interpreting ill-defined structural
information in a pattern, it is natural to define primitives (line, corner, curve etc.)
and relations among them using labels of fuzzy sets. For example, primitives which
do not lend themselves to precise definition may be defined in terms of arcs with
‘varying grades of membership from 0 to 17/ representing their degree of belonging to
more than one class. The production rules of a grammar may similarly be fuzzified
to account for the fuzziness (impreciseness) in physical relation among the primitives;
thereby increasing the generative power of a grammar for syntactic recognition of a
pattern.

In this paper, we explain the role of fuzzy set theory to the problem of medial axis
transformation of a gray tone image for its representation and skeleton extraction
along with the management of uncertainties in these processes. The medial axis (MA)
of a subset S of a binary picture is the set of those points in S whose distances from
S (complement of ) are local maxima. The distance of a point P in S from S is the
length of a shortest path from P to S. The MAT of S consists of the aforesaid local
maxima points together with their distances from §. It provides a compact
(economical) representation of S so that § can be reconstructed from its MAT. The
MA of § can be regarded as a generalized axis of its symmetry and constitutes also
a kind-of skeleton, if S is elongated. Note that the word “kind of” is used to mean
that such a skeleton may be disconnected, since the MA is a union of the local maxima
points. : '

From the aforesaid definitions it is seen that the MAT of 2 region in a binary picture
is determined with respect to its boundary. As mentioned before, the boundaries
among various regions in a gray tone image are not well defined. A few generalizations
of MAT have been proposed in order to make them applicable to gray tone images.
These include SPAN (Spatial Piecewise Approximation by Neighborhoods) (Ahuja et al
1978), GRAYMAT (Levi & Montanari 1970) and MMMAT (Peleg & Rosenfeld 1981).
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SPAN provides an approximated representation of an image in terms of centres, radii
and average gray level of homogeneous disks. GRAYMAT is based on the concept of
gray-weighted distance of a point from the background and therefore it requires an
image to be segmented into zeros (background) and non-zeros (object). MMMAT is based
on iterative min and max operations, and does not require the picture to be segmented.
However, the number of iterations depends on the application and the border effects
become a serious problem when the local min operation is iterated several times.
All these techniques reduce to the MAT in the case of a two-tone image. They provide
a reasonable gray medial axis (and skeleton) for the darker pixels in the case of gray
tone image but the original (input) gray image, in any case, cannot be reconstructed
from its MMMAT or SPAN or GRAYMAT values. This property of image reconstruction
is supposed to be an important characteristic of the MAT representation. Furthermore,
the requirement of an image to be segmented into zero (background) and non-zero
(object) needs the selection of the threshold to be made judiciously because the resulting
skeleton is dependent on that selection.

There have also been some attempts made for extracting a gray skeleton of an
image, but without using the concept of MAT. These include fuzzy skeletonization
technique (Pal 1989) and ridge seeking method (Salari & Siy 1984). Fuzzy
skeletonization of Pal (1989) needs an initial fuzzy segmentation of the image space
so that the membership of a pixel for the subset skeleton can be computed with
respect to the & edge (edge points of object after which its class membership value is
less than or equal to &, 0 < & < 1) of the object region. The ridge seeking method also
requires that the pixels with gray value below a certain threshold be set to zero.
The skeletons produced by these methods do not depend much on the boundary
selection. Siace these techniques are not formulated from the point of MAT
construction, the question of reconstruction of original gray image did not get any
attention. .

A fuzzy medial axis transformation (FMAT) based on the concept of fuzzy disks
has recently been defined by Pal & Rosenfeld (1991) by making a straightforward
generalization of the MAT definition to the fuzzy subsets of a metric space. Since the
gray level (scaled in [0,1]) of a pixel can be regarded as its degree of membership in
the set of high-valued (“bright”) pixels, a gray scale image can be regarded as a fuzzy
set. A gray image, for the computation of its FMAT, does not need to be thresholded
(e.g., to a binary image), whereas the MAT requires the image to be binary. The FMAT
therefore has the ability to get the image back from the skeleton.

Unfortunately, for a gray image X, specifying the FMAT may require more storage
space than specifying the image itself. The FMAT is seen to be redundant in the sense
of representation and reconstruction of X. Moreover, its computational aspects were
not addressed in Pal & Rosenfeld (1991). In fact, it is found to be very expensive if
one needs to check the inclusion (subset) condition of a fuzzy disk g, by another
disk g, for all the points in an image.

The present work describes some algorithms on these issues. The problem of
reducing redundancy is tackled by selecting a set of fuzzy disks which together contain
a fuzzy disk g, for its deletion from the medial axis (MA) output. The computational
algorithm developed in this context is based on the concept of “sponsoring” capability
of a pixel and it involves the process of successive deletion of pixels from exterior to
interior of the image. The algorithm can also be used for two tone (binary) images.
Three different techniques have then been developed to provide approximated FMAT
versions so that the image representation becomes economical without affecting much
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. of its reconstruction and it also provides good skeletons of the object regions (darker
pixels). A set of criteria is finally established which allows one to work with a much
smaller subset of an image space and therefore reduces significantly the time of
computation of FMAT. Their graphical representation has also been provided to
facilitate the task of programming. The performance of the algorithms is demonstrated
on a gray image.

Section 2 describes the distance measures d, and dg in a digital picture, the definition
of MAT of a binary (or crisp) image and its various characteristics for the convenience
of understanding the FMAT of a gray image. The definition of FMAT (as defined by
Pal & Rosenfeld 1991) and some remarks on it are given in § 3.-Section 4 explains the
redundancy removal techniques. The methods of reducing the searching space and
the time of computation are explained in § 5. Various approximation techniques are
described in § 6. Section 7 demonstrates the experimental results. Some key features
and applications of the FMAT are described in § 8. Section 9 contains the discussion
and conclusions.

2. Medial axis transformation (MAT)

2.1 Distance measures

(Rosenfeld & Kak 1982, p. 209). Let X be a digital picture (image) of size M x N.
The city block distance between two points P(x, y) and Q(u,v), x,u=0,1,2,...,M — 1;
y,v=0,1,2,...,N —1in a digital picture is defined as

dy(P,Q)=|x —u| + |y —vl. (1)
The chessboard distance between them is defined as
dg (P, Q) = max(|x —ul,|y —v]). 2)

These measures satisfy the metric properties and are simpler than the Euclidean
distance to work on a digital image.

Points at a city block distance d, =1 and dg =1 from P respectively represent
4-neighbours and 8-neighbours of P. The points at a chessboard distance d, < r from
P form a diamond (i.e., diagonally oriented square) centred at P. Similarly, the points
at dg <r from P form an upright square of odd side length centred at P. These are
shown in figure 1 when M =N =5 and r=1. Let us call them diamond disk and
upright square disk of radius 1. The distance between a point P and a set S is defined
to be shortest distance between P and any point of S.

2.2 Medial axis transform of a binary (two tone) image

Let X be a binary (two tone) image i.e.,, each point in X can have a value either 0
or 1. In the previous section it is seen that the points within a given chessboard
distance (dg) of P form an upright square of odd side length ‘centred at P. Let us
associate with each point PeX a set of such upright squares of constant value.
(Though a set of upright squares formed by chessboard distance is considered here,
the discussion may be generalized to any family of mutually similar shapes formed
by other distance measures.) For every point P, let D, be the largest square (or disk)
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' , Figure 1. Disks corresponding to
d4=1 ' d8=1 d4=landd8=1.

that is contained in X and has a constant value vp. Let rp be the radius of Dp. Then
X is the union of the D;’s. Let C be a subset of X such that, for all PeX, there exists
QeC so that Dy 2 Dp. (In other words, C is a set of points Q at which Dy is a local
maximum ie., for any neighbour P of Q, D, 2 Dp.) We call C a sufficient subset of
X. Evidently, for any such C, X is the union of the Dy’s, QeC.

The image X can therefore be completely represented by the centres P, radii 7p
and values v of the disks Dp, PeC, because any point of X must lie in at least one
of these disks (blocks). The set C is called the medial axis (or symmetric axis) of X,
and the set of Dp’s i.e, the set of all P, rp and v, for PeC is called the medial axis
transformation of X.
~ Figures 2 and 3a show the MAT representations of two binary pictures of sizes 8 x 8
and 5 x 8 using upright square disks. The centres of maximal blocks with value v =1
are underlined. The centre coordinates (x,y) and radii of the maximal blocks are
shown considering that the lower left corners of the images have coordinates (1, 1). The
images can therefore be reconstructed once the values of (x, y), r and v of the maximal
blocks are given.

2.3 Some remarks

i) Note that for the binary images (figures 2 and 3), one needs to specify the maximal
blocks of only one value (of 1's). The points not covered by these blocks must have
the value of 0’s. :

If X is an Llevel image i.e., each point in X can take a value from {0,1,2,..., L—1},
then X can be viewed as consisting of L constant valued regions. In that case, one
needs to specify the maximal blocks for (L— 1) of the values; the points not covered
by any of the maximal blocks must have the omitted value.

i) The MAT representation may still be redundant in the sense of reconstruction of
image i.e., some blocks (disks) may be contained in unions of others. For example,

00000000

00100000 x yr 00000000 x y 1 00000000
00000100 3 3 2 01111110 3 3 1 01111110
1111110 370 01111110 4 3 1 01111110
}i;i}“g gif 01111110 5 3 1 01111110
11111100 6 6 0 00000000 6 3 1 00000000
11111100 (@ (b)

Figure 2, MAT r;presen.tation Figure 3. (a) MAT representation ofa 5 x 8 binary image.
of an 8 x8 binary image (b) MAT after removing redundancy.

(Rosenfeld & Kak 1982).
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00000000 ‘000000060

00100000 00100000

00000100 00000100

11111110 11111210

12222210 12222210

12332110 12333210 _

12222100 12222100 Figured. Distance to R, the MA (local maxima)
11111100 11111100 pointsareunderlined, (a) using dg metric, (b) using

(a) ® d4 metric.

the disks D(4,3) and D(5, 3) at the points (4,3) and (5, 3) of figure 3a are redundant,
because these are contained in the union set (D(3,3)u D(6,3)). If these are removed
(as shown in figure 3b), one can still reconstruct the image. However, there does not
seem to be any simple way of reducing this redundancy without carrying out a lengthy
search process.

iii) When X is considered to be partitioned into R and R (i.e., object and background,
say) the medial axis of R may be viewed as consisting of only those points of R whose
distances from R are local maxima. If dg is used as the metric, local maximum
means that no 8-neighbour of the point has greater distance from R. This is explained
in figure 4a when the regions of 1’s in figure 2 are considered as R and that of 0’s
as R. The entries denote the dg values of pixels from R.

Similarly, if one uses city block distance (d,) for obtaining a MAT of R, the local
maxima then refer to 4-neighbours. The corresponding d, values and the medial axis
thus obtained are shown in figure 4b. The MAT operation is therefore seen to be
influenced by the choice of a distance measure.

iv) The concept of “maximal block” or “local distance maxima” locates the centres
of the MAT at mid-points or along local symmetry axes of the regions of constant
value in X. For example, if we consider the point P(5,2) as an MA point instead of
P(6,4) in figure 4a, or consider the point P(7,4) instead of P(6,4) in figure 4b, the
changed MAT will still be able to represent and to reconstruct the image of figure 2
with the bit requirement the same as before. Note that the disks centred at the
replacing points (5,2) and (7,4) are not maximal (or their distances from the border
are not local maxima) and therefore selection of these disks locates the MA off-centre
from the uniform region.

v) Since the MA is the set of local maxima of the distances to R, it is usually
disconnected, and is two-pixel thick at the places where the region R has even width.
These factors are to be taken care of while extracting the skeleton of an elongated
region R using its MAT.

3. Fuzzy medial axis transformation
(Pal and Rosenfeld 1991). Let D be a metric space with metric d and let f be a fuzzy

subset of D. For each PeD, let g§ be the fuzzy subset of D with membership at each
point QeD defined by

Q)= inf  f(R) | G

d(P,R)=d(P,Q)
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with f(R) being the membership value of R in the fuzzy set f. Evidently, g} is a fuzzy
disk with g{,(P) =f(P)and g} < f(ie., gﬁ is a subset of f). Moreover, it is easy to see that

supgl =f.

PeD

Let C be any subset of D such that for all PeD, there exists QeC for which gf < gé.
We call such a set C an f-sufficient subset of D. Evidently, for any such subset C we have

sup gf = f. | (4)

PeC

In other words, the set {gf|PeC} can determine f. If D is finite, and we make C as
small as possible, {g/|PeC} is a compact representation of f.

In particular, let D be a digital image X and f be a fuzzy representation of X i.e.,
X ={f(P),f(P)e[0,1]}. For example, f(P), the normalized gray value of a pixel P
may be viewed as a degree of its belonging to f (or the degree to which the pixel P
is bright, say). We say that PeD is a (nonstrict) local maximum of f if P has no
neighbour Q such that gJ < gé. Let C, be the set of such (nonstrict) local maxima
of f. Evidently, the set C, is an f-sufficient subset of D, so that f is the sup of the
g4’s for all PeC,. In other words, the pixel intensity f(f) at a point ¢ of the image
can be obtained from

f(t) = max gi(z), ‘ (5)

PeCy

because ¢ has its maximum membership value (= f(#)) to one of the disks g%, PeC,.
The set C, is called the fuzzy medial axis (FMA) of f, and {gf|PeC,} is called the
fuzzy medial axis transformation (FMAT) of f. If f is a crisp subset of D ie., f&{0, 1},
the aforesaid definitions reduce to the standard definitions of the MAT (as described
in §2).

The definition of the FMAT is thus seen to involve natural extensions (generalization)
of the concepts of maximal disk, union, inclusion and symmetry for an ordinary set
to a fuzzy set. For a gray tone image X (the gray values being normalized in the
range [0,1]), it computes, first of all, the various fuzzy disks centred at the pixels
and then retains a few (as small as possible) of them, as designated by go’s, so that
their union can represent the entire image X. ’ '

3.1 Example

Consider a 5 x 5 image X as shown in figure 5. The lower left pixel of intensity 4
has coordinate (1, 1). Fuzzy disks are computed with dg metric. The centre pixel has
gp={7,6,4}. (Note that the gray values are not normalized in [0, 1]. Pixels outside
the image are assumed to be of zero intensity while computing the disk values. The
superscript f is omitted.) Here, the first entry denotes the non-normalized membership
value of the pixel itself to the disk 9.3 1€, gp value at zero distance or at radius
r=0. The second and third entries denote, respectively, the membership values of
the pixels, which are at distances 1 and 2 from the centre pixel, for the disk 93,3
For pixels having intensity 6, g, has pairs of values {6, 5} except the one at (2,2) for
which it is {6,4}. These entries correspond to r =0 and 1; the g, value at r =2 is
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5 § 5 5 5
5 6 6 6 5
S 6 1 6 5
S 6 6 6 5
Figure 5. 5 x 5 digital image. Pixels belonging to fuzzy medial
4 5 5 5 5 axis are marked bold. Pixels belonging to reduced fuzzy medial
axis are underlined. '

zero. For the pixels on the border of the image, gp is specified by the single value
f(P). The gp values are zero for r =1 and 2.

The pixels constituting the fuzzy medial axis C, are marked bold in figure 5. The
disks gp around these pixels define the fuzzy medial axis transformation of the image
X. Note that for any pixel PeX, there exists a pixel QeC, which satisfies the (subset)
criterion gp(t) < go(t) for all points ¢ in the image. Since the g, of the centre pixel is
defined by the triple of values, there is no other pixel for which the above subset
condition can be satisfied; so it is treated as a member of C,. Similarly, for the gp’s
of all the pixels having value 6, except the one at (2,2), the subset condition is not °
satisfied when the centre pixel is considered as Q. For example, consider the pixel at
the location (2,4) as P. Let the pixel at the location (1,5) be considered t. Then
the values of g, ,(t) and g, ; () denoting the membership values of ¢ corresponding
to the fuzzy disks centred at the points (2,4) and (3,3) are 5 and 4 respectively.
Therefore, the criterion g, ,,(t) < g,5 3,(t) for all teX is not satisfied. For the border
pixels of intensity 5, the subset condition is satisfied by one of the 6’s in C +» whereas
it is the centre pixel which the condition satisfies for the lower-left pixel 4.

In order to reconstruct the input image i.e., to restore the deleted pixels, simply
put back all the disk values of FMA pixels at those locations. In case a location has
more than one such value, select the largest one. For example, if we want to get the
intensity back at the point (2, 2), then put all the disk values (which are 6, 5, 5,0, 0, 0, 0, 0)
of the eight FMA pixels at that point. Since there are eight values, select the largest
one ie., 6 as the intensity at the point (2,2). Similarly, to get the intensity back at
the location (1, 1), take the largest among {4,0,0,0,0,0,0,0}.

3.2 Some remarks

i) The number of the FMA pixels in X, denoted by |C +| or |[FMA|, is dependent on
both r, the radius (or extent) of fuzzy disk used and the crispness of X. With increase
of the crispness (contrast between object and background, say) in X, |C 7| tends to
decrease. Its minimum value corresponds to the two tone version of X. As r decreases,
|C,| increases because the possibility of a disk gp being maximal increases. In other
words, the likeliness of the condition g < g, P # Q being satisfied for any P decreases
with decrease in r. (In the limiting case when r =0, FMA of an M x N dimensional
.image is the image itself and |C,| = MN.) These were explained in Pal & Rosenfeld
(1991). , |

Again, the increase in r after a certain value, say ', may not cause further reduction
in|C,| by making some more pixels P satisfy the subset property gp < gg- The higher
the fuzziness in X, the greater will be the value of r'. ‘
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i) It is seen from the figure 5 that, specifying the FMAT requires 17 values (1 disk
requires 3 values, 7 require 2 each), as compared to 25 values required by X itself.
For real images, the situation becomes even worse (Pal & Rosenfeld 1991). (Note
that if we had the pixel intensity 4 of X replaced by 5, the FMAT would have been
reduced to only one disk with g, 5 ={7,6,5}.)

iii) Itisfound to be computationally very expensive if one needs to check the inclusion
(subset) condition of a fuzzy disk g5(z) by another disk gé(t) for all P,Q and t in the
image f.

In the following sections, we will explain some concepts and algorithms developed
on these issues, namely, reducing redundancy in FMAT, extracting various approximated
versions of FMAT and the related computational aspects in order to make these tasks
efficient, so that the FMAT can be made practically feasible. '

4. Redundancy removal (RFMAT)

The removal of redundancy in pixels (fuzzy disks) from the fuzzy medial axié output
is made by considering the criterion

gh(t) <supgh (), i=1,2,..., | (6)
instead of

g5(t) < gh(@). (7

For example, the representation of the FMAT in figure 5 is seen to be redundant.
Note that the point at location (3,4) can be removed because it is contained in the
union of the fuzzy disks around (3,3) and (2,4) (or (4,4)) i.e.,

I3, 596,39 902,0 (©OF 435,V 04.4) ' (8)
or

9(3.4)smax{g(a,spg(z,a,)} (or Smax{gmm,gmm}), ' ' 9

for all pixels in X. Similar is the case with the pixel at location (4, 3) which can also
be removed. The pixels representing the final reduced FMA are underlined in figure 5.
Let RFMAT denote the FMAT after reducing its redundancy.

It therefore appears that one needs to go through a lengthy searching procedure
to determine, for every pixel P, a set of Qs (local maxima) which can satisfy the
criterion (6) of containment in order to delete P. An efficient way of performing this
task is explained below.

The algorithm checks in a preferential sequence (from exterior to interior) with
every pixel, how many pixels it is sponsoring (representing) and whether the current
pixel along with the ones it is sponsoring can all be replaced by some other (or a
combination of others). A pixel P is said to be sponsored (or represented) by a pixel
Q at a distance r if its normalized intensity f(P) = g4(P), the membership value of P to
the fuzzy set around Q. Obviously, P can have more than one sponsoring pixel other

than itself. In such a case, P can be deleted because f(P) can be reconstructed from
its sponsoring pixels i.e.,

J(@P)= Sup 9, (P), (10)

N being the set of neighbouring pixels of P at a distance 7.

v
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Now, satisfying the criterion (6) means that the fuzzy disk gp is a subset of the
union or combination of some other disks g,,, g,,,..., and therefore the pixel P
and the ones it is sponsoring (representing) can all be sponsored by a set of pixels
01, Q02,.... In such a case, P can be deleted ie., not treated as a member of the
MA because Q1, Q2,.... can take care (in the sense of representation) of both P and
its sponsoring pixels.

By rank of a pixel P we mean the extent to which the values of gp(r), r=1,2,...,
are nonzero. The higher the rank of a pixel (or disk), the greater is its possibility of
being treated as a maximal fuzzy disk or a strong sponsor (i.e., as a member of MA).
The aforesaid ranking system provides a spatial preference among the disks (or pixels)
in order to facilitate the process of considering a pixel for its possible deletion. That
is why the algorithm checks from exterior to interior with every pixel for its possible
deletion. This also enables one to provide a compact representation of the (object)
region of our interest, which may be assumed to be in the interior part of the image.

4.1 Algorithm

The aforesaid concept of deletion of pixels is further explained in” figure 6 for the
convenience of writing a computer program. The arrows from a few border pixels
point to their respective sponsors. In case a pixel gets more than one sponsor, we
select the one which comes at left most (for horizontal) or upper most (for vertical)
position. The central point is seen to sponsor all the pixels having intensity 6 at r =1,
plus the pixel (which has intensity 4) at r = 2.

Let us now consider the circled pixel for its possible deletion. This pixel is sponsoring
only the triangled pixel. It is further seen that the triangled pixel can also be sponsored
by the squared pixel (denoted by the dotted arrow) which is currently sponsoring
three pixels, and the circled pixel itself can be replaced by the centre pixel having
the highest intensity. Therefore, the circled pixel can be deleted from the MAT
representation because this pixel and the pixel it was sponsoring can now be covered
by the centre pixel and the squared pixel together; thereby making them more
responsible (i.e., stronger sponsor). Successive deletion of the pixels, in this way, from
exterior to interior will ultimately result in the reduced FMAT (RFMAT).

Although the technique for reducing redundancy has been developed here for a
gray tone image, it is well applicable for a binary image also. It is further to be noted
that, for checking of the criterion (6) for a particular pixel P, one need not search
over the entire image space for determining a set of Q’s. Similar is the case with

checking the criterion (7) for all Q and t. In the following section, we will be explaining

Figure 6. Sponsoring and deletion procedure.
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how the time of computation of FMAT can be reduced significantly by restricting the
searching space.

5. Reducing the search space

Let np and ny be the number of membership values of the fuzzy disks centred at P
and Q respectively. Let d(P, Q) denote the distance (dg metric of (2)) between P and
Q. A careful investigation of the definition of FMAT then reveals the following criteria

np <y, (11a)

d(P, Q) < ng, - - (11b)
and
te{the supporting points S, of P i.e., the points for which gh(t)> 0},
(11¢)

for checking with every pixel P the condition gl(t) < g(fz(t). The underlying concept
is that the set of supporting points of the upright square fuzzy disk (since we are
using dg metric) centred at Q should include those of P i.e., Sp = So. These conditions
allow working with a much smaller subset of an image and therefore reducing the
time of computation.

Similarly, for determining a sponsor Q for a given P, while reducing the redundancy
in FMAT, the criterion followed is simply

d(P, Q) <n,. (12)

It is to be noted from figure 6 that the consideration of 's does not arise here.

The significant reduction of searching space while computing the FMAT of an image
and reducing its redundancy is explained graphically in figures 7a and b respectively.
- The shaded portions represent the domain of Q to be only considered for a particular
P.Thesquare at the bottom of figure 7a indicates the domain of ¢ corresponding to P1.

Note that the number of rows M and columns N considered here are different.
There are four bisectors drawn from four corners of the image. They meet at the centre
and split the image space into two triangles and two trapezoids. (The splitting may
result in four triangles or four trapezoids depending on the values of M and N.) For
a given P in figure 7a, two lines are then drawn at an angle of +45° with the horizon.
The space covered by these lines with the two closest bisectors constitutes the domain
of Q. Similarly, the square drawn with length equal to twice the distance of P from
its nearest boundary constitutes its domain of t.

In the case of figure 7b, first of all, draw two horizontal and two vertical lines
placed at half the distances of P from the boundaries. The rectangle thus formed by
their intersections constitutes the maximum possible domain of Q. This rectangular

(a) | (b} |

FI

Figure 7(a). Searching space of Q and ¢ for
1:1 computing FMAT. (b). Searching space of Q'
Ll . for computing RFMAT,
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region is further reduced by truncating the corners according to the criterion (12).
These graphical representations are given for the convenience of writing an efficient
programme.

6. Methods of approximation (AFMAT)

The RFMA output of an image X as obtained in the previous section can be regarded
as a generalized fuzzy axis of symmetry and provides a kind of skeleton (of the
elongated regions) of X by allowing it to be a fuzzy subset of the image. The set of
disks {gp|PeRFMA} provides a compact representation of the fuzzy set f
characterizing the image X. The value of f(P), PERFMA may be viewed as denoting
the degree of belonging of P to the fuzzy subset “medial axis” of X as far as its
compact representation (and hence exact reconstruction) is concerned.

Since specifying the FMAT, even after reducing redundancy, needs more storage,
we will describe here three different types of procedures for approximating RFMAT
and/or reconstructed output (for more economical representation without affecting
the reconstruction much) of an image.

6.1 Approximation-during reconstruction (method 1)

The approximation technique described here has the following two steps:

Step 1: Construct RFMAT of an image X using fuzzy disks of radius 7, say.
Step 2: Reconstruct the image with disk values from 0 to z, z <r.

It means, the storage space of X is reduced simply by keeping a few lower radii
(truncated) disk values for the purpose of its reconstruction. The extent of the exactness
of reconstruction is obviously dependent on the value of z. The smaller the value of
z, the lesser is the storage requirement and the lower will be the exactness in
reconstruction. (Note that z =0 corresponds to the RFMA output.)

6.2 Approximating REMAT (method 2).

The previous algorithm does not involve any approximation on the RFMAT output;
it only truncates the disk values during reconstruction. That is, the number of disks
remains the same. The present algorithm, on the other hand, makes an approximation
on the FMAT itself by truncating off a set of disks, while keeping the radius of disks
unchanged. The truncation is achieved based on the importance of an individual
RMA pixel (or RMA fuzzy disk) on the basis of its sponsoring capability. The higher
the sponsoring capability of a pixel (or disk), the greater is its importance in
representing the image. o :

Let us consider, for example, the sponsoring capability map (figure 8) of the REMA
output of figure 5. Here, the set of 0’s means that the corresponding pixels are deleted
because these have been taken care of by others. The number “1” implies that the
corresponding MA pixel sponsors only itself. “2” corresponds to a pixel which can
sponsor some one other than itself, and so on for other numbers in figure 8. The
histogram of figure 8 will therefore represent the number of MA pixels with different
sponsoring capabilities, e.g., it has 19,0,1,1,1,2 & 1 pixels with capability 0,1,2,...,6
respectively. (The sum of these values is equal to the total number of pixels in X.)
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0 0 0 0 O
0 6 0 5 O
0 2 5 0 0
0 0 3 4 0
0 0000 Figure 8. Sponsoring capability map of RFMAT in figure 5.

For real images, the histogram is usually seen to have monotonic non-increasing
behaviour. This leads one to eliminate a large number of low sponsoring pixels from
the MA, thereby making the image representation economical without affecting much
of its reconstruction. For example, if we delete the MA pixel at location (3,2) of
sponsoring capability 2, it will produce an approximated reconstruction with the
original pixel value 5 at the point (2, 1) being changed to 4.

- The algorithm therefore has the following three steps:

Step 1. Construct RFMAT of an image X using fuzzy disks of radius r, say.

Step 2. Construct sponsoring capability map of RFMAT output (i.e., RMA pixels).

Step 3: Select a sponsoring capability number T, say, and delete all the MA pixels of
sponsoring capability < T.

The degree of exactness in reconstruction will obviously depend on the number of
deleted MA pixels and their sponsoring capability. The higher these values are, the

lower is the exactness. It will also depend, to some extent, on the value of r. These
have been demonstrated in § 7.

6.3 Extracting an optimum compact RFMAT (method 3)

The techniques described in the previous two algorithms affect the pixel intensities
over the entire image by making the approximation distributed. In many applications,
we are more interested (or only interested) in the MA of the object regions represented
by darker pixels. In that case, one may delete from the RFMA output some of the
pixels (or disks) representing the medial axis of background (i.e, lighter) regions;
thereby resulting in an approximate medial axis of X. ‘

A technique is described here to perform this task automatically where the deletion
process is guided by the principle of minimizing ambiguity in the geometry (or in
spatial domain) of RFMA. In other words, considering a fuzzy subset u defined over
the FMA output of X, its optimum (in the sense of minimizing ambiguity in geometry)
version can be extracted from one of its a-cuts having maximum “compactness” value.
This optimum version may be viewed as an approximate MAT representation of the
image X, because it keeps only a set of darker MA pixels (to an optimum amount in
the sense of maximizing compactness) for representing the object regions of our
interest and ignores the rest. A

The extent of reconstruction, particularly the background region, will be determined
by the radius r of the remaining disks. The larger the disk radius, the more will be
the coverage of background region. Before describing the method of obtaining an
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optimum FMAT, let us give the definition of compactness of a fuzzy set and the way
of determining its optimum version in terms of «-cuts.

Compactness of a fuzzy set: Let p denote a piecewise constant fuzzy representation
of an image X. Compactness of u is defined as (Rosenfeld 1984; Pal & Dutta Majumder
1986; Pal 1989; Pal & Ghosh 1992)

Comp(u) & a(u)/p* (1), (13)
where

a2 T py (14)
and

p(ﬂ) = };;;“‘i - :uj”Ai,j,kls

Lj=12,...,1, i<}], (15)
'k=1,2,...,r,j,

denote the area and the perimeter of u respectively. a(u) is the weighted sum of the
area of the regions on which u has constant value, weighted by these values. p(u) is
the weighted sum of the length of the arcs |4 along which the ith and jth regions
having constant values y; and y; respectively meet, weighted by the absolute difference
of these values.

Optimum a-cut: Let y denote the fuzzy set representation of RFMA output of an image
X. Let each element of this output be normalized so that its membership value u(P)
can lie in [0, 1]. The a-cut of such a u plane is defined as

k= {PERFMA|u(P) =}, 1>a>0. (16)

Modification of & will therefore result in different approximated FMA planes with
varying Comp(u) value. As « increases, the Comp(u) value initially increases to a
certain maximum (peak) and then for a further increase in o, the Comp(u) measure
decreases.

The initial increase in Comp(u) value can be explained by observing that for every
value of o, the background medial axis pixels having u-value less than o are not
taken into consideration. So both area (14) and perimeter (15) are less than those for
the previous value of a. But the decrease in perimeter is greater (since the lighter
pixels representing the MA of background are highly disconnected, they have high
perimeter value) than the decrease in its area and hence the compactness (13) increases
(initially) to a certain maximum corresponding to a value o = o, say.

Further increase in « (i.e., for o > '), results in a LK, Plane consisting mainly of the
object (darker) MA pixels which are not much disconnected (because most of the
lighter or background MA pixels which were highly disconnected have already been
dropped out). As a result, the decrease in area here is more than the decrease in
perimeter, and Comp(y) decreases. The y, plane having a maximum compactness
value can be taken as an optimum (in the sense of compact representation of u) FMA
(and hence FMAT) for the (object) regions of our interest in the image X. This optimum
version may also be treated as an approximate FMAT representation of the image X,
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because it retains only an optimal (in the sense of maximizing compactness) set of
darker MA pixels for representing the object region and ignores the rest.

Note further that the p,. plane, as obtained above, can be regarded as a subset
denoting the optimum fuzzy skeleton of elongated regions of the image X. The plane
1, is most compact and has minimum spatial ambiguity as far as its skeleton extraction
is concerned.

7. Experimental results

Figure 9 shows a 36 x 60, 32 level input image of “S”. Figure 10a is its FMAT output,
after reducing redundancy in the medial axis, when the fuzzy disks are computed
only up to the radius r =2 (i.e,, disk values at radii 0,1 and 2 only are considered
for computing the FMAT). The number of resulting disks in figure 10a is 943. This
consists of 781 disks with 3 membership values and 81 disks each with 2 and 1
membership values; thereby making the total number of values equal to 2586. (Note
that specifying the original image (figure 9) itself needs only 2160 (= 36 x 60) values.)
The situation becomes worse for larger values of r which lead to lesser numbers of
disks but with larger numbers of total membership values for its exact representation.
This is illustrated in table 1. For example, the RFMAT output corresponding to r =9
needs 879 disks with total number of values equal to 5449 (271 disks, 45 disks, 48
disks, 58 disks, 61 disks, 80 disks, 73 disks, 81 disks, 81 disks and 81 disks with
membership values 10,9,8,...,1 respectively). If we increase the disk radius to 17
(maximum value), the image still needs 879 disks, but the aforesaid 271 disks, each
of 10 membership values, have now been split up into 44,40, 36, 36, 28,27,26, 18 and
16 disks with membership values 10, 11,12,..., 18 respectively. As a result, the total
number of membership values to specify the image increases to 6326. The

Figure 9. 36 x 60 “S” input image.
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s

S5

& :

)r=2,(b) r=17.

corresponding RFMAT output is shown in figure 10b. (For r =0, the RFMAT is just
the entire set of pixels in the image.)

Figures 11 and 12 show the sponsoring capability map (number of pixels being

sponsored by an individual MA pixel) and the sponsoring capability histogram

(number of occurrences of the MA pixels of different sponsoring capabilities) of the

RFMAT output in figure 10a. As expected, figure 12 shows monotonic non-increasing
behaviour. ‘

Figure 13 shows the reconstructed output using method 1 for three possible
combinations of r and r1. Comparing figure 13a with figure 13b, it is seen that
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Table 1. Variation of number of fuzzy disks
and membership values with radius r for
computing REMAT of “S” image.

Radius Fuzzy disks Membership values

17 879 6326
15 879 6276
14 879 6216
10 879 5676
9 879 5449
8 880 5187
6 883 4526
5 885 . 4112
4 890 3648
3 901 3118
2 943 2586
1 1126 2165
0 2160 2160
1111 1131111 1 111111 1 11 1 111 11
13112 31 22343 2 2 322 42 223 333 242 31
1 51 23 4 23231 25221 143 5 42421115 3112 212 4 2 11 1
24 32 7 132 5 32 22 11 72221 2111151111321
2 733 4 321 15 1 228 1 12 11 12 11 61 21122 41
4 11222 1211 1 4 1 2 511 22
1 222213 21 22 2 31211 42 216
1 3231143 21 4 21 3 1 1 31 315
1 323 2243 2 1 334323 3 4 2 5 2113
5§33 32 2 11 5233 2113231 5 9 1 123
62 32 2232 32 32 1322 26 23 4 11 122
63 2422 12 137 3211 3 42 3 5 3 1 31
13 24 3362 33322 323231 14 73 2
1242 33 22 3 33 333 62 2 151
11112231 41 24 23333 33 5 3 233 7 51311
1 42 314 4332 1 5 23 413 6 4 3111
4 2226 232 12 131 334 14222 2 1
2 31 5 233 243 41 11 23123 22 2 11
12 3211 3 233 2316 2311 21 253 2 312 7
312 2 23 53 3 4 1 2 133 11 312 11
6 2 312221 3 63 411 3 42 1 21326 122121
32 1 4 2233 4 23222 11 1 111
12 2321 4 133 4 4 1 3 3212118 8 1311
1 23 11 222 211 33 42 211 222 322121 4
223 233 1221 2 13 2311 2 4 2222 223
1 33 333 5115 4 3 443111 3222 22 1 412
112 3333 2332 1236 32 833 B1 1 3 111
12 2 3333 322 2 2 33 21 623213311 1511
- 121 3232 333 24 2 3112 311 1323 21 1 24
112 11 3132 23 321 231 221 3 215 6
112 6 4 333 3233 1 9 3 331 11 3143 5 3 sS2 : ; .
12 2 34233 4 12 1 2 5 3321111 2 21 14 1 F}gure 11.  Sponsoring capa
1211 43 22212 44 1 3342133 21 2 bility map of figure 10a. The
11 211 1 32 2143 22 6 833 45 3213 2 2
111 111 5133 11 211 1 1 3 1 1113 ¢ letters A and B correspond to
1111 13 11 1 1 1111 11111111 11 1 1111 1 the numbers 10 and 11.
1217

0 1 2 3 4 5 6 7 8 9 10 11
Sponsoring  Capability of figure 10a.

Figure 12. Sponsoring capability histogram
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figure 13a has less pixels missing (blank) because it has been produced with a
comparatively larger number of disks. Furthermore, most of the uncovered pixels
are seen to lie around the edge of the object region. This is obvious from their REMAT
output (figure 10) which shows that the corresponding pixels were taken care of by
others, particularly by object pixels at distance dg = 2. Since all the disks after radius
r = 2 have been truncated, those lost pixels could never be recovered. Even keeping
one more radius (i.e., truncating disks after r>=3) could not entirely avoid the
appearance of these blanks (see figure 13c). The total number of membership values
cut down by this approximation method is explained in table 2.

Figure 14 shows the reconstructed output using method 2 for four possible

Figure 13. (a) & (b) (continued on p. 270)
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Figure 13.  (Continued) Reconstructed output using method 1. (a) r =2, z = 1; (b)
r=17z=1()r=17,z=2.

combinations of r and T. Figure 14a corresponds to the case when all the 329 MA
pixels of sponsoring capability 1 (figure 12) have been deleted. The image (figure 14a)
thus reconstructed from the truncated RFMAT still looks very similar to the original
input. Note that the number of fuzzy disks remaining after truncation is 614. This
consists of 568 disks with 3 membership values and 46 disks with 2 membership
values, thereby making the total number of values in the truncated FMAT equal to
1796. Figure 14b shows another approximated output when all the 264 MA pixels
with sponsoring capability 2 are further deleted. This brings the total number of
membership values in the truncated FMAT further down to 1023 (323 fuzzy disks with
3 membership values and 27 disks with 2 membership values). The approximated
RFMAT (AFMAT) versions corresponding to r = 17 (figures 14c and d) have 512 and

Table 2. Number of fuzzy disks and member-
ship values for different approximated FMAT
(AFMAT) versions of “S” image.

AFMAT*  Fuzzy disks ~ membership values

9a 943 1805
9b 879 1677
9¢ 879 2394
10a 614 1796
10b 350 1023
10c 512 4384
10d 345 3136
la 368 1095
11b 343 3567

*Numbers pertain to the respective figure numbers.
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345 disks (table 2). Since these disks use maximum possible radius, the approximated
representation of FMAT does not turn out to be economical.

Table 3 shows the variation of Comp(u) with « (method 3) when figures 10a and
b respectively are considered inputs. The maximum (peak) values are asterisked. The
optimum RFMA versions corresponding to the global maximum Comp(u) values are
shown in figure 15 along with the reconstructed images (figure 16) obtained from them.

The reconstructed images demonstrate the capability of the algorithm in providing
automatically an optimum FMA, which provides a good skeleton and is very effective
and economical (in the sense of storage requirement) in representing the object regions.
Here again, the use of the maximum possible disk radii (figure 16b) makes the image
representation expensive.

Figure 14. (a) & (b) (continued on p. 272)
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Figure 14. (Continued) Reconstructed output using method 2. (a) r=2, T=1;
b)r=2T=2()r=17 T=1; d)r=17, T=2.

8. Significance and applications

A few example applications of the FMAT are described below.

The FMAT is seen to be capable of extracting the fuzzy skeleton of an ill-defined object
directly from the input image without involving the concept of image segmentation.
This means, the uncertainty in selecting a proper threshold, as in conventional
procedures, does not arise. Furthermore, the fuzzy skeleton has provision to retain

the information content of the original image for making efficient decisions at the
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Table 3. Variation of Comp(y) with « for figures

10a and b.

Non-normalized ~ 10* Comp(p) 10* Comp(p)
a Figure 10a Figure 10b
0 7.35 7.87
1 7.35 7.87
2 7.35 7.87
3 7.35 7.87
4 743 7.95
5 7.62 8.16
6 8.10 8.67
7 9.65 10.34
8 10.56 11.39
9 10.84 11.61

10 11.15 11.93

11 11.24 12.07

12 11.52 12.39

13 11.61 12.43

14 11.94 12.57

15 11.98 12.61

16 12.51 12.82

17 12.61* 12.92*

18 12.55 12.88

19 12.58 12.90

20 12.97* 13.14

21 12.96 13.31%*

22 12.43 12.78

23 12.11 11.93

24 12.76 12-85

* Denotes maximum

Figure 15a.
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(b)

Figure15. (Continued) Optimum ¢-cut version of RFMAT output. (a) r = 2, o = 20;
(b) r=17, r=21.

higher levels (e.g., extracting/defining fuzzy primitives, relations and production rules)
for the purpose of recognition. This will cause the ultimate output (result) of the
system to be associated with least uncertainty.

Since the FMA (i.e., the medical axis pixels) represents the structural shape of a
region in a reduced form, it can be used as a core line or template of the image for
its shape analysis. Therefore, the FMA of an image can also be applied directly to a
pattern recognition procedure (without going through the stages of extracting fuzzy
primitives and generating fuzzy grammars) that compares directly an unknown FMA
to a set of stored fuzzy medial axes.

The third application is based on the property that the FMAT can represent and
reconstruct the image exactly. This property can be explored to an image storage

Figure 16a. (Continued)
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Figure 16. (Continued) Reconstructed output using method 3, (a) r =2, o = 20;
b)r=17, a=21.

retrieval application. The unique characteristic of this process is that the reconstruction
procedure is very robust and can degrade gracefully with respect to the decreasing
number of FMA disks and/or disk radii. From the primary FMAT definition, the FMA
pixels are seen to be highly redundant. Each FMA pixel not only stores its own
membership value, but also stores the membership values of its neighbours. With
this coupled disk environment, the end user can then have the opportunity to make
the representation economical by selecting only a set of disks based upon the
individual’s storage and/or representation requirements.

The notion of image reconstruction can further be extended to include creating a
new image from the original image. This idea can be realized from the fact that the
FMAT transforms the original image from a single valued pixel space into a multi-
valued disk space. With the multi-valued disk representation the FMA pixels are aware
of their surroundings. In addition, the FMA pixels also represent the core lines for
elongated objects. These core lines may be moved, rotated, cut and coupled from
one part of the FMA region to another. After an editing procedure, a new image can
easily be created by applying the reconstruction procedure of the FMAT. One can
therefore create many poses of the same image without actually storing all the different
configurations,

9. Discussion

The problem of extraction of medial axis transformation of a gray image with reference
to skeletonization, image representation and uncertainty management in a vision
system has been addressed. The relevance of fuzzy set theory in this context bas been
highlighted. Some algorithms for reducing redundancy in the FMAT, as defined by
Pal & Rosenfeld (1991), for generating its approximate versions and reducing the
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searching spaces for its computation have been described. The ultimate aim is to be
able to make the FMAT practically feasible and useful to a gray image for its skeleton
extraction and compact representation, for shape analysis and template matching,
for representation and retrieval, for uncertainty management in recognition and for
creating new images of various poses.

Computational aspects for the convenience of writing an efficient program have
also been addressed. The approximation algorithms initially require the removal of
redundancy in the FMAT. Two kinds of approximations are made, namely, distributed
approximation and optimum fuzzy compactness version. The distributed
approximation involves the concept of the sponsoring capability of MA pixels. On
the other hand, the optimum compactness version can be obtained automatically
based on the criterion of minimum spatial ambiguity (maximum fuzzy compactness)
from the various a-cuts of the fuzzy MA plane. It is to be noted that for some images,
there may not be any optimum (peak) attained in its Comp(u) variation with o. In
such cases, the a-cut for which there is a “maximum increase” in Comp(u) value of
the image may be taken as the optimum one.

The optimum FMA output of the “S” image can be regarded as its optimum fuzzy
skeleton (in the sense of minimum ambiguity) where the gray value of a pixel P (i.e.,
g,(0) value), PeRFMA denotes the degree of its belonging to the fuzzy subset “skeleton”.
Such skeletons are seen, in a few parts, to be disconnected. The reason (as explained
in §2.3) is that these are constituted by extracting the maximal fuzzy disks. If a
non-fuzzy single-pixel width skeleton is desired, it can be obtained by a contour
tracking algorithm (Pal et al 1983; Pal & Dutta Majumder 1986) which takes into
account the direction of contour, multiple crossing pixels, lost path due to spurious
wiggles etc. based on the octal chain code. Connectivity can further be preserved
either by putting back the maximal disks which were initially deleted for reducing
the redundancy in the FMAT representation or by inserting pixels having intensity
equal to the minimum of those of pairs of neighbours in the object. In such a case,
the compactness in representation would be further improved.

It would be of interest if some quantitative analysis can be made on the degree of
exactness in reconstruction. The measure “higher order image entropy” based on the
probability of co-occurrence of pixels (and using logarithmic gain function (Pal &
Pal 1989a) or exponential gain function (Pal & Pal 1989b)) can be used in such an
analysis.

The results shown in the paper were computed using dg metric (2). If instead of
using dg, we use d, (1) distance measure, the fuzzy disks will have diamond-like
shapes (diagonal square). As a typical illustration, the RFMA output of figure 5 using
d, metric is shown in figure 17. Note that the number of MA disks in figure 17 is
increased, because the uniform regions in figure 5 are approximated better by disks
of square shape than by those of diamond shape.

4 5  Figure 17. RFMAT output of figure 5 using d, metric.
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