Ocean circulation in the tropical Indo-Pacific during early
Pliocene (5.6—4.2 Ma): Paleobiogeographic and isotopic
| evidence
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A comparison of late Neogene planktic foraminiferal biogeography and stable isotopic records of shallow
dwelling and deep dwelling planktic foraminifera from DSDP sites 214 (Ninetyeast Ridge, northeast
Indian Ocean) and 586B (Ontong-Java Plateau, western Equatorial Pacific) provides a clue to the nature
of the ocean circulation in the tropical Indo-Pacific during early Pliocene. '

The present study reveals that the late Neogene planktic foraminiferal data from the eastern and
western sides of the Indonesian Seaway are very similar. The only distinct inter-ocean difference however
is the absence of Pulleniatina spectabilis from the Indian Ocean. This species makes its first evolutionary
appearance in the Equatorial Pacific at about 5.6 Ma (Early Gilbert reversed) and ranges up to 4.2 Ma
(Top Cochiti subchron). The complete absence of Pulleniatina spectabilis from the Indian Ocean is
attributed to blocking of westward flow of tropical waters of the Pacific to the Indian Ocean resulting in a
major change in ocean circulation in the tropical Pacific and Indian oceans during 5.6 to 4.2 Ma.

In order to understand the nature of this blockage, isotopic depth ranking of selected planktic
foraminifera was carried out which reveals that the Indonesian Seaway became an effective biogeographic
barrier to deep dwelling planktic foraminifera and thus it may be interpreted that the shallow sills that
mark the Seaway in modern times were present as early as 5.6 Ma.

The distribution of Pulleniatina spectabilis throughout the Equatorial Pacific reveals that Modern
Equatorial Pacific Under Current (Cromwell Current) flowing towards east at a depth of 200-300m
(which is also the depth habitat of Pulleniatina spectabilis) was present at the beginning of the Pliocene
(5.6 Ma).

As a sequel to the blocking of the Indonesian Seaway and the resultant interruption in the flow of
central Equatorial Current System of the Pacific to the west there was an increase in the western Pacific
Warm Pool Waters and strengthening of the gyral circulation in the Pacific and Indian Oceans. This
eventually triggered the intensification of the Asian Monsoon System.
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1. Introduction latitudes, the circulation in the upper part of the water

column is largely caused by stresses from the atmo-

The ocean circulation plays a vital role in storing and
transporting vast quantities of heat, fresh and saline
water, carbon, oxygen, nitrogen and other nutrients
and influences the earth’s climate and fundamental
processes in the biosphere. Of particular interest is the
upper part of the ocean water column i.e., mixed layer
which directly interacts with the atmosphere and
produces a multitude of climatic patterns. In the low

sphere and relative positions of land masses control
the path of circulation. The present oceanic circula-
tion system has resulted from a series of adjustments
and readjustments of the continents as a result of
plate motion operating through geologic time. During
the late Cenozoic changes in the surface water
circulation of the oceans have resulted from changes
in the ocean continent geometry including closing and
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opening of the ocean gateways e.g., opening of the
Tasman Seaway and the Drake passage resulting into
development of circum-Antarctic circulation; closure
of Tethys Seaway between the eastern Mediterranean
and Indian Ocean, closure of Indonesian and central
American Seaways all resulting into the diminishing
Equatorial Circulation and establishment of modern
hydrographic pattern in the low latitudes (Srinivasan
1996, 1999). Major changes in the surface water circu-
lation has affected greatly the oceanic plankton com-
munity whose quantitative distribution (temporal and
spatial) as thanatocoenose provide important clues to
infer the history of changes in the upper part of the
water column.

Planktic foraminifera are one of the most important
groups of microfossils used for reconstructing the past
oceanic circulation. Changes in planktic foraminiferal
biogeographic patterns have been used to infer oceano-
graphic changes in the upper part of the water column
(Bradshaw 1959; Ingle 1967; Bandy 1968; Kennett and
Vella 1975; Bé 1977; Vincent and Berger 1981; Keller
1981(a,b); Kennett 1982; Kennett and Srinivasan 1983,
Kennett et al 1985; Elmstorm and Kennett 1985;
Srinivasan and Singh 1991; Srinivasan and Sinha 1991,
1992, 1997, 1998; Sinha and Srinivasan 1996). Besides
this, the studies on the oxygen and carbon isotopic com-
position of planktic foraminiferal tests have enabled
ranking them according to their depth habitat and this
information on depth stratification of planktic for-
aminifera has been used to infer oceanographic changes
at various depths in the upper part of the water column
(Keller 1985; Gasperi and Kennett 1992).

The present study aims at understanding the nature
of ocean circulation across the Indonesian Seaway
during late Cenozoic based on planktic foraminiferal
biogeographic and isotopic evidence. Since the begin-
ing of the Miocene the Indonesian Seaway has played
a crucial role in bringing about profound changes in
equatorial circulation both in the Indian and Pacific
oceans by influencing the volume of Pacific outflow
into the Indian Ocean (Kennett et al 1985; Srinivasan
and Sinha 1998). The Seaway has acted as a leaky
barrier from time to time influencing the volume of
Pacific outflow into the Indian Ocean through the late
Cenozoic. The closure of the Indonesian Seaway is not
a one time event but has occurred more than once in
response to tectonic movements in the Indonesian
region during the Mio-Pliocene. During the Quatern-
ary, the eustatic fall of sea level due to glacial maxima
resulted in the temporary blocking of this Seaway.
The changing volume of the Pacific outflow into the
Indian Ocean results in variation in the amount of
western Pacific Warm Pool and Gyral circulation in
the tropical Pacific and Indian oceans which in turn
has profound effect on El Nino event (Gordon and
Fine 1996). Thus, the determination of timings and
nature of the closure of this Seaway is vital for getting
a better insight into the oceanographic and climatic
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changes that occurred in the tropical Indo-Pacific
region during the late Cenozoic. Further, this tropical
zone of the ocean has been the focus of attention for
paleoceanographic and paleoclimatic researches (Gor-
don and Fine 1996). The sea surface here receives the
greatest amount of solar heat which is then trans-
ferred by currents far beyond this zone determining
the climate and the weather over a large portion of the
globe. Intensive transfer of kinetic energy from the
atmosphere into the oceans occur in this zone of trade
winds, the most stable of the earth’s wind system.

2. Modern ocean circulation in the tropical
Indo-Pacific

The surface water circulation in the tropical Indo-
Pacific in modern time is marked by weak westward
flow of tropical waters from the Pacific into the Indian
Ocean through the Indonesian Seaway. The water
enters from the Central Equatorial Current System of
the Pacific, a very small part of which flows into the
Indian Ocean (South Equatorial Current) and a small
part returns as Fast Australian Current in an anti-
clockwise motion causing gyral circulation in the waters
of the Pacific (figure 1). This incoming of the rela-
tively excess fresh waters from the western Pacific to
the Indian Ocean through the Indonesian Seaway is
an important regulator of the meridional overturning
of these oceans and hence perhaps of the global ther-
mohaline circulation (Gordon and Fine 1996). Further
the seepage of warm water out of Pacific affects the
volume of the Western Pacific Warm Pool which has
great influence on El Nino.

3. Paleobiogeographic and isotopic approach

Planktic foraminifera have long been used as tracers of
the oceanic surface water circulation in many regions
(Kennett et al 1985). In this paper, by comparing
planktic foraminiferal biogeography across the Indo-
nesian Seaway an attempt has been made to infer the '
nature of surface water connection between the tro-
pical Indian and Pacific oceans. Recent observations
on the depth habitat of planktic foraminifera based on
oxygen and carbon isotopic depth rankings provided a
better insight into the evolution of structure in the
upper part of the water column (Gasperi and Kennett
1992). By employing oxygen and carbon isotopic
method an effort has been made to understand the
vertical structure of the water column in the tropical
Indo-Pacific.

4. Material and methods

The material consists of late Neogene deep sea cores
from DSDP site 214 located on the Ninetyeast Ridge,
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Table 1. Location of the cores discussed in the present work.

Site Latitude Longitude Water depth (M) Physiographic province

DSDP 214 11°20.21'S 88° 43.08'E 1665 Ninetyeast Ridge,

ODP 758A 05°23.49'N 90° 21.67'E 2923.6 Northeast Indian Ocean

ODP 761B 16°44.22'S 155° 32.10'E 2167.9 Wombat Plateau, Indo-Pacific

DSDP 5868 00° 29.84'S 158°29.89'E 2208 Ontong Java Plateau,
Western Equatorial Pacific

RC-12-66 02° 36.06'N 148° 12.08'W 4755 " Central Equatorial Pacific

V24-59 02° 34'N 145°.32 W 4662

DSDP 77 00° 28.90'N 133° 13.70'W 4290

DSDP 83 04° 02.08'N 95° 44.25'W 3645

DSDP 84 05° 44.92'N 82°53.20'W 3096 Eastern Equatorial Pacific

CHUB 30 07°17.07N 127° 24.06'W 3640

DSDP 158 06° 37.36'N 85° 14.16'W 1953

DSDP 503 04°.04'S 168° 02K 3672

DSDP 62 01°52.02'N 14° 56'E 2591 .

DSDP 63 00° 50.02'N 147° 53.08'E 4472 Caroline Ontong Java Region

DSDP 64 01° 44.05'S 158° 36.05'E 2052 Equatorial Southwest Pacific

CAP38BP 14°.16'S 119° . 11'W 3400 Eastern Tropical Pacific

LSDH78BP 04°.31'S 168° .02E 3208 Western Equatorial Pacific

northeast Indian Ocean and DSDP site 586B posi- Table 2. Oxygen and carbon isotopic composition (PDB) of

tioned at the Ontong Java Plateau, western Equator-
ial Pacific (figure 2, table 1). Graphic correlation
method was employed to compare and contrast the
late Neogene planktic foraminifera between the north-
east Indian Ocean and western Equatorial Pacific. In
addition, quantitative planktic foraminiferal data
from the two sites were also compared (Srinivasan
and Sinha 1998). The absolute ages of the planktic
foraminiferal datums in the examined sites are based
on integration of biochronologic data with paleomag-
netic stratigraphy (Barton and Bloemendal 1985)
employing Graphic correlation method (Srinivasan
and Sinha 1992). The revised ages for the magnetic
chron boundaries were recently provided by Berggren
et al (1995a,b) which have been adopted in this paper.
I Analyses for oxygen and carbon isotopic composi-
tion of selected planktic foraminifera were carried
out with the assistance of Prof. J P Kennett at the
University of California, Santa Barbara, USA. Values
are given in delta notation as per mil deviation of the
80 or 13C ratios of the sample from that of the PDB
standard. The analyses were carried out for three
species of planktic foraminifera i.e Pulleniatina spec-
tabilis, Dentoglobigerina altispira and Globigerinoides
sacculifer in order to rank them according to.their
depth habitat. The data are provided in table 2.-These
three species were selected [or isotopic analyses
because of the following reasons.

e Comparison of faunal data between the two oceans
reveals absence of Pulleniatina spectabilis from the
Indian Ocean and its presence in abundance in the
Equatorial Pacific.

selected planktic foraminiferal species from DSDP site 586 B,
Western Equatorial Pacific.

Planktic foraminiferal species 680 s3C

Pulleniatina spectabilis —-1.121 +1.054
Globigerinoides sacculifer —1.290 +2.425
Denitoglobigerina altispira —1.237 +1.761

e The isotopic depth ranking of Pulleniatina specta-
bilis is not available as yet.

e Dentoglobigerina altispira and Globigerinoides sac-
culifer have been earlier ranked as shallow dwelling
forms (very close to surface) based on oxygen and
carbon isotopic composition. These two species were
picked up for isotopic study from the same sample
in which they co-occur with Pulleniatina spectabilis
to further ascertain their relative depth ranking:

5. Observation

Figures 3 and 4 show the sequential order of late
Neogene planktic foraminiferal events at DSDP site
214 (northeast Indian Ocean) and 586B (western
BEquatorial Pacific) respectively. A comparison of the
planktic foraminiferal assemblages between the two
sites reveal:

o Both of these sites contain an uninterrupted record
of late Neogene planktic foraminiferal succession.

e The quantitative planktic foraminiferal data (Sri-
nivasan and Sinha 1998) at the two sites show that
the abundance and coiling patterns exhibited by
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Pulleniatina, Globorotalia and Menardella are very
much similar.

e The most striking difference between the two sites
however is the complete absence of planktic fora-
miniferal species Pulleniatina spectabilis from the
Indian Ocean site 214 (figure 3).and its presence at
the western Equatorial Pacific site 586B (figure 4).
At this site, the species occurs from core 17-3 to core
12-4 in the early Pliocene (early Gilbert Reversed
to Top of Cochiti Subchron, 5.6-4.2Ma). It was
Kennett and Srinivasan (1983) who first pointed
out that Pulleniatina spectabilis is confined to the
tropical Pacific and is not an Indo-Pacific species as
considered earlier. The published data on the late
Neogene planktic foraminifera from ODP site 758A
(Jenkins and Gamson 1994), ODP site 761B
(Zachariasse 1992), DSDP site 62 (Bronnimann
and Resig 1971), DSDP sites 77, 83 and 84 (Orr and
Jenkins 1980), DSDP site 158 and 503 (Kaneps
1973; Keigwin 1976, 1982), Core V-24-59 (Hays et
al 1969), Core RC-12-66 (Saito et al 1975), Core
CAP 38 BP and LSDH 78P (Parker 1967) also
reveal that Pulleniatina spectabilis is completely
absent from the Indian Ocean and is restricted to
tropical Pacific only.

e Pulleniatina primalis which is the ancestral form of
Pulleniatina spectabilis is present in both the
tropical Indian and Pacific oceans (figures 3 and 4).

o A comparison of relative abundance of Pulleniatina,
Globorotalia menardii and Dentoglobigerina altis-
pira at site 586 B indicates that occurrence of
Pulleniatina spectabilis is accompanied by a sudden
increase in the abundance of D. altispira and a
simultaneous decrease in abundance of Globorotalia
menardii and Pulleniatina (figure 5).

e The oxygen and carbon isotopic data for Pull-
eniatina spectabilis, Dentoglobigerina altispira and
Globigerinoides sacculifer (table 2) indicate that
6'80 value is higher for Pu. spectabilis than those
_,for D. altispira and Gs. sacculifer whereas §'3C

‘qvalue for Pu. spectabilis is lower than those of D.
‘altispira and Gs. sacculifer.

6. Discussion

It is now well established that modern planktic
foraminifera are sensitive tracers of the surface and
near surface water masses and their distribution in the
deep sea sediments is largely reflected by prevailing
patterns of surface water circulation. Pulleniatina
primalis which is the ancestral form of Pulleniatina
spectabilis occurs both in the Indian Ocean and tro-
pical Pacific (figure 6a). On the other hand, the pre-
sence in abundance of Pulleniatina spectabilis in the
tropical Pacific and its absence in the Indian Ocean
suggest that this species was prevented from emigra-
tion into the Indian Ocean because of the develop-
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ment of a barrier at the Indonesian Seaway causing
the severing of surface water circulation between the
two oceans (figure 6b). In order to understand the
nature of this barrier and the resultant changes
in circulation, a comparison of oxygen and carbon
isotopic data of Pulleniatina spectabilis, with known
shallow dwellers Dentoglobigerina altispira and Globi-
gerinoides sacculifer was made. :
The isotopic data reveal higher value of §'80 and
lower value of §*3C for Pulleniatina spectabilis than
those of the shallow water forms D. altispira and Gs.
sacculifer thereby suggesting Pulleniatiana spectabilis
to be a deep dwelling planktic foraminifera. Gasperi
and Kennett (1992) ranked the planktic foraminifera

‘according to depth habitat based on oxygen and

carbon isotopic composition of their tests. The basic
assumptions are: '

(1) each species calcified its test in isotopic equili-
brium with sea water,

(2) water temperatures are highest at the surface and
decrease with depth and

(3) oxygen isotopic fractionation is temperature
dependent so that shallow dwelling species have
lower 6'30 values relative to the deep dwelling
species,

(4) Carbon isotopic values in planktic foraminifera
change vertically in the upper part of the water

~ column such that §**C values are higher in surface

waters due to high biological productivity and
decrease with depth as respiration and decay of
organic matter recycles **C rich CO, back to the
water.

Thus the planktic foraminiferal species are ranked
using their relative §'30 values from lowest (shallow)
to highest (deep) and their §*3C values from highest
(shallow) to lowest (deep). The present isotopic ana-
lysis for Pulleniatina spectabilis reveals highest §*°0
values and lowest 63C values as compared to known
shallow water species Dentoglobigerina altispira and
Globigerinoides sacculifer. This comparison clearly
suggests Pu. spectabilis to be a relatively deep water
form (200-300m).

It would be worthwhile to mention here that the
reported occurrence of Pulleniatina spectabilis in the
equatorial Pacific lies in the region which in modern
time is marked by a strong eastward flowing Equa-
torial Pacific Undercurrent (Cromwell Current) at a
depth of ~200-300 m. Considering the depth habitat
of Pulleniatina spectabilis (200-300m) and its repor-
ted occurrence in the equatorial Pacific (figure 7), it is
suggested that the Cromwell Current was present in
the Equatorial Pacific as early as 5.6 Ma.

The obstruction in the westward flow of tropical
waters of the Pacific into the Indian Ocean caused an
increase in the volume of western Pacific Warm Pool
bringing favourable conditions for the warm surface
dwelling planktic foraminifera e.g., Dentoglobigerina
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Figure 6. Tropical surface circulation in the Pacific (a) during late Miocene (6.4-5.6 Ma) based on biogeographic distribution of
Pulleniatina primalis and (b) during early Pliocene (5.6-4.2Ma) based on biogeographic distribution of Pulleniatina spectabilis
(after Srinivasan and Sinha 1998). Black arrows represent warm ocean current and white arrows represent cold ocean current.
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Figure 7. Modern Equatorial Pacific Under Current (Cromwell Current) and location of the cores (shown as circles) in which

occurrence of Pulleniatina spectabilis has been reported.

altispira as revealed by very high abundance of this
species as compared to low abundances of the deep
dwelling forms Globorotalia menardii and Pulleniatina
during the interval of occurrence of Pulleniatina spec-
tablis at site 5868 (figure 5).

During the last two decades several workers through
their studies on Indo-Pacific deep sea cores and from
land-based investigations on the Indonesian Island,
inferred the timing of closing of the tropical Indo-
Pacific Seaway. According to Edwards (1975) who
proposed one of the earliest models for the Cenozoic
paleocirculation in the Indo-Pacific, the gateway pro-
bably closed by the early middle Miocene.

Studies related to the Indo-Pacific ocean gateways
employing biogeographic approach were attempted by
the CENOP Group with their results appearing in a
special publication edited by Kennett (1985).

Kennett et al (1985) quantitatively mapped the
changing biogeographic patterns of the Pacific plank-
tic foraminifera for three time slices in the Miocene:
two in the early Miocene (22 and 16 Ma) and one in the
late Miocene (8 Ma). They observed a distinct east-
west tropical faunal provincialism during.the early
Miocene. This provincialism had essentially vanished
by the late Miocene. Kennett et al (1985) interpreted
this change to reflect initiation of Equatorial Under

Current during the late middle Miocene (11-12Ma)
caused by the closure of the Indonesian Seaway.

Keller (1985) based on the studies related to the
depth stratification of the Miocene planktic foramini-
fera and Romine and Lombari (1985) based on radio-
larian assemblages from the western equatorial Pacific
arrived at similar conclusions.

Srinivasan and Singh (1991) recorded the largest
changes in the assemblages of planktic foraminifera
occurring in the tropical Indian Ocean at about 11—
12 Ma which they considered to have resulted due to
the closure of the Indonesian Seaway as a consequence
to the northward movement of Australia and tectonic
evolution of the Indonesian Archipelago thus agreeing
with the findings of the CENOP Group.

Recently Wei (1995) observed a southward shifting
of the Tasman front and increase in the vertical tem-
perature gradients in the southwest Pacific during the
early Pliocene. This he attributed to an intensification
in the western boundary current and development of
warm pool waters in the western Equatorial Pacific as a
result of the closing of Seaway in the New Guinea area.

Thus, the present study and the investigation car-
ried out by Wei (1995) based on biogeographic and
isotopic evidence suggest effective closure of Indone-
sian Seaway again during early Pliocene (5.6-4.2 Ma).
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A tectonic model recently developed for the Phi-
lippine Sea and the western Pacific based on paleo-
magnetic and geological data reveals that collision
between the Philippine Sea—Australia Plates during
the early Miocene and subsequent westward (clock-
wise) motion of the Philippine Sea Plate related to
Sunda land played a crucial role in the closure of the
Indonesian Seaway (Ali et al 1993). According to Ali
et al (1993) the Indo-Pacific gateway began to close
gradually after 22Ma constricting the gateway and
impairing the westward flow of equatorial waters. The
seaway got completely closed by the initiation of
the Halmahera Arc at 11 Ma at the western edge of
the south part of the Phillippine Sea as a result of the
subduction of the Molucca Sea Plate.

Nishimura and Suparka (1997) based on tectonic
considerations suggested that the Indonesian Seaway
was effectively closed during early middle Miocene
(17-15Ma) and completely severed by about 6Ma
preventing further interchange between surface waters
of the tropical Pacific and Indian Oceans.

Linthout et al (1997) suggested that the obduction
and post obduction exhumation in the late Miocene
(9.9-7.5 Ma) in the southern Banda Sea and also east
of the Banda Sea played a major role in the closure of
the Indonesian Seaway.

From the foregoing discussions it is evident that
the closure of the Indonesian Seaway was not a one
time event but has occurred more than once as a result
of regional tectonism leading to the evolution of the
Indonesian Archipelago during the Mio-Pliocene.
During the Quaternary some channels of Seawater
were closed and opened resulting from sea level chan-
ges caused by glacial maxima and also minor tectonic
adjustments.

The timing of the reconstructions of the series of
plate tectonic events in the Indonesian region during
22 Ma and 11 Ma (Ali et al 1993), 17-15 Ma and 6 Ma.
(Nishimura and Suparka 1997) and 9.9-7.5Ma
(Linthout et al 1997) is in agreement with the history
of shallowing and eventual closure of the Indonesian
@eaway as inferred from changes in biogeographic
patterns and vertical thermal structure evolution of
Late Neogene equatorial Pacific sea waters (Kennett
et al 1985; Keller 1985; Romine and Lombari 1985;
Srinivasan and Singh 1991; Srinivasan and Sinha
1997, 1998; and Wei 1995). Thus there appears to be a
close link between the plate tectonic events, resultant
circulation pattern and biogeographic changes in the
tropical Indo-Pacific region.

7. Conclusion
The biostratigraphic data from the tropical Indian
Ocean and western Equatorial Pacific are very similar.

e The only distinct difference is the absence of Pulle-
niating spectabilis from the Indian Ocean and its
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presence in the tropical Pacific during early Plio-
cene (5.6-4.2Ma). -

o The absence of Pulleniatina spectabilis is interpreted
to represent evidence of a biogeographic barrier
between the tropical Indian and Pacific Oceans
beginning at about 5.6 Ma. This is a strong evidence
for the closure of the Indonesian Seaway by the
earliest Pliocene (5.6 Ma).

e Pulleniatina spectabilis was exclusively a deep dwell-
ing planktic foraminifera (> 200-300m) as revealed
from . isotopic data and hence was prevented from
migration into the Indian Ocean by the shallow sills
in the Seaway. Thus these shallow sills that presently
mark the Seaway were present as early as 5.6 Ma.

e The closure of the Indonesian Seaway has occurred
more than once since the beginning of the Miocene
in response to the tectonic activity in the Indone-
sian region and later in the Quaternary due to
eustatic fall of sea level as a result of glacial maxima
and minor tectonic adjustments.

e The intervals of major tectonic activity leading to
the evolution of the Indonesian Archipelago also
mark the periods of closure of the Indonesian Seaway
and resultant changes in circulation pattern and
biogeography. These intervals are during early
Miocene (22Ma), Middle Miocene (17-15 Ma), late
middle Miocene (12-11Ma), late Miocene (9.9-
7.5 Ma) and early Pliocene (5.6-4.2 Ma). Thus there
appears to be a close link between the plate tectonic
events, resultant circulation pattern and biogeo-
graphic changes in the tropical Indo-Pacific region.

e The closing of the Indonesian Seaway resulted into
increase in the western Pacific Warm Pool waters in
the tropical Pacific and increased gyral circulation
in the tropical Pacific and Indian oceans. Increased
gyral circulation in the Indian Ocean acted as a
triggering mechanism for the intensification of the
Asian Monsoon System.
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