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ABSTRACT

In this paper a simple approximate formula is obtained for the frequency (o) of radial pulsation of a
gaseous star in which there is a prevalent magnetic field. The formula is

o= — By—4)@Q+ M),

where v is the ratio of the specific heats,

M
I= f0 redm (r)

and @ and IN denote the gravitational potential energy and the magnetic energy of the star, respectively.
The formula is derived from the virial theorem in the form recently established by Chandrasekhar and
Fermi; and it supports their conclusion that the period of pulsation can be made as long as one may desire
by letting the magnetic energy approach the upper limit (namely, |Q|) set by the virial theorem.

1. Introduction.—The pulsation of a star in which there is a prevalent magnetic field
has been the subject of several investigations.! But so far no simple formula has been
derived in terms of which one may easily visualize the effect of the magnetic field on the
period. In this paper we shall show how such a formula can be derived by making use of
the virial theorem in the form recently established by Chandrasekhar and Fermi.?

2. An integral formula for the frequency of oscillation—We start with the statement of
the virial theorem in the form (Paper I, eq. [11])

L 43 (y—Du+o+Mm 0
2°de g :
where © denotes the gravitational potential energy,
M 1 M
= 2 = 2
I fordm, T 2/0- lul2dm , @
B M P _ MI H[Z
(7-—1)11—/0. ;dm, and 9)‘&—/(; S p dm . (2a)
In equations (2),
dm = pdxldxgdxg 3)

denotes the element of mass, and the integrations are effected over the entire mass, M,

* The research reported in this paper has been supported in part by the Geophysics Research Director-
ate of the Air Force Cambridge Research Center, Air Research and Development Command, under
Contract AF 19(604)-299 with the University of Chicago.

1 M. Schwarzschild, Ann. d’ap., 12, 148, 1949; G. Gjellestad, Rep. No. 1. Inst. Theor. A p. (Oslo, 1950)
and Ann. d’ap., 15,276,1952; V. C. A. Ferraro and D. J. Memory, M.N., 112, 361, 1952; T. G. Cowling,
M.N., 112, 527, 1952.

28§, Chandrasekhar and E. Fermi, 4p. J., 118, 116, 1952. This paper will be referred to hereafter
as ‘‘Paper 1.”
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of the configuration. The remaining symbols have their usual meanings (they are all
defined in Paper I).

We shall apply equation (1) to the adiabatic pulsation of a gaseous star in which there
is a prevalent magnetic field. In analyzing this problem, we shall adopt the Lagrangian
mode of description and follow each element of mass, dm, as it moves. The advantage
of the Lagrangian over the Eulerian mode in our present context arises from the fact
that dm remains constant during the motion; this is required by the conservation of mass.

Considering periodic oscillations with a frequency o, we shall let §¢*¢ denote the
displacement of an element of mass, dm, from its equilibrium position, r. Similarly, we
shall let 8peiet, peit, and §He* denote the corresponding changes in the other physical
variables as we follow the element during its motion. The assumption that the oscilla-
tion takes place adiabatically requires that the changes in pressure and density, as we
follow the motion, are related by

op op
=y, 4)
o
while the equation of continuity requires that
dp_ _9& )
p ax;

(as in Paper I, we are adopting the summation convention).
Returning to equation (1) and letting 87e*?, slle?, 6Qei?, and dei“t denote the
changes in I, U, Q, and IR, we can write

—02_/M$ixidm=3(7—1)511+ Q4+ oM, (6)
0

since, to the first order in the displacement, the term in 7" will not make any contribution.
Considering the first of the three terms on the right-hand side of equation (6), we
have (cf. egs. [2], [4], and [5])

3(7—1)5u=3f0Ma (%)m:s(y—nfoM?iﬂdm

==3(v-10 ff [ s

at;
* dx1dxq.dx
9% X10%20%3,
where the integration over 1, s, and 3 is over the entire volume? of the configuration.
Letting
| H|*

8T

Q)

(8

P=p+
denote the total pressure, we shall rewrite equation (7) in the form

34— 1) ol = —3(7—1)ff/Pg—oi:dx1dx2dx3

H|29¢; 9)
+3(v—1 [ f lgrl %dxldxgdx;;.

Integrating by parts the first of the two integrals on the right-hand side of equation (9)
and making use of the equation (cf. Paper I, eq. [4])

0P _ oV 1 8

0%; P 0x; 47 axj

3 For a star with a prevailing magnetic field, the effective boundary may have to be placed quite
outside the conventional photospheric surface. We return to this question presently.

H;‘Hj (10
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(where V denotes the gravitational potential), which obtains in the equilibrium state, we
find

fffP 9% dxldxzdxg-—l;rf ceP‘é-alS
e (o ) e,

In equation (11) the surface integral is over the bounding surface (S) of the configura-
tion. We shall now assume that P vanishes on S. This assumption requires that not only
$ but also H vanish on the bounding surface. Accordingly, we must suppose that the
bounding surface, S, is placed at a sufficient distance from the photospheric surface
that H may indeed be considered negligible here. It would appear that in most astro-
physical contexts we can accomplish this without violating the assumption of the
infinite electrical conductivity of the stellar material which underlies this whole de-
velopment.
Assuming, then, that P vanishes on the bounding surface, we have (cf. eq. [11])

fffpa‘f’ daydasda = —fffpg,

ay

(12)
47rff £ HH dxyda,dzs.

After a further integration by parts (of the second integral on the right-hand side),
we obtain

S e Gt amdmari= = [ f [ori 5 amdma,
+o /[ fH:8, 321 drydaday,

the integrated part again making no contribution, since H has been assumed to vanish

on the bounding surface.
Now, combining equations (9), (11), (12), and (13), we have

3 (y—1)8ll= 3(7—1>§fM g: m—|—8—17r~fff1Hl2gide1dx2dx3
—74}1?//- H.H; gi; dxldxzdxgs .

Turning next to the terms 6Q and 6J)¢ in equation (6), we first observe that

50 = —f g, 2V axi : as)

This follows from entirely elementary considerations. It remains only to evaluate §JR.
We have (cf. eq. [24])

BSJJE=zl;ffinBH,-dxldxzdxg—S—IEffle12%9dxldxgdxs; (16)

or, using equation (5), we have

59]3:ZlgfffﬂiVBHidxldxzdxz+%f_/f]H|2gﬁfdxld%dx% an

(13)

(14)
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Now the change in the magnetic field § H as we follow the motion of an element of gas
of infinite electrical conductivity is given by (cf. Paper I, eq. [36])

8H =curl (§ XH) + (§-grad) H, (18)
or, alternatively,
g, 98 g 94
0H;=H, 3%, H; 3%, (19)

Substituting this last expression for 6H in equation (17), we obtain

Finally, inserting the expressions (14), (15), and (20) for 3(y — 1)1, 62, and §IN in
equation (6), we obtain

UZ/O‘M):-ixidm= — (3y—4) ;foMgi-gTVidm

baef 10 G amnin [ f [0 52

This is the required integral formula for o2

3. An approximate formula for the frequency of radial pulsation.—It is known from
an analysis by Ledoux? similar to the foregoing but relating to the radial pulsation of
ordinary stars that a reliable estimate of the period of pulsation of such stars can be
obtained by writing

(21)

£, = Constant x; , (22)

in a formula for ¢® analogous to equation (21); indeed, Ledoux’s formula for ¢* can be
obtained by setting H = 0 in equation (21). We shall assume that this will continue to be
the case in our present problem. Therefore, making the substitution (22) in equation
(21), we obtain

02AMr2dm= — (37——4)éAMx;g—gdm—l—gl;r—fff]ledxﬂxzdxs%, (23)

or (cf. egs. [2])

@+ Mm

ot= — (By—4) T2 @)

This formula for ¢ confirms the conclusion reached by Chandrasekhar and Fermi
(Paper 1, p. 119) on general grounds that ¢®> must tend to zero as the total magnetic
energy (IN) of the star tends to the upper limit (namely, |Q|) set by the virial theorem.

4P, Ledoux, 4. J., 102, 143, 1945,
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