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Abstract

The theory of linear stability of shear flows has been studied
extensively over much of the last century. Most studies have
been based on the Orr-Sommerfeld equation for parallel flows,
but in recent decades there have been several attempts at more
general theories, including the use of parabolized stability equa-
tions. As shear flows tend in general to be nonparallel, the ques-
tion has remained about the formulation of a proper theory ac-
counting for flow nonparallelism. Introducing the concept of
minimal composite equations, with the use of similarity coordi-
nates, it has been possible during the last ten years to develop
a hierarchy of stability equations ranging from an ordinary dif-
ferential equation like the Orr-Sommerfeld (but not identical to
it) to partial differential equations like the PSE. The approach
through minimal composite equations has now been extended
to include effects of wing sweep and compressibility, and we
present a review of these developments and their implications.

Introduction

Tollmien [25] achieved his famous demonstration of boundary-
layer instability in 1929 through approximate solutions of the
Orr-Sommerfeld equation, which is strictly valid only for paral-
lel flow, such as that in a plane channel. The assumption that
the Orr-Sommerfeld (O-S) is adequate for spatially evolving
flows like the boundary layer has long been questioned. Begin-
ning in the 1970s, a series of non-parallel flow theories emerged
[2, 3, 8, 22]. Among these, the results provided by Gaster [8]
have stood the test of time, and have become a widely accepted
standard of comparison. Today the most frequently used ap-
proach is probably that of Bertolotti et al. [2], who formu-
late a parabolized stability equation (PSE) to handle the prob-
lem. This is a partial differential equation, which can be solved
numerically without much difficulty on a computer of modest
power.

One important question about the PSE approach concerns the
various terms with a factor R�1 that appear therein, apart from
those already present in O-S. (Here R is a local Reynolds num-
ber, based on say the thickness of the boundary layer and the
velocity at its edge.) Now if all R�1 terms are included in the
stability analysis, one must necessarily take account of higher
order (i.e. R�1) effects on the mean flow as well, as these will
make contributions comparable to those of some of the retained
terms. It cannot however be argued that non-parallel flow ef-
fects can be consistently included only if the mean flow is ob-
tained from higher order boundary layer theory (of the kind that
Van Dyke [26] has described). This consideration suggests that
it must be possible to formulate equations for non-parallel flow
stability to lower orders than PSE.

We review here the basic ideas governing the present approach
([9, 10, 11, 20], the first three of which are referred to respec-
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as GN95, 97, 99) in formulating such lower order theo-
nd summarize the results obtained in a variety of prob-

al Composite Equations

aterial here is condensed from Narasimha and Govindara-
0], which may be consulted for a more detailed account.

pproach we have pursued recognizes the fact that the equa-
rmulated will eventually be solved numerically on a com-
but uses the idea of matched asymptotic expansions [27]
ther unusual way. In classical applications of this method

bjective is to find uniformly valid solutions to a given
itive’ equation in the limit as some small parameter (say
he problem goes to zero. This is accomplished by identi-
the distinguished limits to the primitive equation (Lager-
and Casten [17]), solving the simpler equations that arise
h such limit, and matching neighbouring solutions in an
totic sense. From such matched solutions a uniformly
composite solution can be constructed by methods that
been widely described by Van Dyke [27], Kevorkian and
[16] and others.

pproach is of value in stability theory as well. However,
resent objective is different, because we propose to solve
uations numerically: writing down uniformly valid solu-
is feasible but involves (in this view) unnecessary and un-
ding trouble. We do not therefore attempt to construct here
mly valid solutions to the equation, but rather to derive an
totically consistent equation that, to an appropriate order,

ins just those terms necessary to obtain uniformly valid so-
s. Thus, once the necessary distinguished limits are iden-
it must first be ensured that solutions of neighbouring

equations can match each other in the asymptotic sense.
a minimal composite equation is constructed; this equa-
ncludes all – and only – those terms that are necessary
ure the existence of matched uniformly valid solutions
e prescribed order. The minimal composite equation so

ucted may be seen as a consistent, lower order, reduced
tive; it includes every term that is important somewhere,
one that is important nowhere – ‘important’ to some pre-
d order in the distinguished limits.

all find it convenient to speak of an equation as ‘nomi-
valid to some order in the small parameter R�1, meaning
y that the equation contains all the terms required to con-
the relevant distinguished limits necessary to obtain uni-

y valid solutions to that or to lower orders. Our objective
s to find the minimal composite equation that includes just
terms that are necessary to obtain uniformly valid solu-

to the problem by numerical methods.

approach leads to a systematic and ‘rational’ way of de-



riving new low-order equations that are simpler than those in
current use seeking to include the effects of non-parallelism in
the flow.

2D boundary layers

Formulation

In the classical linear stability analysis of the flow over a flat
plate (described for example in Drazin and Reid [5]), the dis-
turbance stream function is broken up into normal modes of the
form

φ̂�x�y� � φ�y�ei�αx�ωt�

where α and ω are the wave number and frequency of the dis-
turbance respectively, x is downstream distance and t is time.
Only two-dimensional disturbances need be considered since,
for a two-dimensional mean flow, they become unstable at a
lower Reynolds number than three-dimensional disturbances
(by Squire’s theorem [5]). Since the disturbances are assumed
small, their products may be neglected. If it is further assumed
that the boundary layer is locally parallel, i.e. does not vary
with x (so ∂�∂x � 0 and the normal velocity is zero), φ satisfies
the Orr-Sommerfeld equation

�OS�φ �

�
i
�
ω�αΦ�

�
�D2�α2�� iαΦ���

�
1
R

�
D4�2α2D2 �α4

��
φ � 0

which defines the Orr-Sommerfeld operator �OS�. This equa-
tion has been nondimensionalised using the free stream velocity
U and a boundary-layer thickness (in the sequel the momentum
thickness θ) as scales; R is the Reynolds number based on the
same scales,

Dk �
dk

dyk
� k � 1�2� � � � �

and primes on the mean stream function Φ�y� denote differenti-
ation with respect to y. In spatial stability analysis, α � αr � iαi
is taken to be complex and ω to be real, the boundary layer be-
ing unstable to a given disturbance if αi is negative.

To see how the assumption of parallelism in the Orr-
Sommerfeld equation may be relaxed, we return to the in-
compressible Navier-Stokes equations in two-dimensional flow,
which may be written in terms of the stream function ψd as

∂
∂td

∇2
dψd �

∂ψd

∂yd

∂
∂xd

∇2
dψd �

∂ψd

∂xd

∂
∂yd

∇2
dψd �ν∇4

dψd � 0

(1)
where the subscript d indicates a dimensional quantity. The
stream function may be expressed as the sum of a steady mean
and a time-dependent perturbation,

ψd�xd �yt �t� � Φd�xd �yd�� φ̂d�xd �yd �td��

First the following nondimensionalization is used (GN95):

ψd � U�xd�θ�xd�ψ� dx �
dxd

θ�xd�
� y �

yd

θ�xd�
�t �

Utd
θd

�

α � αdθ� ω �
ωdθ
U

;

we then have

ψ � Φ�x�y��φ�x�y�exp

�
i

��
α�x�dx�ωt

	

� (2)

Note
a func
tions,
soluti
profil

where

p � θ

We no
not va
with r
ond d
comp

Furth
bance
time w
dle ex
given
alway
Howe
iment
ested
of giv
stabil
corres
and it
to be
is to
dimen
to ωd
can re
jector

One n

where
come
then b

which
entiat
Somm
natura

where
is (fro

34
incidentally that ωt �ωdtd . Further, as θ is permitted to be
tion of x, the variable y, here and in all subsequent equa-
is proportional to what is usually written as η in similarity
ons of the boundary layer equations. For a Falkner-Skan
e, U ∝ xm

d where m is a constant. Therefore

x �
2xd

�1�m�θ
�

R
p
�

dθ
dxd

�
q
R

�
d�Uθ�

dxd
�

U p
R

� (3)

p and q are constants given by

�
2
�q � θ�

2 �1�m�

�1�m�
�θ� �

�
�1�m�U

2νxd

� ∞

0
Φ��1�Φ��dyd �

te that dθ�dxd � O
�
R�1

�
, and assume that α and φ can-

ry faster (in x) than does θ, i.e. that their first derivatives
espect to xd are at most of order R�1, and that their sec-
erivatives are o�R�1� and can therefore be neglected in
arison.

ermore, while α is permitted to vary with x, the distur-
field at any station is assumed to vary harmonically in
ith the same frequency ωd . This makes it feasible to han-

periments where a wave-maker imposes a disturbance of
frequency on the flow. (A more general disturbance can
s be handled through a suitable Fourier decomposition.)
ver, as ωdtd � ωt, constant ωd , as in wave-maker exper-
s, does not correspond to constant ω. When one is inter-
in following the downstream evolution of a disturbance
en frequency, it can be done in one of several ways. If a
ity loop is presented in the �ω�R� plane, constant ωd will
pond to a suitably curved trajectory in the �ω�R� plane,
is along such a trajectory that the disturbance would have
tracked. An alternative procedure, followed in GN95,

present the stability loop in terms of a transformed non-
sional frequency variable F that is directly proportional
at all R (i.e. x), so that a straight line in the �F�R� plane
present the wave-maker experiment and a constant ωd tra-
y.

ow substitutes (2) in (1) and expands Φ as

Φ�x�y� � Φ0�y��
1
R

Φ1�x�y�� � � � �

Φ0 represents the classical ‘Prandtl’ solution and Φ1
s from higher-order boundary layer theory [26]. It will
e seen that the lowest order mean flow is given by

Φiv
0 � pΦ0Φ���

0 ��2q� p�Φ�

0Φ��

0 � 0� (4)

is the classical Falkner-Skan similarity equation differ-
ed once with respect to y. Unlike in the traditional Orr-
erfeld approach, the correct mean flow equation emerges
lly here. The disturbance stream function is given by

�NP�φ � 0�

the operator, including all terms nominally of O
�
R�1

�
,

m GN95)

�NP� �

�
i�ω�αΦ�

0��D
2�α2�� iαΦ���

0

�
1
R



D4�2α2D2 �α4 �

�
pΦ0D3 �

�
�2q� p�Φ�

0
�

D2

�
�
2yqα�ω�αΦ�

0�� pα2Φ0 ��2q� p�Φ��

0

�
D

�
�
�q�2p�αω� pΦ���

0 �3�p�q�α2Φ�

0

�



�
�
�ω�3αΦ�

0
�

Rα��
�
Φ���

0 �3α2Φ�

0�2αω�Φ�

0D2
�

�R
∂
∂x

��
�

1
R
��iαΦ�

1�D
2�α2��Φ���

1 �� (5)

Terms of O�y�R2� have been neglected here. The boundary con-
ditions are

φ � Dφ � 0 at y � 0 and (6)

φ� 0�Dφ� 0 as y� ∞� (7)

The behaviour of φ at large y has been discussed by GN95.

Equation (5), which may be called the ‘full non-parallel equa-
tion’, has the form

�OS�φ�
1
R
�NP1 �NPh�φ � O

�
1

R2

	
� (8)

with the Orr-Sommerfeld operator �OS� containing certain
terms of O�1� and others with a factor R�1. The operator
�NP1�, contained within curly brackets in (5), consists of non-
parallel terms due to the change in the boundary layer thickness,
streamwise variations in the free stream velocity as well as the
x-dependence of the disturbance. The operator �NPh�, the last
term in (8), accounts for higher order corrections to the mean
flow (the effect of displacement thickness on the mean flow for
Falkner-Skan wedge flows was considered by GN95). Equation
(8) includes all terms with the factor R�1 in the primitive vari-
ables, and will be termed the primitive ‘nominally’ correct to
O
�
R�1

�
in the following.

Now a stability analysis conducted using a full non-parallel
equation including all terms of O

�
R�1

�
would be rational only

if the mean flow were correct upto this order. (The flow over
an infinitesimally thin semi-infinite flat plate is a special case in
which the O�R�1� contribution happens to vanish.) Apart from
it being not feasible always for the mean flow to be prescribed to
this degree of accuracy, it would seem obvious that non-parallel
effects must exist even when only the lowest order contribu-
tions to the mean flow are known or given. This question has
been considered in GN97.

The lowest order theory

At first glance, it might appear from (5) that the Rayleigh equa-
tion �

�ω�αΦ�

0��D
2�α2��αΦ���

0

�
φ � 0� (9)

which is the result of omitting all terms containing the factor
R�1 in (5), is a valid lowest order equation. It is however well
known that the solution of (9) has a singularity at the critical
point y � yc, and that in the associated ‘critical layer’ it is nec-
essary to invoke viscosity. Similarly, near the wall satisfaction
of the no-slip boundary condition also demands that viscous
effects be taken into account. At large R, the thicknesses of
the critical and wall layers are respectively of O�R�1�3� and
O�R�1�2� [5]. On the lower branch of the Orr-Sommerfeld sta-
bility boundary the phase velocity cr of the wave, and corre-
spondingly also yc, are so small that the two layers may even
merge into each other. Without loss of generality, however,
we can proceed by first considering the two separately in the
present approach.

Thus, we can say that there are three distinguished limits to con-
sider:

(i) the bulk of the flow (outside layers (ii) and (iii) below),
governed by the outer inviscid (‘Rayleigh’) solutions, de-
fined by y fixed, R�1 � 0;

(ii)

(iii)
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the critical layer, given by

ηc � �y� yc��ε1 fixed� ε1 � �αR��1�3 � 0;

the wall layer, given by

ηw � y�ε2 fixed� ε2 � �αR��1�2 � 0�

lustrate the present approach by examining in detail the
l layer. Here φ may be expressed as the asymptotic ex-
n

φ�y�� χ�ηc� � χ0�ηc�� ε1χ1�ηc�� � � � � (10)

0 expanded in a Taylor series around yc,

Φ0 � Φ0c �Φ�

0c�y� yc��Φ��

0c�y� yc�
2�2� ��� (11)

bstituting (10) and (11) into the full non-parallel equation
e get, to the leading two orders in ε1, the equations

χ�iv�
0 � iηcΦ��

0cχ��0 � 0� (12)

iv�
� iηcΦ��

0cχ��1 � iΦ���

0c

�
1
2

η2
cχ��0 �χ0



� pΦ0cχ���0 � (13)

ared to the well known inner viscous layer equations in
ommerfeld theory [5], we see that the only difference is
esence of the additional term pΦ0cχ���0 in (13), which is
eral comparable to the other terms in the equation. (It
become negligible only if yc, and hence Φ0c also, be-

small.)

it is known from Orr-Sommerfeld theory that, to match
garithmic behaviour of the Rayleigh solution near yc, it
essary to consider the two leading terms in the expansion
Using (both of) them, we can now ‘compose’ the lowest
equations at the critical layer as follows. From the full
arallel terms in (5), we select just those that yield, on the
f the expansions (10) and (11), the terms that appear in
nd (13). This gives us the ‘minimal’ subset of (5) that
ately represents the critical layer as

ω�αΦ�

0�D
2 �R�1D4 ��iαΦ���

0 �R�1 pΦ0D3�
�

φ � 0

(14)
the last two terms, within square brackets, are O�R�1�3�
e to the first two. Recalling the definition of p from (3),
e that the term pΦ0cχ���0 in (13), and the corresponding
n (14), are a direct result of flow non-parallelism, and we
return to its significance presently.

actly similar analysis can be carried out for the wall layer.
ding Φ0 around the wall y � 0 and noting the wall bound-
nditions Φ0�0� � 0, Φ�

0�0� � 0, the minimal composite
ion for the wall layer is found to be�

i
�
ω�αΦ�

�
D2 �R�1D4

�
φ � 0� (15)

is already contained in (14).

‘bulk’ of the flow we have of course the Rayleigh equa-
9). As the idea is to treat the problem numerically, GN97
t handle these distinguished limits separately but instead
uct the minimal ‘composite’ equation

�αΦ�

0�
�

D2�α2
�
� iαΦ���

0 �
1
R

�
D4 � pΦ0D3

��
φ � 0�

(16)



which contains all terms that are of order R�1�2 or lower any-
where in the boundary layer, and is therefore (in particular) the
rational equation upto that order. A numerical solution of (16),
with the boundary conditions (6,7), can therefore yield the low-
est order stability boundaries for the (non-parallel) flow in a
Falkner-Skan boundary layer.

The implic]ation is that the simplest approximation to the stabil-
ity characteristics of a (non-parallel flow) Falkner-Skan bound-
ary layer is given by the ordinary differential equation (16);
the Orr-Sommerfeld is in principle not appropriate, because it
considers only parallel flow. Furthermore, the effects of non-
parallelism appear in two different ways. The first is purely
geometric, and is taken care of by the introduction of local co-
ordinates through the transformation leading to (2). The second
is dynamic, and appears (in the lowest order) solely through the
term involving p in (16). As shown by GN97, this dynamic ef-
fect is the transport of disturbance vorticity at the critical layer
by the mean wall-normal velocity of the (non-parallel) bound-
ary layer.

Now it so happens that the effect of the non-parallel-flow dy-
namics (i.e. the term containing p in (16)) is quite small in the
flat-plate boundary layer. However the effect becomes appre-
ciable as the pressure gradient becomes adverse, for then the
critical Reynolds numbers drop, the critical layer moves further
away from the surface, and the mean normal velocity is higher.
In favourable pressure gradients, on the other hand, the effect is
even smaller than on a flat plate.

A higher order treatment

A legitimate question about a theory of this type is the follow-
ing: if an ordinary differential equation in y (like (16)) has a
solution φ�y�, an arbitrary function of x times φ�y� is also a solu-
tion; so how does the x-dependence get determined? In practice
this question has been answered, e.g. in en-type calculations, by
noting that an o.d.e. like (16) or the Orr-Sommerfeld equation,
through the dependence of R on x, carries x as a parameter. A
satisfactory answer to this question must however proceed from
a primitive equation in which the x-dependence is explicit.

Following arguments similar to those advanced above but in-
cluding only the next round of higher order terms, GN99 show
that, to O�R�2�3�, the equation governing stability is

�
��ω�αΦ�

0�
�

D2�α2
�
�αΦ���

0 �

1
iR

�
D4 � pΦ0D3 �

�
�2α2 �Φ�

0

�
2q� p�

∂
∂x




D2
���φ� 0�

(17)
It may be noticed that the last term here contains the streamwise
derivative of the disturbance eigenfunction, which was absent in
the lowest order equation (16), i.e., the effects of the parabolic
nature of the flow on its stability first appear in this equation.
It is therefore appropriate to call it the ‘Lowest-order Parabolic
Stability Equation’ (LOP for short). The boundary conditions
in y remain the same as in (6,7), but need to be supplemented
by an initial condition at some x.

It is important to note that the higher order contributions to the
mean flow, i.e. Φ1 and so on, do not affect stability upto the
order considered.

Comparing LOP (17) with O-S, we see that the term α4φ of
O-S still makes no appearance but the term 2α2D2φ does. The
viscous term involving Φ�

0 is new. Compared to (16), the new
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ical effect in (17) represents streamwise diffusion of the
ant term in disturbance vorticity.

onnection between iterative solutions of the kind adopted
97 and marching solutions like those obtained with PSE
P has been explored by Balachandran and Govindarajan
hey show that a marching procedure with n steps with an
am condition that is the solution of an eigenvalue problem
ivalent to an n-dimensional local eigen solution. Further-
there is no need to employ an explicit normalization for

genfunction.

lts and Discussion

us results that have come out of the present work have been
hed previously, but we would like to highlight two sets of
s which are particularly revealing.

rst set concerns stability ‘loops’. Since the work of
ien, such loops separating the stable and unstable regimes
�ω�R� or �α�R� space have become very familiar. In non-
el flows, however, it is now well known that stability char-
stics (including the stability loop) depend on distance y
l to the surface. What is more, it can sometimes take sur-

g and unsuspected forms (GN97). It therefore becomes
sary to think of a stability surface in the space �y�ω�R�
α�R�. The nature of such a stability surface for Blasius
s illustrated in figure 1, which shows several views of the
e. It is seen that the surface consists of two segments
are stuck to each other with almost a discontinuity lo-

around the intermediate zero of the eigenfunction. At dis-
just above this location there is a little kink in the upper

h of the loop, of the kind shown in figure 2. The back of
rface has a marked valley as well as ridge.

all this suggests in that attention should be turned away
stability loops to streamwise variation of disturbance am-
es. Solutions of (5) show excellent agreement with the
results of Fasel and Konzelmann [7], as demonstrated by
]; the lower-order theories show some small deviations

flows

echnique of minimal composite equations has now been
d to a variety of other problems, and we merely state re-
ere.

s

lane far wake, with (constant) free-stream velocity U and
re-line velocity defect w0, has a mean streamwise veloc-
ich, with appropriate non-dimensionalization, obeys the
rity solution

Φ�

0�y� � Λ�g�y��

Λ�x� � U�w0�x� is the reciprocal of the velocity de-
atio and g�y� is the appropriate similarity function for
fect-velocity profile. In this far-field solution, the local
lds number is independent of x but Λ varies like x1�2.
then be shown [13] that the lowest order linear stability

ion for this flow is

�α�Λ�g���D2 �α2�� iαg���
1
R

�
D4 �

y
2

D3
��

φ � 0�

he boundary conditions

Dφ � D2φ � 0� at y � 0�
φ� 0� Dφ� 0 as y� ∞�



Figure 1: Four views of the stability surface for the Blasius boundary layer, in �y�ω�R� space. The surface is generated by stacking up,
along the y-axis, stability loops generated at various values of y. (a) View with R to the right, ω towards the top and y into paper. (b)
View from below, showing the lower branches of the stability loop stacked along y. (c,d) Other views, chiefly of the lower branches,
showing the valley and ridge nature of the topography of the stability surface. From [20].

Swept wings

Following these ideas on 2D flows, a minimal composite the-
ory can be formulated for the stability of Falkner-Skan-Cooke
swept-wing boundary layers, including the effects of spatial de-
velopment of the flow [14]. At order R�1 in the boundary layer
Reynolds number (but ignoring the contributions of higher or-
der boundary layer mean flow), the approach leads to two si-
multaneous partial differential equations in the velocity compo-
nents parallel to the surface. At the lowest order, O�R�1�2�, the
theory yields a single fourth order ordinary differential equation
that involves both streamwise and cross-flow velocity profiles:

i
�
ω�αΦ�

��
v���α2v�ξ2β2v

�
� i�α f ����βg���v

�
1
R

�
viv � r f v���

�
� 0�

with the boundary conditions

v � v� � 0 at y � 0 and v�v� � 0 for y� ∞�

where v is the amplitude of the normal velocity fluctuation, f �

and g are the stream-wise and cross-flow (similarity) velocity

profiles, α�β are similarly the associated wavenumbers, ξ is a
function of the sweep angle and r is a boundary layer growth
parameter. This theory allows for wave propagation in an ar-
bitrarily specified direction, and permits the marching direction
for computing stability characteristics to be chosen at will. It is
further possible to achieve the separation of the crossflow and
TS modes at a particular spanwise wavenumber into distinct re-
gions of instability in favorable pressure gradients (no such dis-
tinction occurs in adverse pressure gradient flow).

Compressible 2D boundary layers

Recently, several studies on the use of minimal composite the-
ory for compressible flows have been undertaken. A prelimi-
nary attempt by Mitra et al., [19] was followed by the discov-
ery that, in the lowest order, a minimal composite theory for
non-parallel compressible boundary layer stability yields a set
of three ordinary differential equations (Seshadri et al., [23]),
one less than in the classical parallel flow theory as extensively
studied by Mack [18]. This reduction is possible because, in the
lowest order, the pressure disturbance can be eliminated. Fur-
thermore, the bulk viscosity, often included in compressible sta-
bility theories, can be shown to be irrelevant at this order. The
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final lowest order stability equations from minimal composite
theory are (Rao and Sashadri [21])

�i�αU�ω��U � c�γM2ũ�
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�U� c�γM2U ��T �

�
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��γ�1�
�
�p�q��M2�1�ũ� yqũ�

��
�

The notation here is largely standard: M is the free-stream Mach
number, γ the ratio of specific heats, T is temperature, p is the
pressure;

z̃ � iαũ� ṽ�

is proportional to the divergence ∇ � ũ which vanishes in the
incompressible limit.

Compared to the well known parallel-flow stability equations
of Mack [18], the present equations contain six additional terms
arising out of the downstream growth of the boundary layer.
However, ten terms contained in the parallel-flow equations are
absent, since they are found to be of higher order everywhere.
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e 3: Comparisons of growth rates at M � 1�6 and F � 6,
[21]; full non-parallel results from [4].

mpressible flows, the mass flux disturbance (which is
ρ̃) is more sensitive to the effect of compressibility than

ause of the factor ρ. Possibly for this reason, a neutral
ity curve based on the mass flux disturbance in low-order

is very close to that of the full non-parallel theory. This
is reinforced in figure 3, where the growth rate based on
flux at Mach 1.6 at a low frequency of F � 6 is displayed.
F � ωνe�U2

e , where νe is the kinematic viscosity and Ue
ean velocity at the edge of the boundary layer.) These
eters are chosen as the PSE computations of Chang and
[4] are available for comparison. Figure 3 shows that the

rder theory agress well with full non-parallel theory at all
lds numbers, and performs better than parallel flow the-
erywhere. This is further confirmed in figure 4, where
owth rate of the second mode disturbances at the larger
number of 4.5, and a frequency of F � 120, is shown

large interval of Reynolds numbers, using Horton’s mean
rofile [15]. These growth rates are evaluated at the inner
um of the mass flux. The corresponding results from the
le scales approach of El-Hady [6] (not reproduced here)

many kinks, as can be seen in Chang and Malik [4]. Thus
Figure 2: A slice of the stability surface of figure 1, taken around the near-discontinuity, bounded by y � 0�69�0�70. The axis shown is
R. Note the fold-back on the upper branch. From [20].



Figure 4: Comparisons of growth rate of second mode distur-
bances at M � 4�5 and F � 120, from [21]; full non-parallel
results from [4].

the present low-order theory performs better than both multiple-
scales and parallel-flow theories, and has an accuracy as good
as PSE.

Conclusions

We can now summarize the position as follows. The Orr-
Sommerfeld equations (we use the plural to include compress-
ible flow), valid only for parallel flow, have the great (appar-
ent) advantage that they are universal; i.e. they are valid for
all parallel flows and all Reynolds numbers. However this uni-
versality is misleading and much less powerful than it seems,
because the mean flow is supposed to be given independently,
and does not always follow from the parallel flow assumption.
The use of minimal composite equations, in the high Reynolds
limit, leads in the lowest order to ordinary differential equa-
tions. In incompressible flow this equation is rather like the Orr-
Sommerfeld, but is not the same. It already takes into account
the non-parallelism in the flow; indeed there is one term which
explicitly represents a dynamical effect involving advection of
disturbance vorticity by the mean wall-normal flow. However
the ordinary differential equation is valid only for similarity so-
lutions of the boundary layer equation. In compressible flow the
lowest-order equations are actually both simpler and more ac-
curate than the standard parallel-flow Orr-Sommerfeld theories.

It is relevant to mention here that the present theory is different
from the pioneering triple-deck approach of Smith [24], who
also proposed the first rational theory for the nonparallel stabil-
ity of boundary layers. The chief difference is that in the present
work the frequency and wave number do not participate in the
limiting process. Smith’s equations are therefore simpler, but
they are valid only for R� Rcr, and can predict neither the crit-
ical Reynolds number nor the upper branch of the stability loop
(although a separate five-deck theory can be formulated for the
asymptotic part of the upper branch). On the other hand, Smith
takes the problem all the way to the final solutions.

If the boundary layer is not similar, the present lowest order
equations are strictly speaking not valid. In this case one can
make approximate calculations either assuming local similarity
or adopting a weakly non-similar approach (GN95). More im-
portantly, the lowest order minimal composite equations are not
universal. Thus for each type of flow the governing equation
has to be specially derived.
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