Engineering of *Deinococcus radiodurans* R1 for Bioprecipitation of Uranium from Dilute Nuclear Waste

Deepti Appukuttan, Amara Sambasiva Rao, and Shree Kumar Apte*

Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

Received 14 June 2006/Accepted 10 October 2006

Genetic engineering of radiation-resistant organisms to recover radionuclides/heavy metals from radioactive wastes is an attractive proposition. We have constructed a *Deinococcus radiodurans* strain harboring *phoN*, a gene encoding a nonspecific acid phosphatase, obtained from a local isolate of *Salmonella enterica* serovar Typhi. The recombinant strain expressed an ~27-kDa active PhoN protein and efficiently precipitated over 90% of the uranium from a 0.8 mM uranyl nitrate solution in 6 h. The engineered strain retained uranium bioprecipitation ability even after exposure to 6 kGy of 60Co gamma rays. The PhoN-expressing *D. radiodurans* offers an effective and eco-friendly approach to biorecovery of uranium from dilute nuclear waste.

Nuclear waste contains a variety of heavy metals, radionuclides, organic solvents, and other toxic substances. The management of these wastes is a challenging problem (4, 6, 14). The treatment of environmental metal pollution by microbes or products thereof (bioremediation) generally offers a less expensive, in situ alternative to the commonly used physicochemical strategies (4–6, 14). Among the biotechnological processes, biosorption and bioaccumulation are limited by the availability of metal-interactive sites and metal toxicity, respectively (18). In comparison, bioprecipitation, especially as metal phosphates, offers a promising eco-friendly approach for metal recovery since it can also handle low concentrations of metals not amenable to chemical approaches (16).

Bacteria such as *Citrobacter sp.* and recombinant *Escherichia coli* expressing multiple copies of a nonspecific periplasmic acid phosphatase (PhoN) (10) have been reported to precipitate heavy metals efficiently (1, 19). PhoN hydrolyzes organic phosphates, and the inorganic phosphate, thus released, interacts with the metal and precipitates it on the cell surface as insoluble metal phosphate (12, 19). Other organisms capable of precipitating metals up to nine times their biomass have been known (10). However, the sensitivity of such bacteria to the adverse effects of radiation makes them unsuitable candidates for remediating radioactive waste.

The use of microbes for the treatment of radioactive wastes is determined largely by their ability to survive and catalyze the desired function(s) under high radiation stress (4). The bacteria belonging to the *Deinococcaceae* family have the extraordinary ability to withstand radiation doses of up to 10 to 15 kGy (2, 6, 8). There has been a worldwide research interest to unravel the secret(s) of the unusual radiation resistance of these bacteria (2, 11, 22, 23). Wild-type *Deinococcus* has also been shown to reduce uranium in the presence of humic acids under strict anaerobic conditions (8). In recent years, *Deino-

* Corresponding author. Mailing address: Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400 085, India. Phone: 91-22-25595342. Fax: 91-22-25505326. E-mail: sksmbd@barc.gov.in.

† Published ahead of print on 20 October 2006.

MATERIALS AND METHODS

Bacterial strains and growth conditions. *Deinococcus radiodurans* strain R1 was grown aerobically in TGY (1% Bacto Tryptone, 0.1% glucose, and 0.5% yeast extract) liquid medium at 32°C ± 1°C under agitation (180 ± 5 rpm). *E. coli* DH5α cells were grown in Luria-Bertani (LB) medium at 37°C ± 1°C under agitation (180 ± 5 rpm). Bacterial growth was assessed by measuring turbidity (optical density at 600 nm [OD600]) or by determining the number of CFU on LB after 24 h of incubation at 37°C ± 1°C in the case of *D. radiodurans* and on LB after 48 h of incubation at 37°C ± 1°C in the case of *E. coli*.

The antibiotic concentration used for the selection of transformants was 3 µg ml⁻¹ of chloramphenicol for *Deinococcus* and 100 µg ml⁻¹ of ampicillin for *E. coli* (21). For screening of recombinant PhoN-expressing clones, LB-TGY containing phenylphthalinle phosphate (DPP) (1 mg ml⁻¹) and methyl green (MG) (50 µg ml⁻¹) was used in the case of *E. coli*. For *Deinococcus phoN* transformants, the MG concentration was reduced to 5 µg ml⁻¹, since higher concentrations were found to be toxic.

PCR amplification, cloning, and transformation. The various plasmids used in this study are listed in Table 1. Plasmid DNA was isolated from *Deinococcus* and *E. coli* cells as described earlier (7, 27). The primers for PCR amplification were designed on the basis of the published sequence of the phoN gene of *Salmonella enterica* serovar Typhimurium (GenBank accession no. X59036) and the *D. radiodurans* groESL promoter (DR0606) in their respective genomes. The primers used for cloning and DNA sequencing were obtained from Bangalore Genei Pvt. Ltd., Bangalore, India, and are listed in Table 1. PCR products were purified using an AuPrep PCR purification kit, Life Technologies Pvt. Ltd., India.

The shuttle vector pRAD1 (21) was used for cloning of *Salmonella enterica* serovar Typhi *phoN* in *Deinococcus*. The *phoN* ORF was PCR amplified, using primers DAP-f and T3 (Table 1), from an existing plasmid (pASR1) in our laboratory (Table 1) that contains *S. enterica* serovar Typhi *phoN* with its native promoter cloned in the pBluescript SK(+) vector. The purified PCR-amplified DNA fragment was purified, digested, and ligated to the NruI-BamHI site of pRAD1. Upstream of the *phoN* ORF, the deinococcal groESL promoter, amplified using primers DAG-f and DAG-r (Table 1), was ligated at the XbaI-NdeI site, yielding plasmid pPN1. The recombinant plasmid was then used to transform competent *E. coli* DH5α cells, which were plated on LB agar containing 60Co gamma irradiation.
ampicillin (100 μg ml⁻¹). The transformants were screened for PhoN expression on LB agar containing PDP and MG. On these plates, positive clones turn distinctly greenish due to the deposition of methyl green on the colonies as the medium turns acidic on cleavage of phenolphthalein diphosphate by PhoN-positive clones. Plasmids were isolated from a few of the positive clones and used to transform competent D. radiodurans R1 cells as described earlier (15). The transformants were plated on TGY containing chloramphenicol (3 μg ml⁻¹). Deinococcus colonies expressing PhoN were subsequently screened on TGY agar containing PDP and MG.

DNA sequencing. DNA sequencing was carried out using a standard dideoxy DNA sequencing protocol (28). Sequencing grade primers P5 and P6 (Table 1) bound upstream and downstream of the multiple cloning sites in pRAD1, thus amplifying the insert (1,248 bp) present in these sites. Computational analyses of DNA were performed using Internet-based programs. Similarity searches were carried out using the BLAST algorithms available at http://www.ncbi.nlm.nih.gov/BLAST/. Multiple alignments comparing the sequences were performed using ClustalW (http://www.ebi.ac.uk/clustalw/). D. radiodurans genome sequence data were obtained from the completed and annotated genome at The Institute for Genomic Research (http://www.tigr.org). Sequences from other bacteria were obtained from GenBank (http://www.ncbi.nlm.nih.gov).

Acid phosphatase expression: zymogram and activity assays. *Salmonella enterica* serovar Typhi, *E. coli*, and *Deinococcus* cultures were harvested in the early stationary phase, washed twice, and resuspended in chilled distilled water. To this, equal volumes of 2× nonreducing cracking buffer (13) were added, and samples were warmed to 50°C for 15 min. The suspension was clarified by centrifugation at 12,000 rpm for 15 min. The suspension was clarified by centrifugation at 12,000 rpm for 15 min. The supernatant was estimated by a modified micro Lowry method (24). Equal amounts of protein (5 μg) were electrophoretically resolved by 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis at 75 V for 30 min, followed by 100 V for 90 min. In the case of *Salmonella enterica* serovar Typhi, 5 to 50 μg protein was loaded. The gel was rinsed briefly with water to remove surface sodium dodecyl sulfate and renatured using 1% Triton X-100 in 100 mM acetate buffer of pH 5.0 (two washes of 20 min each), followed by a wash with 100 mM acetate buffer without Triton. The gel was developed using nitroblue tetrazolium (NBT)-5-bromo-4-chloro-3-indolylphosphate (BCIP) mix in 100 mM acetate buffer at pH 5.0. The assay was terminated by rinsing the gel in distilled water.

Acid phosphatase activity was estimated by the liberation of p-nitrophenol from disodium p-nitrophenyl phosphate (pNPP) as described earlier (3). PhoN activity of whole cells is reported as nmol of p-nitrophenol (pNP) liberated min⁻¹ mg⁻¹ bacterial protein. Protein concentration was determined by Lowry's method (17) using a protein estimation kit (Bangalore Genei Pvt. Ltd., India).

Radiation response of transformants. Early-stationary-phase cultures of both *Deinococcus* and *E. coli* clones were washed twice and resuspended in fresh TGY and LB broth, respectively, at an OD₆₀₀ of 3.0. The cultures were exposed to 6 to 21 kGy of ³⁰Co gamma rays at a dose rate of 5 kGy h⁻¹ (³⁰Co Gamma Cell 5000 irradiation unit; HIRUP, Bhabha Atomic Research Centre, Mumbai, India). An aliquot of the culture kept outside the radiation source served as the sham control. The irradiated and control cells were washed, serially diluted, plated in triplicate on TGY plates containing chloramphenicol in the case of *Deinococcus* clones and on LB containing ampicillin in the case of *E. coli* clones, and incubated under optimum growth conditions. Colonies were counted, and the survival curve was plotted. Irradiated cells were also assayed for their PhoN activity as described earlier.

Uranium precipitation assays. Uranium precipitation assays were performed as previously described (29) with certain modifications. Overnight grown cultures (OD₆₀₀ of 0.3) of *Deinococcus* and *E. coli* clones were incubated in the presence of 0.8 mM uranyl nitrate in 2 mM acetate buffer (pH 5.0), supplemented with 5 mM β-glycerophosphate at 25°C ± 2°C under static conditions. Aliquots were taken at different time intervals and subjected to centrifugation at 12,000 × g for 10 min. Residual uranium in the supernatant and uranium associated with the cell pellet were estimated using Arsenazo III by a modification of the method of Fritz and Bradford (9). The metal in the pellet fraction was estimated after the pellet was digested with concentrated HCl. A 0.1% solution of Arsenazo III was prepared by dissolution of 0.2 g of Arsenazo III in 180 ml of 0.01 N HCl and 20 ml of absolute ethanol (30 min of stirring) and filtration through Whatman No. 1 filter paper. Twenty microfilters of the spent supernatant was diluted to a total volume of 600 μl. The samples were acidified (200 μl of 0.01 N HCl), followed by the addition of 200 μl of Arsenazo III. The resultant purple-colored metal-Arsenazo III complex was estimated spectrophotometrically at 655 nm using uranyl nitrate hexahydrate (Merck) as the standard. Metal precipitation was expressed as the percentage of the initial metal present in the supernatant.

For comparison of uranium precipitation by *Deinococcus* and *E. coli* cells harboring cloned phoN, cells containing equivalent PhoN activities (as measured by a pNPP assay and corresponding to OD₆₀₀ values of 0.3 for *E. coli* and 1.5 for *Deinococcus* radiodurans) were incubated with 0.8 mM uranyl nitrate. In another experiment, *Deinococcus* and *E. coli* cells harboring phoN were irradiated at 1 and 5 kGy and the irradiated cells were then assayed for their uranium precipitation ability.

RESULTS

Cloning of *Salmonella enterica* serovar Typhi phoN in *D. radiodurans* R1. The phoN gene was PCR amplified from a previously cloned phoN gene of *Salmonella enterica* serovar Typhi (plasmid pASR1) already available in our laboratory (Table 1). The 0.887-kb PCR product was digested with NdeI and BamHI. The resultant 0.815-kb digested product was ligated to the NruI-BamHI site of the *E. coli*-Deinococcus shuttle vector pRAD1 (21). Upstream of the phoN ORF, the 0.256-kb deinococcal groERealm promoter was ligated at the XbaI-NdeI site to obtain pPN1 (Table 1). The *E. coli* trans-

TABLE 1. Bacterial strains, plasmids, and primers used in this study

<table>
<thead>
<tr>
<th>Strains</th>
<th>Description or sequence (5’ to 3’)</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli DH5α</td>
<td>F⁻ recA41 endA1 gyrA96 thi-1 hsdR17 (rK-mK) supE44 relA lacU169</td>
<td>Lab collection</td>
</tr>
<tr>
<td>D. radiodurans R1</td>
<td>Wild-type strain</td>
<td>15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plasmids</th>
<th>Description or sequence (5’ to 3’)</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>pASR1</td>
<td>pBluescript SK(+) containing S. enterica serovar Typhi phoN gene with its native promoter</td>
<td>Unpublished work from this lab</td>
</tr>
<tr>
<td>pRAD1</td>
<td>E. coli-D. radiodurans shuttle vector; Ap r Cmr; 21 kb</td>
<td>This study</td>
</tr>
<tr>
<td>pPN1</td>
<td>pRAD1 containing S. enterica serovar Typhi phoN gene with deinococcal groERealm promoter</td>
<td>This study</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primers</th>
<th>Description or sequence (5’ to 3’)</th>
<th>Source or reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAG-f</td>
<td>5'-GGCCTCTAAGCATGTTCA-3'</td>
<td>This study</td>
</tr>
<tr>
<td>DAG-r</td>
<td>5'-GGTTTCCAGCATGTTGTT-3'</td>
<td>This study</td>
</tr>
<tr>
<td>DAP-I</td>
<td>5'-GGTGAGTCCCATATGAAAAG-3'</td>
<td>This study</td>
</tr>
<tr>
<td>T3</td>
<td>5'-AATTAAACCCTACATGAAAAG-3'</td>
<td>This study</td>
</tr>
<tr>
<td>P5</td>
<td>5'-GGAGCGGATAAACATTIGACACA-3'</td>
<td>This study</td>
</tr>
<tr>
<td>P6</td>
<td>5'-AACGGGCTGCAAGAATGGA-3'</td>
<td>This study</td>
</tr>
</tbody>
</table>
formants carrying plasmid pPN1 were first selected on ampicillin and then on plates containing a modified version of a histochemical medium, described previously (26), for selecting phosphatase-positive clones. A few phosphatase-positive E. coli colonies were grown, plasmids were isolated, and the inserts therein were confirmed by PCR amplification. A typical result is shown in Fig. 1. This plasmid was then used to transform D. radiodurans R1 and transformants screened on the modified histochemical plate containing chloramphenicol (3 μg/ml). DNA inserts (1,244 bp) from four phoN-positive Deinococcus clones were sequenced using pRAD1 primers P5 and P6 (Table 1), which, bind upstream and downstream, respectively, of the multiple cloning sites, and revealed no changes.

In vitro and in vivo acid phosphatase activity of E. coli and Deinococcus clones harboring PhoN. Cell extracts of both E. coli and Deinococcus showed distinct PhoN phosphatase activities, visualized in the zymograms as ~27-kDa activity band (Fig. 2). This indicated good expression of an active enzyme from the deinococcal groESL promoter. The cell-based activity assays, performed using pNPP as the substrate, showed much less activity in the case of Deinococcus clones than in the case of E. coli clones, though nearly equal activities were seen in the zymogram (Fig. 2). On an equal protein amount basis (5 μg), protein extract from the parent Salmonella enterica serovar Typhi did not show detectable activity in the zymogram. However, when 10 times more protein was loaded, a low intensity band matching the expected molecular weight of PhoN (Fig. 2) was observed. This can be attributed to a single copy of the phoN gene in the Salmonella genome. Figure 2 clearly shows significant overexpression of PhoN in the E. coli and Deinococcus clones.

Radiation response of Deinococcus transformants carrying the phoN gene. The radiation resistances of different Deinococcus clones were determined by evaluating their D10 values (dose causing 90% lethality or allowing 10% survival). The D10 value for E. coli clones was ~200 Gy. In comparison, Deinococcus clones harboring the empty vector pRAD1 and Deinococcus phoN clones showed D10 values of 18.0 and 17.4 kGy, respectively (Fig. 3A), indicating that the cloned S. enterica serovar Typhi phoN gene did not affect the radioresistance of the host cell. There was also no change in the whole-cell PhoN activity of D. radiodurans clones after up to 12 kGy of exposure. However, beyond an 18-kGy dose a decrease of 20% was seen (Fig. 3B).

Uranium precipitation by transformed E. coli and Deinococcus cells. E. coli as well as Deinococcus clones harboring phoN precipitated uranium from uranyl nitrate solutions. On an equal cell number basis, Deinococcus clones were slow (~70% precipitation in 26 h) compared to E. coli clones (~70% precipitation in 1 h) (Fig. 4A). However, when cells carrying equal PhoN activities were used, the time courses of uranium precipitation were nearly identical and both E. coli and D. radiodurans clones could precipitate >90% uranium in approximately 6 h (Fig. 4B). Metal loss from the supernatant was shown to be in conformity with the precipitated metal in the pellet fraction (Fig. 5) in both E. coli and D. radiodurans clones.

Postirradiation uranium precipitation activities. E. coli and Deinococcus clones with equivalent PhoN activities were subjected to different doses of ionizing 60Co gamma radiation (1 to 6 kGy) and immediately allowed to precipitate uranium from dilute (<1 mM) uranyl nitrate solution. Under these conditions, Deinococcus phoN clones could precipitate uranium much more efficiently than the corresponding E. coli phoN clones. Deinococcus phoN clones retained nearly 90% of their uranium-precipitating ability after up to 6 kGy of irradiation,
whereas *E. coli* clones showed limitations even at 1 kGy and were severely inhibited at higher doses (Fig. 6).

DISCUSSION

Radioactive waste is an inevitable problem arising from the use of radioactive materials in the nuclear industry. Based on its radioactive properties, nuclear waste is classified as low-level waste, intermediate-level waste, or high-level waste (25). The problems associated with low-level and intermediate-level wastes are due largely to their bulk volume. The recovery of desirable metals from such solutions poses a major challenge. The use of radioresistant microbes to precipitate metals in a radioactive environment offers a very feasible and, therefore, attractive approach in such a context.

Deinococcus radiodurans can survive extremely high doses of ionizing radiations (2). Attempts to genetically engineer this bacterium for bioremediation of radioactive wastes have met with success. Recombinant *Deinococcus* strains capable of degrading toluene and detoxifying mercury from aqueous solutions in radioactive environments have already been reported (4, 14). The present work has successfully demonstrated the construction of a recombinant *Deinococcus radiodurans* strain capable of bioprecipitating uranium from aqueous solutions containing less than 1 mM uranium, subsequent to exposure to a very high dose of 60Co gamma rays.

The engineered *E. coli* and *Deinococcus* (*D. rad.*) *phoN* transformants demonstrated the desired gain of function and expressed an ~27-kDa PhoN protein with high acid

![Figure 3](image3.png)

FIG. 3. Radioresistance of *phoN* transformants. (A) Stationary-phase cultures adjusted to an OD_{600} of 3.0 were exposed to different doses of 60Co gamma radiation. Survival was measured in terms of the number of CFU ml^{-1}. (B) Postirradiation PhoN activity of *D. radiodurans* (*D. rad.*) clones expressed as nmol of pNP liberated min^{-1} mg^{-1} protein.

![Figure 4](image4.png)

FIG. 4. Comparison of uranium precipitation by *E. coli* and *Deinococcus* (*D. rad.*) *phoN* transformants. (A) Comparable cell numbers (OD_{600} of 0.3). (B) Cells with equivalent PhoN activities.
phosphatase activity (Fig. 2). While the in-gel activities visualized in the zymogram were comparable in the two bacteria, the whole-cell-based in vivo PhoN activity was severalfold less in *D. radiodurans* than in *E. coli* transformants (Fig. 2). The reason(s) for this is not clear but may have to do with the multilayered cell envelope that the gram-positive *D. radiodurans* possesses, which may reduce accessibility of the substrate to the periplasmic PhoN compared to the enzyme in *E. coli*. Alternatively, the *Salmonella* signal peptide may interfere with optimal localization of PhoN in deinococcal membranes. Notwithstanding this difference, *E. coli* and *D. radiodurans* recombinant clones containing equivalent PhoN activities exhibited efficient and equal uranium precipitation capabilities (Fig. 4B). Both clones removed more than 90% of the uranium from solutions containing 0.8 mM uranyl nitrate in about 6 h. This is much superior to the uranium precipitation ability reported for native *Citrobacter* strains (strain N14, PhoN activity of 400 to 500 U and 37 to 61% uranium precipitation in 6 h; strain dc5c, PhoN activity of 850 U and 58% uranium precipitation in 6 h) under similar experimental conditions (10, 20) or
for an engineered and immobilized *E. coli* strain expressing PhoN (PhoN activity of 100 to 150 U and 98% uranium precipitation in 400 h) (1). While *E. coli* cells (both wild type and transformants) showed considerable radiosensitivity, the transfer of *phoN* to *Deinococcus radiodurans* did not compromise its radioresistance (Fig. 3A). The recombinant *D. radiodurans* clones retained their uranium precipitation ability even after 6 kGy of 60Co gamma irradiation (Fig. 6). In contrast, *E. coli* clones could not function optimally even at low doses (1 kGy) and showed severe inhibition of PhoN activity at higher doses (3 to 6 kGy).

Exploiting recombinant *Deinococcus* *phoN* transformants for bioprecipitation of uranium thus seems feasible. The inherent radioresistance of this microbe facilitates the use of an engineered strain for sustained in situ bioremediation of radioactive waste and allows uranium recovery from low concentrations and high-radiation environments typical of dilute radioactive waste. It is worth mentioning that once the recombinant cells are loaded with sufficient uranyl phosphate, they sink to the bottom of the container and can be collected with ease to recover uranium from loaded cells.

ACKNOWLEDGMENTS

Deinococcus radiodurans strain R1 was kindly provided by K. W. Minton and M. J. Daly. Uniformed Services University of the Health Sciences, Bethesda, MD, and the *E. coli-Deinococcus* shuttle vector pRAD1 was provided by M. E. Lidstrom, Departments of Chemical Engineering and Microbiology, University of Washington, Seattle.

REFERENCES

ERRATUM

Engineering of *Deinococcus radiodurans* R1 for Bioprecipitation of Uranium from Dilute Nuclear Waste

Deepti Appukuttan, Amara Sambasiva Rao, and Shree Kumar Apte

Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India

Volume 72, no. 12, p. 7873–7878, 2006. Page 7873, column 2, last paragraph, line 6, and page 7874, column 2, last paragraph, line 7: “NruI” should read “NdeI.”