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Theory of Birefringence of 
Nematic Liquid Crystals 
S. CHANDRASEKHAR, D. KRISHNAMURTI and 
N. V. MADHUSUDANA 
Department of Physics 
University of Mysore 
Mysore 

Abstract-A theory of the birefringence of nematic liquid crystals is de- 
veloped taking into account the intermolecular potential energy arising 
from dipole-dipole, anisotropic dispersion, induction and repulsion inter- 
actions. The potential energy exhibits a dependence on molecular orientation 
and is expressible ae - (uo + u1 cost9 + uz cosat9 + u4 cos48 + u6 cosee + ...) 
where t9 is the angle which the long axis of the molecule makes with the 
uniaxial direction of the liquid crystal. The birefringence of the medium 
is evaluated in terms of the Boltzmann distribution of the oriented mole- 
cules. The theory explains the experimentally observed result that the 
temperature coefficient of the extraordumy index is large and negative 
whereas that of the ordinary index is small and positive. Analysis of the 
data on p-azoxyanisole and p-azoxyphenetole shows that dispersion and 
repulsion forces play a predominant role in determining the temperahre 
variation of the birefringence. 

Assuming that the molecular librations in the liquid crystal can be 
represented by a system of harmonic oscillators, the rn librational mnpli- 
tude is evaluated for p-azoxyaniaole from recent measurements of the 
ultrasonic velocity. The increase in the rn amplitude With temperature 
in the nematic range is found to be in good agreement with that obtained 
directly from the experimental data on birefringence. 

1. Introduction 

Nematic liquid crystals are optically uniaxial, positive and 
strongly birefringent. Their refractive indices are very sensitive 
t o  temperature, the temperature coefficient being about a hundred 
times greater than that for a solid crystal. The ordinary index 
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46 MOLECULAR C R Y S T A L S  A N D  L I Q U I D  C R Y S T A L S  

increases when the liquid crystal is heated, whereas the extra- 
ordinary index decreases ; thus the birefringence falls rapidly 
with rise of temperature. At the nematic-liquid transition point 
there is a discontinuous change in the refractive indices and the 
birefringence drops abruptly to zero. 

A theory of the optical behaviour of the liquid crystalline 
phase was proposed by Born.lB2 It would follow from his theory 
that the transition to this phase takes place at  the critical tern- 
perature corresponding to the '' polarization catastrophe " in a 
medium consisting of permanent electric dipoles. However, as is 
well known from the work of Onsager3 such a catastrophe is not 
expected to occur. Born also derived the expression 

where p1 and pz are respectively the densities of the liquid crystal- 
line and isotropic phases, n the refractive index, the suffixes e, o and 
i denoting extraordinary, ordinary and isotropic. The refractive 
indices of p-azoxyanisole at several wavelengths and temperatures 
have been found to satisfy this expression a p p r ~ x i m a t e l y . ~ ~ ~  

The chemical evidence for the dependence of mesomorphic 
behaviour on factors such as molecular shape, polarizability and 
dipole moment have been discussed a t  length by Brown and 
Shaws and by Gray.' Brown and Shaws (p. 1055) have remarked 
that " compounds exhibiting mesomorphism have molecules that 
are elongated, and in some cases flattened as well, and which 
possess one or more polar groups ',. Gray' (p. 149) has also stated 
that " to constitute a potentially mesomorphic system, the long 
narrow molecules must have permanent dipole moments and must 
be highly polarizable ". However, from his own investigations 
on the mesomorphism and chemical constitution of a wide range 
of isomorphous compounds, Gray has concluded that the contri- 
bution of dipole-dipole forces to nematic stability is comparatively 
small. 

The fkst attempts to  deduce the degree of molecular order in 
the nematic liquid crystal from its physical properties were by 
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BIREFRINGENCE O F  NEMATIC L I Q U I D  CRYSTALS 47 

Zwetkoffs and by chat el ah^.^ Maier and Saupelo-la have developed 
a theory of the nematic state in which they have assumed that the 
orientational potential energy of this phase is determined entirely 
by dispersion forces. The theory leads to a universal curve for 
the molecular orientation factor as a function of TVZ/T,Vf, 
where T and V are the temperature and molar volume in the 
nematic phase, T, and V e  the corresponding values a t  the nematic- 
isotropic transition point. However, significant deviations from a 
common curve have been observed e~perirnentally.~s One of 
the reasons for their ignoring the contribution of dipoles to the 
orientational potential energy was that ferroelectricity had not 
been observed in liquid crystals. The early experiments to detect 
free charges on the surface of the liquid crystal, carried out with a 
view to testing Born's dipole theory, had yielded negative 
results.14J5 Recent investigations appear to show the existence 
of the hysteresis loop and of polarized domains,1s-21 but the 
question of ferroelectricity in nematic liquid crystals has not yet 
been settled unequivocally. 

In  view of this recent evidence for the possible existence of 
oriented dipoles in nematic liquid crystals, we proposed an 
elementary theory of the birefringence of the nematic state, 
postulating that the intermolecular interactions are predomin- 
antly of the dipole-dipole type.2z We present here a general 
theory taking into account not only the dipole-dipole interactiofis, 
but also the anisotropic dispersion, induction and repulsion forces, 
all of which will, no doubt, contribute to the orientational 
potential energy. Comparison of the theory with experiment 
shows quite conclusively that our earlier assumption is not valid 
and that, in fact, repulsion and dispersion forces play a very 
important role in determining the temperature variation of the 
birefringence. 

2. The Intermolecular Potential Energy 

It is well-known from the work of KeesomZs and Londona' 
that the predominant interactions between organic molecules 
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48 MOLECULAR CRYSTALS A N D  LIQUID CRYSTALS 

consist of dispersion, dipole-dipole , induction and repulsive forces. 
We work out below these interactions for an assembly of aniso- 
tropic molecules in the ordered nematic state and obtain the 
result that the potential energy of any molecule is a function of its 
orientation with respect to the mean direction of the molecules in 
the medium. In  Section 3 we determine the principal polariz- 
abilities of the medium, and hence the birefringence, in terms of 
the probability distribution of the molecular orientations. 

For a pair of molecules the mutual potcntial energy is a function 
of the molecular orientations with respect to the intermolecular 
radius vector rij, but for an assembly rij itself assumes diverse 
directions. Hence, i t  is convenient to asume a space fixed 
coordinate system, and, in such a case, the potential energy will 
be a function not only of the orientations of the molecules but 
also of the distribution of rij. In  a solid crystal, the molecular 
arrangement is defined by the crystal structure, but in a liquid 
crystal it can assume diverse complexions. Therefore, to evaluate 
the average orientational potential energy, we shall first average 
over all possible distributions of rij. The essential characteristic 
of a liquid crystal is that its molecular distribution function is 
anisotropic (see, for example, Landau and Lifshitz26). In  the 
optically uniaxial oriented nematic state the average distribution 
function should exhibit cylindrical symmetry, as has been con- 
fbmed by recent X-ray s t ~ d i e s . ~ ~ * ~ ~  If the direction cosines of rij 
are arij  P r i j  Y r i j ,  
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B I R E F R I N G E N C E  OF NEMATIC L I Q U I D  CRYSTALS 49 

2.1. DIPOLE-DIPOLE INTERACTION 
We' shall assume that the dipole moment of the molecule is 

directed along its long axis. This assumption is justifiable since 
NMR studiess6 (see also Maier and Saupe") indicate that the 
molecule rotates about its long axis, so that only the component 
of the dipole moment along this axis is effective. 

We shall choose a space fixed coordinate system X Y Z ,  the Z 
axis being the optic axis of the medium. The interaction energy 
between two identical dipoles of moment p is given by 

2 
U ~ P  = 5 (ei - ej - 3ei - erirej - erij) 

where ei, e, and eril are the unit vectors of the dipoles and rij 
respectively. Therefore 

" <j 

dip - p2 
u 

u;j - [ ( m i  3, + Pi Pi + yi rj) - 3 ( a i a r i j  + Pi P r i i  + yi Y r i j )  

x ( a j ~ r i i  + P j P r i j  + Y i y r i j ) l  

where ai Pi y i ,  uj Pj y j  and urij P r i j  y r i j  are the direction cosines of 
ei, e, and erij respectively. Averaging over rij and transforming 
to polar coordinates, i.e., a = sinecos+, = sinesin4 and 
y = cose, we have 

U$p = - ( p / r 3 D [ 2  cos Bi cos O j  - sin Oi sin Oj COS(+~ - +,)I 
where D = (37% - 1)/2. In  the optically uniaxial nematic 
state we may suppose that for every ei, +i and ej, cos(di - +j) 

can have both positive and negative values, i.e., the azimuthal 
orientations +, and +j + T are equally probable. Hence the 
average potential energy per dipole pair making angles Oi,  ei is 

- 

For a spherically symmetric distribution D = 0 and U$@ vanishes, 
but if oriented domains exist D cannot vanish. 
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50 MOLECULAR CRYSTALS A N D  LIQUID CRYSTALS 

2.2. DISPERSION FORCES 
The expression for the dispersion energy between a pair of 

anisotropic molecules possessing cylindrical symmetry has been 
derived for the h t  time very recently by van der M e r ~ e . ~ '  In 
the general case, each molecule may be associated with three 
mutually perpendicular dipole oscillators so that the energy 
involves nine interactions. We have derived the expression for 
the potential energy of an assembly of molecules taking into 
account nine interactions per pair, but the theoretical treatment 
is so cumbersome that we discuss here only a simplified model in 
which each molecule is associated with a single oscillator parallel 
t o  its long axis. W e  have verified that both models give the same 
functional dependence of the potential energy on Bi, Bj .  

The interaction potential energy between two dipole oscillators 
is given by 

qa 
q.?. V. .  = - (r# - rj - 3ri - erir ri erij) 
v 

where q is the charge, ri and rj are the position vectors of the 
charges with respect to their equilibrium positions and erij is 
the unit vector of rij.  When the molecules are infinitely far apart 
and in their ground states, their energy corresponding to the un- 
perturbed state is Eo, = &,, + ihv, = hv,, where v o  is the 
frequency of the oscillator. As the molecules approach each other 
the system is perturbed owing to  the effect of V i j .  Since V i j  is 
an odd function of ei and ej (the unit vectors of ri and rj) the 
first order perturbation energy vanishes and the second order 
perturbation energy, which is the dispersion energy, turns out M 

(ri - rj - 3ri - e raJ .. r .  J - e r z 3  ..)a np, 

(Enanj - Eoo) 
u.. - 

a3 d i p  - - ($).Cc 
4 

where ni and nj are the quantum states of the two oscillators. 
For a linear harmonic oscillator, a t  most one term survives 
having a non-zero matrix element (0 I 5 I 1) = (2/1,)-1'2 con- 
necting its ground state with its first excited state; all other 
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B I R E F R I N G E N C E  O F  NEMATIC L I Q U I D  CRYSTALS 51 

terms (0 I [ I n) vanish, where 6 is the position coordinate and 
p = C ! /hv , ,  C II being the stiffness constant. Hence 

which is valid for an oscillator with a single electron. I f f  is the 
oscillator strength of the molecule, (4) has to be multiplied byf*. 
As the polarizability a ,  = fq2 /C , ,  PI = fq2/aIhvl .  Also, since 
v ,, = ( 9 1 2 ~ )  (f/ma , )I/*, where m is the mass of the electron, 

U ~ F P  = - Z ( e .  - e .  - 3e. * e . . e .  e ..)2 t 3  a rt i  I r o  
<j 

r3 

Averaging over rij as before, introducing polar cordinates and 
averaging over + (i.e., sin+ = cos+ = 0; sin2+ = cos2+ = a, 
etc.), the average potential energy per pair of molecules making 
angles Bi ,  0, is 

- -  - -  

When they are parallel to each other and broad side on 
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52 MOLECULAR CRYSTALS AND LIQUID CRYSTALS 

cosei = cosej = i ; y r i j  = 0 ;  a d  

When the two molecules can take all possible orientations - -  
.. - 1 -  a .. = p .. = 0 ;  coszBi = coszBj = *; and rw - 9 rw r z a  

These results are identical with those of van der Merwe when in 
his equations we substitute aL = 0. 

If the molecular distribution function is spherically symmetric, 
(6) reduces to an expression very similar to that derived by 
Maier and Saupell except that our theory involves the molecular 
parameters more explicitly. 

2.3. INDUCTION EFFECT 

sake of simplicity that a1 = 0. 

Uind(piaj) = - + a n j E u ;  

Again, aa in the foregoing calculations, we shall assume for the 

(7) 
PZ 
Gj = - &a 2 (ei - ej, - 3ei - erij ej - erij)2 

where E , I  is the field at j due to the dipole i. We have a similar 
expression with i and j interchanged, so that 

Since (7) and (4) are closely similar, U;Td becomes identical 
with (6) except that g has to be replaced by a I pz. 

2.4. REPULSION ENERQY 

The repulsion energy between atoms with spherically sym- 
metric charge distributions may be expressed as bexp( - ur). 
Hitherto no attempts have been made to calculate the repulsive 
potential energy of an assembly of non-spherical molecules as 
a function of their relative orientations. To evaluate the orienta- 
tion dependent potential energy we consider a simplified model 
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BIREFRINQENCE O F  NEMATIC L I Q ~ ~ I D  CRYSTALS 53 

consisting of identical linear molecules each of which is replaced 
by three centres of repulsion, two near the ends of the molecule 
and one at its centre. Most of the common nematic substances 
(e.g., p-azoxyanisole, p-azoxyphenetole) have molecules which are 
very nearly symmetrical about the centre and, therefore, we shall 
assume that the centres of repulsion near the ends of the molecule 
are identical but different from that a t  the middle. 

We denote the repulsion centres a t  the middle of the molecules i 
and j by Cli, Clj, and those at the ends by C,,, C3i and C2j, C3j. 
Let Cli be chosen as the origin of the coordinate system so that 

CliClj = ri,, and let CliCZi = CljCZj = 1. The coordinates of 
the six repulsion ccntres are : 

- 
Cli(0, 0, 0) ; C2i(k, ZBi, lyi); CSi( - lai, - JBi, - bi) ; 

Clj(rijarijJ r i j p r i j ,  rij y r i j )  ; CSj(rijarij + laj, r i j p r i j  + lBj, 

r i j  y r i j  + l y j )  and CSj(rijarij - laj, r i jp r i j  - 18. 32 

riiyrij - b j )  

U ~ ; P  = u(C1iClj) + U(CliC2j) + U(C1iCSj) + U(C2iClj) 

+ u(C,iCzi)  + U(CziC3j) + u(C,iC,j) + u(CsiCzj) 

+ U(CSiC3j) (8) 

We represent the centre-centre, end-end and centre-end inter- 
actions by the interaction constants a,, b,; a,, b,; and a,, bs 
respectively. Therefore 

U(CljClj) = b,exp( - alri j )  
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Defining fs =' C aTijai, aTijaj, 

we can similarly work out the other seven terms of (8). Summing 
all the nine terms, expanding the exponentials, averaging over 
rij  and 4, and rearranging terms, it can be shown that the average 
repulsion energy per pair of molecules making angles Oi, Oj is 
expressible as 

f4 = 1 a,ij(aj + ai) and f5 = 
w9,r 4 , v  4 , v  

UZp = (Ro + RAcos2Bi + RYc0s48~ + ...) 
+ C O S ~ ~ ~ ( R ~  + ~ ; ~ o ~ 2 e ~  + ...I 

= Roi + R2i cos2 ej + R4i C O S ~  Sj + . . . 
+ cos4Bj(R, + R:cos2ei + ...) + ... 

say. (9) 

It may be noted that UgP involves only the even powers of cos Oi 
and cosBj and is symmetric in Bi and Oj. In  ( 9 )  the expansion 
should be carried out at least up to terms involving r;12. 

2.5. ORJENTA'lTONAL POTENTIAL ENERGY IN THE NEMATIC STATE 

The total energy of interaction is 

U i j  given by (10) represents the average energy due to all 
forces between two molecules in the medium inclined a t  Oi ,  Oi 
with respect to the mean direction of the long axes of the molecules 
in the medium. The total interaction energy of the molecule i 
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with all its neighbours j is 

ui = 1 uij 

j 

where the surrounding molecules j can take all possible orienta- 
tions but subject to the Boltzmann distribution which, in turn, 
is determined by their energies Uj. If is the value of Ui j  
averaged over all possible orientations of the molecules j, (11) 
may be written as 

where 

u i = c q ,  
j 

Uij = U i j  exp( - Uj/LT) sin8,dej exp( - U,/kT) sin Ojddj 

(12) 

+ M,cosej + ivicos2ej - ~ , ~ c o s 4 0 ~  - .-), (13) 

- Sa i Sa 
U i j  as given by (10) could be written as 

uij = - 
where M i  is directly proportional to cos8, and represents the 
total contribution of the dipole-dipole forces; L, and N ,  each 
consist of a sum of terms of even powers of case, and involve 
all forces other than dipole-dipole; and R4i, Rei, etc. each 
consist of a sum of terms of even powers of cosdi and involve 
only repulsive forces. 

Similarly, Uj in (12) 

= c uj1 
1 

= C - (Lj  + Mjcos8 ,  + Njcos28, - R 4 j ~ ~ ~ 4 e z  - --.).  
1 

Since the expression is symmetrical in j and I ,  we may regroup 
the terms involving ej’s so that 

Uj = 1 - (L, + MZCOSB~ + N,cos28j - R4Zcos4Bj - ...). 
1 

Substituting for Uj in (12), expanding the exponential5 up to 
terms involving rj12 and integrating, 
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Hence Ui = C v,] may be expressed &s 
j 
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In order to bring out explicitly the dependence of Ui on tem- 
perature T and volume V (cz r3) we may write 

Rc u4 = - etc. 
V4' 

where GI and G, represent &st order dispersion effects, G ,  and 
G, second order dispersion effects, G4 and G, first and second order 
dipole effects respectively, G,, G, and G, dipole-dispersion cross 
terms, and R's the repulsion terms which are assumed to vary 
aa r-l2. 

3. The Birefringence of the Nematic State 
Let A ,  B, C be the principal polarizabilities of a molecule 

referred to its principal axes X'Y'Z'. Let X Y Z  be the fixed 
coordinate system, Z being so chosen as to coincide with the 
optic axis of the medium. If Ez and Ex represent the components 
of the electric vector of the incident light wave, then the induced 
moments P, and P ,  are given by 

P ,  = Eg(A C O S ~ Z X '  + B COS~ZY' + C COS'ZZ'), 

P, = Ex(A COS'XX' + B COS'XY' + C C O S ~ X Z ' ) ,  (17) 

where cos2ZX' = sin28 cos2 Y, 
cos2 Z Y' = sin2 8 sin2 Y, 

cos2XX' = (cos Y cos+ cos 6 - sin Y sin +)2, 

cos2XY' = ( -  sinY cos+ cos6 - COSY sin+)2, 
cosz XZ = sin2 8 cos2 +, 

COS~ZZ = ~ 0 ~ 2 6 ,  
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0, 4, Y being the Eulerian angles defining the orientations of 
X'Y'Z' with respect to XYZ. 

To evaluate the polarizabilities a,  and az, it is necessary to 
average over all possible orientations taking into account the 
Boltzmann factor involving the potential energy of the molecule 
given by (15). The probable number of molecules having the 
orientation 5, +, Y is hence given by 

C ,  exp ( - g) sine ae a+ d y  

where C ,  is a normalizing constant. Therefore 

Since the molecules are rotating about their long axes, ??' can 
take all possible values, and similarly since the structure is sym- 
metrical about the optic axis, + can also take all possible values. 
Integrating 

(2,; 4h, 8h: 8h, 
45 946 105 

+- + -  + -  +... a, = a + ( a ,  - a I )  - 

where a I  = (A + B) /2 ,  a ,  = C ,  a = ( a D  + 2a,)/3, h, = u,/kT, 
h, = u,/kT, etc. 
Similarly 

Assuming the Loren-Lorentz relationship, 

n: - 1 47r 
n : + 2  3 

n,Z - 1 47r 

= - Na,,  

-- n; + 2 - - p a ,  9 

and 4lr n: - 1 - = -",a 
n:+2  3 
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where N and N ,  are the number of molecules per cc in the liquid 
crystalline and liquid states respectively, we find that relation 
(1) derived by Born is satisfied. 

It would be more realistic to assume the existence of an aniso- 
tropic polarization field in the liquid crystalline medium. The 
idea of such a field was first introduced in the theory of the Kerr 
effect in liquids.Z8,28 The relation between the effective polariza- 
bilities A', B', C' and A ,  B, C was found by considering an 
ellipsoidal cavity instead of a spherical one as in the Lorenz- 
Lorentz case. 

ChatelainQ has suggested that A', B ,  C' in the oriented nematic 
mesophase are given by 

In general, a ; ,  a ; may be taken to be of the form 

where P,,  P ,  are not necessarily equal to 4 ~ 1 3 .  Hence (19) and 
(20) reduce to 

Therefore (1) will be only approximately satisfied. It is seen that 
the extraordinary index consists of a sum of two terms both of 
which diminish with temperature. On the other hand the 
ordinary index consists of a difference of two similar terms. The 
experimentally observed fact that dnJdT is large and negative 
and dn,/dT comparatively small and positive is .thus readily 
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understood. From (22)' 

Making use of (14) ,  (15) and (16)' we get 

1 =, 2% n: - n,2 = 47rN(al; - Q [ - ( 2Rb + - + . . . + ____ kTV4 15 36 ) 15kTV2 

4. Temperature Variation of the Birefringence 

A direct calculation of the birefringence from theory would 
require a knowledge of the molecular distribution function in the 
nematic state, the repulsive parameters, oscillator strengths etc. 
Not enough reliable information is available on these quantities 
for such a calculation to be carried out. Nevertheless it is possible 
to draw some important conclusions regarding the relative con- 
tributions of the different forces. To facilitate discussion we write 
below the separate contributions of the different forces to  n: - n:, 
bringing out explicitly their dependence on T and V : 

- NX1 -- 
T V 2 '  (n: - n2,) (1st order dispersion) 

- Nx2 -- 
T V 4 '  (n: - nt) (repulsion) 

- NXS 
T2V4 ' 

Nx4 

-- (n: - n:) (2nd order dispersion) 

(n: - n:) (dispersion-dipole cross terms) = - TSV4 ' 

- NXa -- 
T4V4'  (n," - n:) (dipole-dipole) 
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where the x1 and x 2  involve the molecular distribution function 
x3, xa and x6 involve the molecular distribution function as well as 
summations over cos8, and its powers. (The induction terms, 
whose contribution may be expected to be small, have the same 
temperature dependence M the dispersion terms.) Thus the 
temperature variation of the birefringence is determined by the 
variation of N (a density p), V (orp-l) and the x’s. A correction 
could be effected for the variation of N and V from the thermal 
expansion measurements. The correction is ( p , / ~ ) ~  for the first 
order dispersion term and ( ~ ~ / p ) ~  for all other terms, po being the 
density at the nematic-liquid transition point. However the 
fractional density change over the entire mesomorphic range is 
only of the order of 2-3%, so that we shall assume that a factor 
( ~ ~ / p ) ~  is approximately adequate for all terms. To this approxi- 
mation, therefore, we can eliminate the effect of thermal expansion 
and write 

where A represents the repulsion and first order dispersion terms, 
B the second order dispersion term, C the &pole-dispersion cross 
term and D the dipole-dipole term. Hence 

= [ - AT-’ - 2BT-2 - 3CT-3 - 4DT-4 + dA/dT 
+ T-ldBIdT + T-2dC/dT + T-3dD/dT] 

x [AT-’ + BT-2 + CT-S + DT-7-l (24)  

Since the volume change is small, the molecular distribution 
function is not expected to vary appreciably with temperature 
except perhaps in the neighbourhood of the nematic-liquid 
transition, and hence A may be taken to be practically constant 
as it does not depend on cos 8,. However B, C and D will decrease 
with temperature as they involve summations over cos8, and its 
powers. I n  the next section we have evaluated the dependence of 
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@ on temperature (see Fig. 3) and it may be shown that the 
resulting variation of cos 0, will be comparatively slow initially 
and will become increasingly faster with rise of temperature. 

If the repulsion and h t  order dispersion effects predominate, 
i.e., B, C and D are negligible, it  is seen from (24) that the mini- 
mum value of I m I will be 1.0, whereas if the dipole-dipole forces 
predominate, i.e., A ,  B and C are negligible, its minimum value 
will be 4.0. The actual slope of the In y - In T plot near the solid- 
nematic transition temperature should give an indication of the 
relative contributions of the Werent terms. As the temperature 
increases, I m I may be expected to increase owing to the increase 
of @, gradually a t  first and rapidly as the temperature approaches 
the nematic-liquid transition point. We shall compare these 
conclusions with the experimental facts. 
Using the density data (see Appendix) and the refractive index 

measurements of Chatelain and Germain,so y has been evaluated 

Figure 1. In y-ln T plot for p-azoxyanisole 
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0.21 

0.U 
A - 

1 .El 

7.a 
00 604 6 0 8  

In r 
Figure 2. In y-ln T plot for p-azoxyphenetole 

at different temperatures for p-azoxyanisole and p-azoxyphenetole. 
The plot of In y versus In T for the two cases are shown in Figs. 1 and 
2. There are small variations in the slopes for the Merent  wave- 
lengths and hence we give below the mean slope for each temp- 
erature range. The increase in the slope with temperature is seen 
to agree qualitatively with what has been discussed earlier. 

p-azoxyanisole (T, = 410 "K) p-azoxyphenetole (T,  = 441 OK) 

Temp. M'esn Temp. Mean 
range slope range elope 
(Tc-T) i m l  (Tc-T) l m l  

42-37 1.13 
37-27 1.46 37-28 1.14 
27-17 2.33 28-18 1.87 
17-12 3.66 18-13 2.79 
12-7 5.54 13-8 4.16 
7-4 9.19 8-4 6.48 
4-1 15.1 4?1 10.3 

C MC 
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The fact that the initial value of I m I is only slightly greater than 
1.0 in both cases shows conclusively that the temperature variation 
of the birefringence is determined mainly by the repulsion and 
dispersion forces. The result that the dipole-dipole forces do not 
make an important contribution is in general agreement with the 
observations of Gray7 and of Maier and Saupell regarding the 
stability of the nematic mesophase. 

5. Molecular Librations 
The orientational potential energy of the molecule given by (15) 

may be expressed approximately as U = - Cl(l - C2e2), where 
C, and C2 are const&nts, so that d Uld8 a 8. Thus the molecules 
may be expected to execute rotational oscillations (librations) 
about the mean orientation. We shall suppose that the librations 
can be treated in terms of an Einstein model and assume the 
well-known relation 8.a p-llSg-112, where 8 is the Einstein 
characteristic temperature, p the density and the volume 
compressibility.31.32 Since = p-1v-2, where v is the velocity 
of the low frequency longitudinal elastic wave in the liquid crystal 
8 a p113v. Cr~ickshanks3.3~ has shown that when T > 8, which 
is certainly the case in our problem, the mean square librational 
amplitude 

d2 = h2T/4rr21k82, 
where I is the moment of inertia of the molecule. Therefore 

- 

- 
88 a Tp-2/3v-2. 

This result, though necessarily approximate, enables one to make 
a rough estimate of the variation of the librational amplitude with 
temperature from the available ultrasonic data. 

The ultrasonic velocity in p-azoxyanisole in the nematic range 
has been measured by Gabrielli and Verdini,36 by Hoyer and Nolles6 
and by Kapustin and B y k ~ v a ~ ~ .  The velocity decreases with rise 
of temperature, almost linearly a t  first and more rapidly as the 
temperature approaches the nematic-liquid transition point. 
Using the data of Kapustin and B y k o ~ a ~ ~  the fractional variation 
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with temperature of 8, = (@)1/2 has been calculated. (The 
velocity measurements extend from the nematic-liquid point T, 
down to about 12' below T,. Extrapolation over a few degrees 
was necessary at  the lower temperatures, in which region, as 
already remarked, the velocity varies almost linearly with 
temperature. ) 

Earlier investigatorsg.ll have expressed the degree of orientation 
of the molecules in terms of a factor S = (3  cos28 - 1)/2. It is 
readily shown that for rotational oscillations 

- 

s = ~{cos2(21q,) + cos(21wr,)) 

Using this relation, the S factors obtained directly from the 
experimental data on birefringencel2 have been expressed as Om, 
and are shown as points in Fig. 3. The curve in Fig. 3 presents 
Or,, calculated from ultrasonic data, and has been drawn by 
choosing the proportionality constant to fit the experimental 
value at one temperature. For comparison, we also give in Fig. 4 

Figure 3. Variation of rme librational amplitude in p-azoxyanisole. 
Curve represents theoretical variation derived from ultrasonic velocity; 
points give the values obtained from birefringence, X5890, 0 X5461. 
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0.56- 

0.48 - 

v) 

0.40 - 

1 5  10 
0.32 

5 
rc-r 

Figure 4. 
ranisole (see legend of Fig. 3). 

Variation of orientation factor S with temperature in p-azoxy- 

the corresponding variation of S. The agreement is remarkably 
good over the entire nematic range. It is interesting to note that 
S,,, is only 44' a t  the upper transition temperature showing that 
the phase change is characterized by an abrupt collapse of the 
orientational order. 

One of us (N.V.M.) is grateful to CSIR (India) for a research 
fellowship. 

Appendix 
Since the temperatures at  which thermal expansion measure- 

ments have been carried out are not the same as those for which 
birefringence data are available some interpolation and extra- 
polation was necessary for the calculations. It was therefore 
found convenient to use empirical formulae to fit the observed 
thermal expansion data. 

Accurate density measurements have been made by Maier and 
Saupele for p-azoxyanisole. Their data are expressible by the 
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empirical equation 

P = p o ( l  + J:adT) 

where a = 12.65 x 10-4/(T, - T)’ia (ii) 

Table I shows the agreement between the calculated and observed 
data. 

TABLE 1 

Tc-T Pobs P d C  

30.8 
25.8 
20.8 
15.8 
13.8 
11.8 
9.8 
7.8 
5.8 
3.8 
2.8 
1.8 
0.8 
0.3 

1.1781 
1.1737 
1.1694 
1.1649 
1.1630 
1.1611 
1.1592 
1.1572 
1.1551 
1.1528 
1.1516 
1.1504 
1.1490 
1.1482 

1.1779 
1.1737 
1.1694 
1.1650 
1.1631 
1.1612 
1.1593 
1.1572 
1.1551 
1.1529 
1.1517 
1.1504 
1.1490 
1.1482 

The volume expansion coefficients of p-azoxyphenetole reported 
by Bauer and Bernamont38 can be represented by the empirical 
formula 

1.303 x 
(T, - T)”B a =  (iii) 

It may be seen from Table I1 that the formula gives a good fit, 
the deviations being of the same order aa the reported experi- 
mental error. The extrapolated values are likely to be quite 
accurate since the variation of a is gradual in this region. The 
values of p/po shown in Table I1 are obtained using equations (i) 
and (iii). 
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TABLE 2 

T,-T %bs X lo* a,lc x 10' (P lP0)Ca lC  ~- 
20.8 0.94 0.93 1.0194 
17.8 0.95 0.95 1.0169 
15.8 0.97 0.96 1.0152 
11.3 1.00 1.00 1.0113 
7.5 1.04 1.04 1.0088 
5.3 1.06 1.08 1.0065 
3.1 1.14 1.14 1.0043 
0.6 1.39 1.38 1.0009 
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