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Abstract—The problem of finding the equilibrium shape of a small particle
by the Wulff construction is reviewed briefly, with emphasis on its applica-
tions to liquid erystals. The proof of Wulff’s theorem is stated in a concise
mathematical form. Some typical equilibrium shapes of liquid erystalline
drops are described. When there is orientational order of the molecules in
the liquid erystal but no translational order, the equilibrium shape may be
an ellipsoid or a tactoid; when there is translational order as well, the shape
may have plane faces, possibly with sharp edges and corners. The formation
of the stepped drop, goutte & gradins, is interpreted as analogous to the
stepwise roughening of a flat crystal surface whose orientation does not
occur amongst the boundary surfaces of the Wulff shape.

Asis well known, the problem of determining the equilibrinm shape
of a given quantity of material reduces mathematically to one of
finding the condition for minimum surface energy. It was formu-
lated over eighty years ago by Gibbs, and independently by Curie,
and has since been investigated in great detail particularly in
relation to the equilibrium shapes of crystals. It is the aim of this
paper to review these ideas briefly and to discuss their applications
to liquid erystals.

The surface tension of a liquid crystal may be expected to be
anisotropic.’ A solid crystal also has anisotropic surface tension,
but there is an essential difference between the two cases.® The
surface tension of a solid crystal (or the specific surface free energy,
measured by the work done in creating a new surface) differs
numerically from its surface stress (measured by the work done in
deforming a surface). For a liquid crystal, on the other hand, these
two quantities will be equal because of the inability of the medium

to sustain a shear stress, except for short periods of time.?
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Wulff’s Theorem

The relation between the surface tension and the equilibrium
shape of a small particle is determined by a theorem due to Wulff.*
Proofs of this theorem were given by Hilton,® Liebmann ¢ and
Laue,” all of whom assumed the equilibrium shape to be a poly-
hedron and compared its surface energy with that of other poly-
hedra with slightly different face areas. However, these proofs are
not strictly valid for liquid crystals, for the equilibrium shape may
not be polyhedral. A general proof of the theorem was given by
Dinghas® and extended by Herring,? who also discussed some
applications to liquid crystals. The proof is restated below in a
concise mathematical form.

Consider a body P, for which the surface tension y is a function

of the direction only, i.e. y=y(f;;), and is defined as the specific

surface free energy of any plane normal to n.

If p is a point and 7 a plane not containing p, = divides the space
into two half-spaces, one of which contains p. Define (A, p) as the
plane normal to 7 at a distance )\y(’;;) from p, where A > 0 is a scale
factor. Let S?» denote the half-space containing p together with
all points in 73;(A,p). Then

Wxp) =1 8% (1)

forms a convex body and is called the Wulff construction centred
at p with scale factor A. Ifv) is the volume of W)(p), then vy =2A3v,,
where v, is the volume of the Wulff construction with scale factor 1.

Now, let 7 be an outward normal to the surface of Py at the point
@, and W (@) the Wulff construction centred at ¢. Clearly,

WxQ) < 8%, forevery Q.
Define P) as the body whose surface is the envelope of all planes
m(A, Q) as @ varies over the surface of Py. Therefore if

W = 1 WxQ),

QePo
we have

WEP,\.
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If V, V,and V), are respectively the volumes of W, P, and P),

V <V,

V“‘VO V,\—‘Vo
ST (2)

It may be verified that if W,(Q) is similar to, and with the same
orientation as, Py, W=P,, V=V, and the equality sign holds in
Eq. (2). But

Vi—Vy = f,\y(ﬁ)dA,
A

where d4 is an element of area containing ). Therefore,

j y(n)dA = Lim Va—Vo
i A= A
> LAiné V’)\V". (3)

We next invoke the Brunn-Minkowski inequality in the following
form. Let Py and P be two bodies, one of which, say P, is convex.
Select an arbitrary interior point 0 of P and call it the “centre” of
P. Displace P to a new position without changing its orientation
such that 0 coincides with a point p of space. In this position of P
we denote it by P(p). Consider the union

P =) P(p).
pePo
If V, Voand V are respectively the volumes of P, P, and P, we
have the Brunn-Minkowski inequality

Vo> (ViB+ V33, (4)

the equality sign holding only when P is similar to P,. Taking W
for P, W, for P, we get from Eq. (4)

V> (T +0})?

= (V3 +20fo2,
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We thus obtain, using Eq. (3)

N VU3 4 g 13Y3 _

[ vinyaa > Lim Y07 . F=V,

4 A0
ie. j y(n)dA > 3VEB3plB,

a
the equality sign holding only when W,(Q) is similar to Py. This
proves that the Wulff construction is a body with minimum energy
of the surface. The equilibrium shape of P, will therefore be
geometrically similar to the Wulff construction.
The Wulff theorem may be stated simply as follows. Consider

the polar plot of y in which the length of the radius vector in any

direction is proportional to y(;,) If a plane is drawn normal to n
at the end of every radius vector, then the body formed by all the
points that can be reached from the origin without crossing any of .
these planes will be similar to the equilibrium shape.

We have assumed here that gravitational forces are negligible,
an assumption which is valid for small drops. We have also ignored
the possible variation of y with curvature and the effect of the
energies of the edges and corners.

Equilibrium Shapes of Liquid Crystalline Drops

A detailed calculation of the surface tension as a function of the
orientation requires knowledge of the molecular distribution func-
tion and the potential of the intermolecular force in the liquid
crystal. Not enough is known about these quantities for such a
calculation to be carried out. It is however possible to determine
qualitatively the general characteristics of the equilibrium shapes
that are to be expected.

We shall consider first a liquid crystal in which there is orienta-
tional order of the molecules but no translational order (Fig. 1).
Imagine a plane surface of the liquid crystal parallel to the long
axes of the molecules. The atomic density will be greater for this
plane than for a plane of any other orientation. We may therefore
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suppose that the specific surface free energy y is least for this plane,
because it is well known that the closest packed planes in crystals
have the lowest surface energies. Similarly v will be greatest for a
plane normal to the long axes of the molecules. The polar plot of
vy will, in general, vary smoothly between these two directions, and
when the anisotropy is not large the Wulff shape will be of type
2(a) with the major axis parallel to the long axes of the molecules.
Such a shape is indeed to be expected from purely physical con-
siderations, for it may be regarded as an equilibrium between the
tendency of a liquid to form a spherical drop and the orientational
forces aligning the molecules approximately parallel to each other.

Figure 1. Molecular arrangement in nematic mesophase (idealized).

‘When the anisotropy is large, as is often likely to be the case with
liquid crystals, it may be shown easily that not all orientations of
the y plot will occur in the boundary surface of the Wulff construe-
tion, which will therefore have sharp edges as illustrated in Fig. 2b.
Such shapes, called tactoids, were observed in colloidal solutions by
Zocher® '° and in plant virus preparations by Bernal and Fan-
kuchen.! The virus preparation used by Bernal and Fankuchen
corresponded to the class RRD of Hermann's classification!! of
possible liquid crystalline systems. Two kinds of tactoids were
formed, which they named positive and negative. Positive tactoids
contained the liquid crystal in the isotropic liquid, negative tactoids
vice versa. In both cases, they established by optical observations
that the long axes of the molecules were approximately parallel to
the major axes of the tactoids—as is to be expected. The shapes of
the tactoids depended slightly on the size, the larger tactoids being
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(a)
(b)
()

(d)
Figure 2. Equilibrium shapes of liquid crystalline drops.

more spherical than the smaller ones. That the tactoids were
equilibrium forms was shown directly by the fact that they re-
covered their shapes when distorted. Bernal and Fankuchen gave
an interpretation of the tactoids in terms of anisotropic surface
tension. These shapes have also been discussed briefly by Herring.?
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The view has been expressed in the literature that the equi-
librium shapes of liquid crystals cannot have plane faces. This view
would seem to be incorrect. As we shall see presently, when there
ig translational order of molecular arrangement in the liquid crystal
plane faces are possible. The layer arrangement in a smectic meso-
phase is an example of translational order (Fig. 3). In this case, the
problem of determining the equilibrium shape becomes analogous
to that for a crystalline solid. The polar plot of y for a crystal at
absolute zero of temperature will exhibit a singularity in the form

NIRRT
IR

Figure 3. Layer arrangement of molecules in the smectic mesophase
(idealized).

of a cusped minimum at every rational orientation.}>:* But at
higher temperatures all the cusps, except a few in directions
corresponding to low Miller indices (most closely packed planes),
will be smeared out by thermal fluctuations. These few cusps will
give rise to plane regions in the Wulff construction, and the equi-
librium shape will be a polyhedron. Thus for a liquid crystal in
which there is translational order of the molecules, the equilibrium
shape may be expected to have plane regions. These planes may
be joined by smoothly rounded surfaces as in type 2(c); but if the
minima in the y plot are sufficiently pronounced the planes may
meet to form sharp edges and corners as in type 2(d). Distinctive
polyhedral shapes have in fact been observed very recently by
Balmbra, Clunie and Goodman,'® in an electron micrograph of a
Iyotropic mesophase formed by an aqueous solution of sodium
2-ethylhexyl sulphate.

T Paper presented by Dr. J. 8. Clunie at this conference.
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Other shapes are also possible. For instance, the shape may
have curved as well as plane regions and some sharp edges and
corners. If the equilibrium shape is known, the y plot may be
derived, though, as will be clear from the earlier discussion, it can
be done for all directions only for some shapes.

The Stepped Drop (goutte a gradins)

One of the consequences of Wulff’s theorem is that a surface
having an orientation which occurs in the boundary of the equi-
librium shape is more stable than a hill-valley structure of the same
mean orientation.2 The converse result is also true, namely, that a
plane surface with an orientation not occurring in the Wulff shape
is unstable with respect to some hill-valley structure, and will break
up into steps, providing, of course, the kinetic factors allow such
a change to take place. Thus, for types (a) and (c) a plane of any
orientation is stable, whereas for type (d) planes of all except a few
discrete orientations are unstable. Type (b) forms an intermediate
category with certain ranges of orientation stable, certain others
unstable.

Let us now consider the stepped drop, goutte & gradins, dis-
covered by Grandjean.!* 1516 The familiar model for the smectic
mesophase with the layer arrangement of rod-like molecules is
shown in Fig. 3. The forces between the sides of the molecules are
large, but those between the adjacent layers are relatively weak.
This situation is obtained by the presence of strong dipole moments
acting across the long axes of the molecules.’” Therefore, owing to
dipole-dipole reinforcement, the layer arrangement is energetically
the most stable.

It will be seen from Fig. 3 that there are two singular directions
(analogous to rational orientations in a crystal) for which y will
exhibit pronounced minima, and the cross-section of the equi-
librium shape may be expected to be 2(d). In practice, however,
the drop forms terraces. This remarkable phenomenon may be
interpreted as the hill-valley configuration adopted by a plane
surface which does not conform to the Wulff shape. The layer
arrangement of molecules being the only energetically feasible one
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at that temperature, a smooth surface of arbitrary orientation,
produced, let us say, by a deformation of the ideal equilibrium
shape, will readily break up into steps whose heights are integral
multiples of the molecular length (Fig. 4).

/
—
/

Figure 4. Formation of steps.
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