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Abstract-The problem of finding the equilibrium shape of a small particle 
by the Wulff construction is reviewed briefly, with emphasis on its applica- 
tions to liquid crystals. The proof of Wulff’s theorem is stated in a concise 
mathematical form. Some typical equilibrium shapes of liquid crystalline 
cirops are described. When there is orientational order of the molecules in 
the liquid crystal but no translational order, the equilibrium shape may be 
an ellipsoid or a tactoid; when there is translational order as well, the shape 
may have plane faces, possibly with sharp edges and corners. The formation 
of the stepped drop, goutte a gradins, is interpreted as analogous to the 
stepwise roughening of a flat crystal surface whose orientation does not 
occur amongst the boundary surfaces of the Wulff shape. 

As is well known, the problem of determining the equilibrium shape 
of a given quantity of material reduces mathematically to one of 
finding the condition for minimum surface energy. It was formu- 
lated over eighty years ago by Gibbs, and independently by Curie, 
and has since been investigated in great detail particularly in 
relation to the equilibrium shapes of crystals. It is the aim of this 
paper to  review these ideas briefly and to discuss their applications 
to liquid crystals. 

The surface tension of a liquid crystal may be expected t o  be 
anis0tropic.l A solid crystal also has anisotropic surface tension, 
but there is an essential difference between the two cases.? The 
surface tension of a solid crystal (or the specific surface free energy, 
measured by the work done in creating a new surface) differs 
numerically from its surface stress (measured by the work done in 
deforming a surface). For a liquid crystal, on the other hand, these 
two quantities will be equal because of the inability of the medium 
to sustain a shear stress, except for short periods of time.3 
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72 M O L E C U L A R  C R Y S T A L S  

Wulff’s Theorem 

The relation between the surface tension and the equilibrium 
shape of a small particle is determined by a theorem due to W ~ l f f . ~  
Proofs of this theorem were given by H i l t ~ n , ~  Liebmann6 and 
Laue,’ all of whom assumed the equilibrium shape to be a poly- 
hedron and compared its surface energy with that of other poly- 
hedra with slightly different fwe areas. However, these proofs are 
not strictly valid for liquid crystals, for the equilibrium shape may 
not be polyhedral. A general proof of the theorem was given by 
Dinghass and extended by Herring,2 who also discussed some 
applications to liquid crystals. The proof is restated below in a 
concise mathematical form. 

Consider a body Po for which the surface tension y is a function 
of the direction only, i.e. y=y (n ) ,  and is defined as the specific 

surface free energy of any plane normal to n. 
If p is a point and rr a plane not containing p ,  rr divides the space 

into two half-spaces, one of which contains p .  Define rr;(h,p) as the 
plane normal to n at a distance Ay(n) from p ,  where h B 0 is a scale 
factor. Let 8:; denote the half-space containing p together with 
all points in ~ ( h , p ) .  Then 

--f 

-+ 

* -f 

n 

forms a convex body and is called the Wulff construction centred 
at p with scale factor A. If vx is the volume of W,( p ) ,  then vx  = h3v1, 
where v1 is the volume of the Wulff construction with scale factor 1. 

Now, let $ be an outward normal to the surface of Po at the point 
&, and W,(Q) the Wulff construction centred at &. Clearly, 

W,(Q) S!;, for every Q .  
Define PA as the body whose surface is the envelope of all planes 
rr;t(A, Q) as Q varies over the surface of Po. Therefore if 

we have 
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S U R F A C E  T E N S I O N  O F  L I Q U I D  C R Y S T A L S  73 

If v, V o  and 1 7 ~  are respectively the volumes of w, Po and PA, 

7 < Vx, 

v-vo V’x-v,  <- h A 

It may be verified that if W,(Q) is similar to, and with the same 
orientation as, Po, w = PA, v = Vx, and the equality sign holds in 
Eq. (2). But 

Vx-  Vo = 1 hy(G)&A, 
9 

where d A  is an element of area containing Q. Therefore, 

8-  V,,  
A+O ‘ 

> Lim __ (3) 

We next invoke the Brunn-Minkowski inequality in the following 
form. Let Po and P be two bodies, one of which, say P,  is convex. 
Select an arbitrary interior point 0 of P and call it the “ centre ” of 
P. Displace P to a new position without changing its orientation 
such that 0 coincides with a point p of space. I n  this position of P 
we denote it by P ( p ) .  Consider the union 

i” = u P(p) .  
PCPO 

If 7, V o  and V are respectively the volumes of P ,  Po and P, we 
have the Brunn-Minkowski inequality 

(4) v 2 (V#3 + V 1 / 3 ) 3 ,  

the equality sign holding only when P is similar to P,. Taking w 
for p ,  Wx for P, we get from Eq. (4) 

7 3 ( VA’3 +.f\’3)3 

= ( vy3 + h@3) 3. 
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74 M O L E C U L A R  C R Y S T A L S  

We thus obtain, using Eq. (3) 

i.e. 
A 

the equality sign holding only when W,(Q) is similar to  Po. This 
proves that the Wulff construction is a body with minimum energy 
of the surface. The equilibrium shape of Po will therefore be 
geometrically similar to the Wulff construction. 

The Wulff theorem may be stated simply as follows. Consider 
the polar plot of y in which the length of the radius vector in any 

direction is proportional t o  y(n).  If a plane is drawn normal to n 
at the end of every radius vector, then the body formed by all the 
points that can be reached from the origin without crossing any of 
these planes will be similar to the equilibrium shape. 

We have assumed here that gravitational forces are negligible, 
an assumption which is valid for small drops. We have also ignored 
the possible variation of y with curvature and the effect of the 
energies of the edges and corners. 

+ -+ 

Equilibrium Shapes of Liquid Crystalline Drops 

A detailed calculation of the surface tension as a function of the 
orientation requires knowledge of the molecular distribution func- 
tion and the potential of the intermolecular force in the liquid 
crystal. Not enough is known about these quantities for such a 
calculation to be carried out. It is however possible to determine 
qualitatively the general characteristics of the equilibrium shapes 
that are to be expected. 

We shall consider first a liquid crystal in which there is orienta- 
tional order of the molecules but no translational order (Fig. l).  
Imagine a plane surface of the liquid crystal parallel to the long 
axes of the molecules. The atomic density will be greater for this 
plane than for a plane of any other orientation. We may therefore 
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suppose that the specific surface free energy y is least for this plane, 
because it is well known that the closest packed planes in crystals 
have the lowest surface energies. Similarly y will be greatest for a 
plane normal to the long axes of the molecules. The polar plot of 
y will, in general, vary smoothly between these two directions, and 
when the anisotropy is not large the Wulff shape will be of type 
2(a) with the major axis parallel to the long axes of the molecules. 
Such a shape is indeed to be expected from purely physical con- 
siderations, for it may be regarded as an equilibrium between the 
tendency of a liquid to form a spherical drop and the orientational 
forces aligning the molecules approximately parallel to each other. 

--- 
___.- 

-- 
Figure 1 .  Molecular arrangement in nematic mesophase (idealized), 

When the anisotropy is large, as is often likely to be the case with 
liquid crystals, it may be shown easily that not all orientations of 
the y plot will occur in the boundary surface of the Wulff construc- 
tion, which will therefore have sharp edges as illustrated in Fig. 2b. 
Such shapes, called tactoids, were observed in colloidal solutions by 
Zocher 9, lo and in plant virus preparations by Bernal and Fan- 
kuchen.' The virus preparation used by Bernal and Fankuchen 
corresponded to the class RRD of Hermann's classification11 of 
possible liquid crystalline systems. Two kinds of tactoids were 
formed, which they named positive and negative. Positive tactoids 
contained the liquid crystal in the isotropic liquid, negative tactoids 
vice versa. In both cases, they established by optical observations 
that the long axes of the molecules were approximately parallel to 
the major axes of the tactoids-as is to be expected. The shapes of 
the tactoids depended slightly on the size, the larger tactoids being 
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76 M O L E C U L A R  C R Y S T A L S  

(4 
Figure 2. Equilibrium shapes of liquid crystalline drops. 

more spherical than the smaller ones. That the tactoids were 
equilibrium forms was shown directly by the fact that they re- 
covered their shapes when distorted. Bernal and Fankuchen gave 
an interpretation of the tactoids in terms of anisotropic surface 
tension. These shapes have also been discussed briefly by Herring.2 
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The view has been expressed in the literature that the equi- 
librium shapes of liquid crystals cannot have plane faces. This view 
would seem to be incorrect. As we shall see presently, when there 
is translational order of molecular arrangement in the liquid crystal 
plane faces are possible. The layer arrangement in a smectic meso- 
phase is an example of translational order (Pig. 3). In  this case, the 
problem of determining the equilibrium shape becomes analogous 
to that for a crystalline solid. The polar plot of y for a crystal a t  
absolute zero of temperature will exhibit a singularity in the form 

ll//I/ llllllllllll1llI1liiilllllllllllllllllllll 
I I/ 1llllll1 lllllllllllll lllllllllllllllllllll 

Figure 3. Layer arrangement of molecules in the smectic mesophase 
(idealized). 

of a cusped minimum at  every rational orientation.12,2 But a t  
higher temperatures all the cusps, except a few in directions 
corresponding to  low Miller indices (most closely packed planes), 
will be smeared out by thermal fluctuations. These few cusps will 
give rise to  plane regions in the Wulff construction, and the equi- 
librium shape will be a polyhedron. Thus for a liquid crystal in 
which there is translational order of the molecules, the equilibrium 
shape may be expected to have plane regions. These planes may 
be joined by smoothly rounded surfaces as in type 2(c) ; but if the 
minima in the y plot are sufficiently pronounced the planes may 
meet to form sharp edges and corners as in type Z(d). Distinctive 
polyhedral shapes have in fact been observed very recently by 
Balmbra, CIunie and Goodman,13 t in an electron micrograph of a 
lyotropic mesophase formed by an aqueous solution of sodium 
2-ethylhexyl sulphate. 

t Paper presented by Dr. J. S. Clunie at this conference. 
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78 MOLECULAR C R Y S T A L S  

Other shapes are also possible. For instance, the shape may 
have curved as well as plane regions and some sharp edges and 
corners. If the equilibrium shape is known, the y plot may be 
derived, though, as will be clear from the earlier discussion, it can 
be done for all directions only for some shapes. 

The Stepped Drop (goutte B gradins) 
One of the consequences of Wulff's theorem is that a surface 

having an orientation which occurs in the boundary of the equi- 
librium shape is more stable than a hill-valley structure of the same 
mean orientation.2 The converse result is also true, namely, that a 
plane surface with an orientation not occurring in the Wulff shape 
is unstable with respect to some hill-valley structure, and will break 
up into steps, providing, of course, the kinetic factors allow such 
a change to take place. Thus, for types (a) and (c) a plane of any 
orientation is stable, whereas for type (d) planes of all except a few 
discrete orientations are unstable. Type (b) forms an intermediate 
category with certain ranges of orientation stable, certain others 
unstable. 

Let us now consider the stepped drop, goutte h gradins, dis- 
covered by Grandjean.14* 15, l6 The familiar model for the smectic 
mesophase with the layer arrangement of rod-like molecules is 
shown in Fig. 3. The forces between the sides of the molecules are 
large, but those between the adjacent layers are relatively weak. 
This situation is obtained by the presence of strong dipole moments 
acting across the long axes of the molecules." Therefore, owing to 
dipole-dipole reinforcement, the layer arrangement is energetically 
the most stable. 

It will be seen from Fig. 3 that there are two singular directions 
(analogous to rational orientations in a crystal) for which y will 
exhibit pronounced minima, and the cross-section of the equi- 
librium shape may be expected to be 2(d). In  practice, however, 
the drop forms terraces. This remarkable phenomenon may be 
interpreted as the hill-valley configuration adopted by a plane 
surface which does not conform to the Wulff shape. The layer 
arrangement of molecules being the only energetically feasible one 
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at that temperature, a smooth surface of arbitrary orientation, 
produced, let us say, by a deformation of the ideal equilibrium 
shape, will readily break up into steps whose heights are integral 
multiples of the molecular length (Fig. 4). 

/ 

//.I/ 

/ 
Figure 4. Formation of steps. 
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