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THE POST-NEWTONIAN EFFECTS OF GENERAL RELATIVITY ON
THE EQUILIBRIUM OF UNIFORMLY ROTATING BODIES

II. THE DEFORMED FIGURES OF THE MACLAURIN SPHEROIDS
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University of Chicago
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ABSTRACT

The equations of post-Newtonian hydrodynamics are solved appropriately for a uniformly rotating
homogeneous mass with symmetry about the axis of rotation. The post-Newtonian figure is obtained as
a deformation of the Newtonian Maclaurin spheroid (with semi-axes a; and a3, say) by a Lagrangian
displacement proportional to

1
E(Z) = E;é(wleyw2x2; - 4-‘@22)!

where @ denotes the distance from the axis of rotation and x; and x; are the Cartesian coordinates in the
equatorial plane. It is shown that the equation defining the boundary of the post-Newtonian configura-
tion is of the form

2 262
—+—~1—2521(e)RS° gk )—

a.? a; \a1* a,%a3?

where Sz t(e) is a determinate function of the eccentricity e of the Maclaurin spheroid and Rs. (= 2GM /c?)
is the Schwarzschild radius. The function Sa1(e) is tabulated in the paper. Further, the angular velocity
of rotation of the post-Newtonian configuration differs from that of the Maclaurin spheroid by an
amount which is also tabulated.

The solution of the post-Newtonian equations exhibits a singularity at a certain eccentricity ex(=
0.985226) of the Maclaurin spheroid. The origin of this singularity is that at e* the Maclaurin spheroid
allows an infinitesimal neutral deformatlon by a displacement proportional to §®; and the Newtonian
instability of the Maclaurin spheroid at e* is excited by the post-Newtonian effects of general relativity.

I. INTRODUCTION

In a recent paper (Chandrasekhar 1965; this paper will be referred to hereafter as
“Paper I”) the effect of general relativity, in the post-Newtonian approximation, on the
equilibrium of uniformly rotating homogeneous masses was considered in terms of a
suitably generalized form of the Newtonian tensor virial theorem. The principal result
of that paper was the establishment of the relation

Q2 %33 W1 , Rse
7Gp  (nGp)Iy

—l— E(e), (1

where ;; and I;; denote the potential-energy and the moment of inertia tensors, E(e)
is a certain function (defined in that paper; see also eq. [30] below) of the eccentricity
of the Maclaurin spheroid (whose semi-major axis is @1) and Rs.(= 2GM/¢?) is the
Schwarzschild radius.

As was stated in Paper I, the derivation of equation (1) does not, by any means, solve
the problem of the equilibrium: the complete specification of the figure must inevitably
depend on the explicit solution of the equations governing the equilibrium in the post-
Newtonian approximation. It is the object of this paper to provide that solution.
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II. THE BASIC EQUATIONS

The equations governing the equilibrium of a configuration rotating uniformly with
an angular velocity Q about the x3-axis, in the post-Newtonian approximation, are

oo+ [ (1+0) 1] 802 (4 32 2)

3 0% 0%e ¢ 0%a  O%a
(2)
4 9 _ a_l_f_e]_
+02 P[‘vitaxﬂ(vaU Ua) + v EY =0,
where
1 = —Quxy, v = + Qwy, v3=0, 22 = 02(x2 + x?), (3)
17, ?
a=p[1—|—§ v+ 20 142 ] ®
$=0+U+im+22 ®

?
p

and U, and ® are, in general, solutions of the equations

viU, = — 47Gpv, and V¥ =— 47Gp¢ . (6)
For the case we are presently considering, we may write
U= -0, and U, = +Q®1, (7)
where
(x")xd
o(x) =G [ o212 gy @)
Dalx) A I ‘ — %' ‘ X

and the integration is effected over the entire volume V' occupied by the fluid.

In our further discussion of the foregoing equations, we shall restrict ourselves to
the case when the system has symmetry about the axis of rotation. Then all scalar quan-
tities such as p, p, U, o, etc., will be functions of

@ =22+ x2) and 3= %3 9
only. It is also clear that, in the case of axisymmetry, we can write
D1 = 1:1D(@,3) and Dy = 2,0(w,3) , (10)
where D(@,2) is a solution of the equation

2 2
D, 30D, 20

=~ = — . 11
w® ' © 0w dnGp 4

Now Krefetz (1965) has shown that under circumstances of axisymmetry equation
(2) governing the equilibrium can be brought to the form

_1 £>i?_=j_ 1022 L (10 202 Dp— 422
|1 c2(n+p [32=r 5| U+ G2 UL+ 20— 40%0D) | a2

As in Paper I we shall consider a configuration in which the energy-density e(= pc? +

IT) is a constant throughout. This assumption, that e is a constant, is formally equiva-
lent to the assumption p = constant and IT = 0 and the assignment to p the meaning
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of ¢/c®. We shall continue our consideration of equation (12) explicitly under the latter
assumption, namely,
= constant and I = 0. (13)

Equation (12) then allows of immediate integration in the form
2
%= U+ 100 +;12-[% (%) 4t (100 42U — 4D) + 2@] 4 constant . (14)

The problem now is to determine the equation governing the surface of the equilibri-
um figure such that the pressure given by equation (14) vanishes identically on it.

III. THE TERM THAT IS EXPLICITLY POST-NEWTONIAN
IN THE PRESSURE INTEGRAL

In evaluating the term that is explicitly post-Newtonian in equation (14), we may
legitimately use relations and equations that are valid in the Newtonian limit when the
equilibrium figure is a Maclaurin spheroid. The relevant relations and equations are
(cf. Paper I, egs. [15]-[18] and [25])

p_ w? 2

';—-WGpdazAg (1—0—12—0—32 s (15)
U=1Go(l — A — Ag®) (I = 2024, + agds) (16)
D= 7I'Gpdl2(A1 — A11(‘.62 - A1322) , 7

and

Q%

¢—wGp[(I+3ag2A3)+(4 gA1>a2—%A3z2], as)

where the index symbols A4,, 4., etc., are so normalized that £4, = 2. (Note that in
the case we are presently considering, namely, when a; = a., the value of any index
symbol is unaltered if the subscript 2 is replaced by 1 wherever it may occur.)

In terms of the potential U and

p(x")xd xg x|

19)
REEEE

Das(x) =G

the solution for ® can be explicitly written down. Thus,

;g;_p__ (I+3a245)U .|_<——————5A1)(@11+©22) —2 45033 20

It is known that (cf. Chandrasekhar and Lebovitz 1962, egs. [68] and [70])

@ 3
# = adtagt | Awg— E Aapux® o
mGp o=

3 3 3
+31adba (Ba — 2> Bumd+ D, > Ba,‘,,xﬁx,,?)
u=1 p=1 r=1

(summation only over the indices explicitly noted).

(21)
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Now inserting for U and D, in accordance with equations (16) and (21), we obtain
for ® the solution

o

TGy = U+t 40U — 41 — As)

-+ (—— —~—A1>[ a*(An— Amnme® — 41:282) o

+ 3a.( By — 2Byw* — 2B132* + 2Bi130%? + Bino! + Bussz) |
(22)

—%A3[ds4( Ass — A3 — Agssp?)2?

+ ta:?(Bs — 2Byo? — 2B3ss® 4+ 2Bysiw?2? + Bsnw* + Bassz*) 1.

Finally, making use of equations (15)—(17) and (22), we find that equation (14) takes
the form

(1er)

% =U+4+ 1%+ (ap+ a1®%+ 0322 + a115* + a135%% + asszt) + constant, (23)

where
ao= 305" A5+ (21 +3as? 4s) [ + 50:*B1 (LQ* — 5 41) — S as® A3Bs,
a = —Z—i: A+ 2032430 — (21 + 3a3*A43) A,
+ (2@ —541)(a1* Au — ai®Bu) + 5 a3’ 4383,
az= —as? 4> — (21 +3as’43) 43— (ZL— 541) a:’Bs

—5A43(as*A33 — 3 as®Bss),

4 (24)
o=} 25 47+ 0 (39— 241+ 4ar’ Au)
1

+ (202 — 54:)( — a1 A1y + $a:*Biny) — S04 43Buss,
am—— AR+ 02 (4a Ay — 2 43) + (2Q2—541) (—art Aus+ a1Bus)
—545( — as* s+ $a8*Bsnr ),
am =3 A2+ 3 (10~ 54,) :®Bus — 5 A5 ( — a5* Asas -+ 1 a5Bszs)

(€22 is measured in the unit 7#Gp in the terms on the right-hand sides of the foregoing
equations.)

It should be noted that, in equation (23), U is the Newtonian gravitational potential
of the deformed (as at present, unknown) figure which the body assumes in the post-
Newtonian approximation. Similarly € (in the centrifugal potential 3Q%&?) is not neces-
sarily the same (to order 1/¢?) as that of the Maclaurin spheroid which was used in the
evaluation of the terms that are explicitly post-Newtonian.
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The Virial Relation

With the expression for p/p given by equation (23), the equations of hydrostatic
equilibrium (for the case that is being considered) are

:f [ +Q2x, + (TGP) (20121 + 4dan®?x; + 20132° xl)] (25)
and

ap _ (7er)

9z ”[ax ] “

Multiplying equations (25) and (26) by x; and by 2, respectively, and integrating over
the volume of the configuration, we obtain

| (4mas’as)(wGp)2p (24 | 164’ 2a1’as®
¢ 15 “T 105 “* T 105 °®

—/de = W+ [+

(27

47 aq? Gp)3p (2 4 4a,%a;
=§1833+( T a;,.c)z(r p)p 1053 3+ as ass+ 1653 G~13>~

From equations (27) we obtain the eliminant relation

Bz — BVWu (WGP)
Q= T + ol (2astas+ 201’052 a1+ 220505 — 201201 L LB artan). @29
1
Letting
2
Ey= ;‘2( asfaz— a’ar+1alastan+ Sastan —Eastan), (29)
1

we can rewrite equation (28) in the form (cf. eq. [1])

=§IB33 _QBII +

2
0 IU c?

Ey. (30!

IV. THE NATURE OF THE POST-NEWTONIAN DEFORMATION

We shall suppose that the post-Newtonian figure is obtained by a deformation of the
classical Maclaurin spheroid by the application of a suitable Lagrangian displacement
at each point of its interior and boundary. Since the density has to remain constant, be-
fore and after the deformation, the displacement must, in all events, be divergence free.
For the sake of convenience and also for emphasizing that we are considering an effect
of order 1/¢?, we shall denote the required Lagrangian displacement by

7er (11

£(x). (31)
In virtue of this displacement, the bounding surface,
w? | 22
SMc=—~2+——§—1=O, (32)
ai as

1 We readily verify that Ei; as defined in eq. (29) is related to E(e) as introduced in eq. (1) by
E=3 E13/8a1as .
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of the Maclaurin spheroid becomes

S= Sy.— 1rGPa1 £ aa-i:Mc =0, 33)
i
or explicitly
= 2 27Gpai? X1+ Exx 2
S(x)—**2 732_1— WCZ : (El 1a2£2 2+—-§Z2)=0. (34

On consideration, it appears that the requirement that S(x) be axisymmetric and the
fact that the post-Newtoman term, already present in the expression (23) for p/p, is
quadratic in @? and 22 restrict us to displacements & which are linearly dependent on the
following three:

ED = (1,09, — 22), (35)
E® = :}—Z(asle,w?xg, — 4o%), (36)

1

1
@ = *‘5(22951722962, — 228). (37

a1

We shall suppose then that

= SED 4 SE® 4§53 (38)

where Si, Ss, and S are certain constants. For a displacement of this form, the equa-
tion for the bounding surface is

2 1er 222

262 202 4
i -
d 303

While equation (39) determining S(x) involves the three constants Si, S, and S,
only two of them are independent modulo the spheroid Su.. To see that this is the case,
we first observe that the terms in S; and S in equation (39) can be combined in the

manner
4 252 4 262 4
(s ____&>< wZ>+3Mmaw _m

a*  aslas? ast

(51 285) (B2 v (S ) (52

An equivalent form of equation (39) is, therefore,

o | 2N 20Ge g, (2]
a12+a32 [1 3¢c? 5 a®  ag =1

2 2 26,2
+21;Gp[ 25, wl 2z)+<52__a_3 )( 4wz)’

Mﬂ=—+——h—
a (39)

(40)

(41)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1967ApJ...147..334C

T I oTATI7334C!

340 S. CHANDRASEKHAR Vol. 147

or alternatively (correctly to order 1/¢?),

2 2 2
w_2+_z___1+27er dl (51+ Ss) "“"gz—

+(Sz—-—53>< —4—“2—2—2

A comparison of this last equation with equation (39) leads to the following theorem:

the displacements
S1E® + SpE® + SHED
and (43)

(si+3%5) ev+(5: - 125 5) g

(42)

are, modulo the spheroid Sw., entirely equivalent. The displacements €V, €@ and ¥(®
are, therefore, not linearly independent modulo the spheroid.
From the foregoing theorem we may conclude that all the physically significant quan-
tities must depend on Sy, Sa, and Ss only through the linear combinations
d32

S1 + — S3 and 52 - %‘ ;“2‘ S3 . (44)
1

We shall verify that this is indeed the case.

And finally a remark on the choice of the spheroid Sy, as the figure for comparison
with the post-Newtonian configuration: it is clear that as far as the terms that are ex-
plicitly post-Newtonian in equations (14) and (23) are concerned, any spheroid with
axes which differ from those of Su. by amounts of order 1/¢* would have served just
as well. To that extent the choice of Sy is arbitrary since the displacement £’ simply
deforms the spheroid Sy, into a neighboring one with axes which are slightly different
(by amounts of order 1/¢?); but it s relevant for fixing the angular velocity of the
post-Newtonian configuration relative to that of the comparison spheroid. In § V we
shall derive an equation which relates the angular velocity of the Maclaurin spheroid
with that of the post-Newtonian configuration derived from it by the application of the
displacement (38).

V. THE RELATION BETWEEN THE ANGULAR VELOCITIES OF THE
NEWTONIAN AND THE POST-NEWTONIAN CONFIGURATIONS
Since the post-Newtonian configuration is to be obtained by the deformation of a
Maclaurin spheroid by the application of a Lagrangian displacement, we can write
Lss — %11;_5&33 (Mc) =B (Mc) | 683 — 6B, _ Wss (Mc) — Wi (Mc)
Iy I11(Mc) l I:(Mc) [I1:(Mc) ]?

611, (45)

where B33 and W, refer to the post-Newtonian figure and 6%;; and 67.; are the first
variations in ;;(Mc) and I,;;(Mc) caused by the deformation. Remembering that

Wss (Mc) — B, (Mc)

Que’ = ) (46)
" I (Mc)
we can rewrite equation (45) in the form
@3—:—@2 = Qul+ i( OWz3 — OW11 — Q261 11), (47)
Ill Ill
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where in the “correction term’”” we have not distinguished between 71; and I1;(Mc) as
clearly not necessary (though the distinction Q. has been retained as a matter of defini-
tion).

Comparison of equation (47) with the virial relation (30) gives

0N =02— Qul = (Tfp) Elg—"'—((s%u— 5%334‘91\10 0141). (48)

Now it is known quite generally that (cf. Chandrasekhar and Lebovitz 1963, eq. [48])

8 Bao
7er = — (2Bau— ad’ Aa)Vae+ aa Mgéu Aaprp, (49)
where
Vaa, = 2 a ad = 5Ia,o, (50)
/V pEaXad x

(no summation over repeated indices in eqs. [49] and [50] except those explicitly indi-
cated).
Making use of equations (49) and (50) we readily find that

1
T(B%n - 5%33 +QM325 Iu) = 47I'Gp ( a12A11 - 203 Als)& (51)
11
if appropriate use is made of the condition
a 2
V= — 2—;3—2 Vs (52)

(satisfied in virtue of the solenoidal character of £ and the axisymmetry of the spheroid),
the relation (cf. eq. [46])

Qul = 2313(1 - (132/012)7TGP y (53)
and the various identities among the index symbols.

For the chosen form of &, namely, that given by equations (35)-(38), it can be veri-
fied that

T 31@“—1 (7sl+ 45:+ 25 53> (5
11
Equation (48) now becomes
s = (7GR ) Ze)
c?
(55)

2 2
_%012((1121‘111“ 20321413)[7 <Sl+ % %]3“2 Ss>+4 (Sz— % % Sz)] ;;

and this is the desired relation. Notice that in this relation S1, S3, and S3 occur only in
the combinations (44).

The principal conclusion to be drawn from the discussions of this and the preceding
section is that, as far as the solution of the pAysical problem is concerned, no generality
need be lost by setting S; = .3 = 0. We shall, nevertheless, retain the terms in .S; and S
to see how “mathematical analysis brings us back to the common sense view’” (Jeans).
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VI. THE CHANGE IN THE GRAVITATIONAL POTENTIAL
CAUSED BY THE DEFORMATION

The deformation of the Maclaurin spheroid by the displacement (38) will change the
gravitational potential U by the amount (see eq. [31])

U = ”G"‘“ EEL[S10 UMD + 56 UD 4 536 UD T, (56)
where
dUM = G&f {i(—xx)'l dx '—Gfdx p(x’ )Sz(”(x')-“——'—x—:lTT, (57)
or, equivalently,
SUD = —G > p(x’)slm(x ) 4 (s8)

ax; | x — x|

For the particular displacements £ specified in equations (35)-(37), the required
variations §U ) can be expressed in terms of the potentials D, (cf. eq. [8]) and

Doty () =G [ BLEVZBH -
v |x—x|
Thus

6x1 (*)xg 6x3

a2 U® = ——a‘(?—‘(@m'i‘ Diag) —*Q‘(@nz—i‘@mz) +4 —(—3—(@1134—5@223); (61)
X, 0%y dxs

and

0126 U® = ai@ﬂ_ @_33_2_'_ 2 3@333

0%y 02y 8 dxs

(62)

We already have formulae for ©,. And by a method described in Chandrasekhar
(1964; see also Routh 1892) it can be shown that

Dap :
H = alag’ay’ ( Aoy — E : Aoy’ )XakpEy
nGp “—

+ ta.2ag?ds, <Ba/3“' 2 ZBaB#xM + 2 ZBaﬂnvxu Xy )xa

p=1 p=

3 3 3
+ % ag ay? dya (Bﬂ'y -2 z ngx,?—l— 2 Z Bﬁwvxu2xv2>xﬂ
u=1 u=1 »r=1 s
3 3 3
+10:20025 e Buum 2 D B+ 3 D Browt2 ).
p=1 pu=1 r=1

And on evaluating 6U® with the aid of the formulae for D, and D,p, and remember-
ing that we are now considering the deformation of a spheroid for which a; = a,, we
find that they are of the forms

6U(1) = uo(l) —l— ul(l)w2 _I_ u3(1)22 , (64)

(63)
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and

0125[](";) = ‘uo(i) + ul(i)m2 + u3(i)z2 + u11(i)w4 + ulg(“w?z? + uas(i)Z'i (1 = 1,3) , (65)

where
%0(1) = 2((132143 - (112A1) y
(66)
ul(” = 2(2012/111 —_ (132/113) y
sz = 2(012/113 — 3a?4 33) ’
uy® = 2(112(032313 - 012311) y
u» = 4012(—014A111 + alas?A 113 + 2a2B11 — 0323113) ’
3@ = 4(112(0123113 - 30323133) , (67)
@ = 2012(3014141111 — 20’08’4113 — 3aBun + 03231113) y
%13 = 4d12(dl4A1113 — 3a’a3?4 1133 — 2a,*B111s + 303231133) y
#33®» = 2012(503231333 - 611231133) 5
and
uy® = 3a(as?Bss — a*Buy) ,
¥ = a2(2a,°Bris — ag’Buyy) ,
us® = a(— 2aa’A 133 + a®Biss + 2a5*A 333 — 3a5°Bss)
(68)
(P = %032(03231133 - 301231113) y
113 = 032(4032d12A 1133 — 2@1*B1iss — 2a3*A 1333 + 303231333) 5
#3s® = as?(2a52a:2 A 1533 — 302 Buass — -1§°-034A3333 + 303233333) .
Combining the foregoing results, we can write
wGp)?
oU = (—Eg)_% (11251[ ’Mo(l) + u1(l)w2 + M3(1)2-'2 ]
2 (69)
+ E Sul %™ 4 w6 + w3 ™2 4 un Pt + w3 W we? + ug st ] 2 .
n=1
VIiI. THE DETERMINATION OF THE POST-NEWTONIAN FIGURE
Returning to equation (23), we shall now rewrite it in the form
P Uyt 20ula? 46 U+ LoQ2a
P (70)

G 2
+—‘—-—(7r62p) (ao+ a1@?+ a32? + ane* + a135%2 + a3z?) + constant,

where 5Q? and 6U are given by equations (55) and (69). The first two terms on the right-
hand side of equation (70), together with a suitably chosen additive constant, can be
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combined to give the expression (15) appropriate to a Maclaurin spheroid. We may,
therefore, write

2 2
£= (WGP)032A3 (1 _w—g_f—é
p ai as
71)
(”GP )? 2 2 4 2,2 4
+ ———(P1&? + Psz? + Py o+ Py3%s® 4 Py - constant ) ,
where
Py = a;+ a2S1uV + Szu1(2) + S3u1(3) + %5(.02 , (72)
Ps = a3+ a2S1us® + Sous® + Saus® (73)
and
Pij = a4+ Squij® 4 Ssuy® (¢ = 11, 13, and 33) . (79

The additive constant in equation (71) is now of order 1/¢%; and in equation (72) d«? is
the quantity in braces in equation (55), i.e.,
2
6Q% = ﬁ%”i dw?. (75)

Now it is shown in Appendix I that among the coefficients #;™ and %,;™ the follow-
ing relations obtain:

1
u® = %032[’%‘(1) ";—2 ui(z)] (2=1,3)
1
and (76)
a ..
ui;® = —%—ai ui;® (ij=11,13, and 33).

In view of these relations the expressions for P; and P;; can be written in the forms

Pi=ai+a (Sl+ 3 Sa) Y +<Sz ol S 53) o
@’ (77)
2 a as?
+ B — 0 (e du— 20 4w)[ 7 (Sl+ 92 5) 44 (s- 3 258 ]
a3’ a3t
Py=a3+a® (S1+ 3 22 Sy ) us® +<Sz -3 P Sa) u;®, (78)
1 1
and
”—au+<S2__—S3> ui,-(z) (t]=11, 13,and 33) (79)

The facts, that the coefficients P; and P;; in the solution for the pressure involve the
constants Sy, Se, and S'3 only in the combinations (45) and further that these combina-
tions occur precisely in the places of Sy and S, (corresponding to the two displacements
[43] being equivalent modulo the spheroid), imply that no loss of generality is entailed
by setting

S3=0. (80)

Accordingly, setting S3 = 0 in equations (77)-(79), we have
Py = a;+ a2S1wa® 4 Se® + 3[Ers — $ar2(a:®An — 2a52413) (751 + 4S,)], 1)
P3= a3+ a2Sms® + Squs® s (82)

and
Py = aij+ Squ;® (i = 11,13, and 33) . 83)
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It remains to apply the proper boundary condition to the solution (71). The boundary
condition is that on the surface (cf. eq. [39] with S set equal to zero),

R 2 22
S=€_U_2_|__Z_2__1_21€g 251<___gz~)+ ____Ei =0, (84)

ax asz

the pressure, as given by equation (71), must vanish identically.
In view of equation (84), the value of p/p on S is given by

(2),= T2 g fars, (Fm ) 5. (549

(85)
4 P\a? + P + Pryos* + Pryw’z + Pyz® + constant § ,

or

(p> ( WGP Y —(Q1@* + Qs7* + Quw* + Q130%%" + O3:2* + constant ), (86)

where
Q1 = Py — 2454551, Qs = P3+ 442435,

2
Qu=Pu—2 Z‘j{, A3S,, Qs = P13+ 8 43S,, and Qss = Ps;. (87)

Since (p/p)s is of order 1/¢?, it will clearly suffice if we can arrange for it to vanish on
the original spheroid Su.. And we can arrange for it in two steps: first we require that

the expression
Qi + Qa2 + Qua* + Qus0%? + Q3a2 (88)

remains constant on Sm.; then, we determine the additive constant in the solution (86)
so that (p/p)s does vanish.

We readily verify that in order that the expression (88) remains constant on Sye, it
1s necessary and sufficient that

014Q11 + 034Q33 - 0«12032Q13 =0
and (89)

a14Q11 - 034Q33 + 012Q1 - da2Q3 =0,

We are, therefore, provided with two equations; and it might be assumed that the two
equations will exactly suffice to determine the two “unknown” constants S and S,.
However, we shall show that neither of the two equations (89) involves S1; that the two equa-
tions are simply multiples of one another; and that, as a result, while Se is uniquely de-
termined, S is left undetermined.

Writing out the conditions (89) explicitly, we have

2
014[0-11 + uy®S; — 2 Z—?; A3Sz] + a3t ass 4+ %33> S ]

(90)
—aas?* [ an+ %3 PSe+ 843,51 =0
and \
014[a11 + 1%, @Sy — 2 % Sz] — a3 a4 #53PSs ]
1
+ 012{ a1+ a2ui S + u, DS, — 2a2455:
91)

+ %[El'o‘ - 778‘4112((11214 1n— 2a3*4 13)(751 + 4:52)]}
— aas + atus®S1 4 u3®Ss + 4a.2455:] = 0.
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Equation (90) contains no terms in .Si. Equation (91) does contain terms in Sy; but the
coefficient with which it occurs is

012[(112141(1) - 2032143 et 4012((112/1 11 — 2(132A 13)]— 032[012143(1) + 4(112A 3] . (92)

On substituting for %;® and #3;® from equations (66), we find that the expression (92)
becomes

a®[2a2(2a2A11 — a2d13) — 2a24 3 — 4a2(a?A 1 — 2024 15)]
- 032[2012(0121113 — 3a4 33) + 4a24 3] 5

and on simplification this last expression is found to vanish.? Thus, as stated neither,
of the two equations (89) contains terms in Sy; it is accordingly left undetermined. This
last fact is in agreement with the view arrived at earlier in § V on “common sense.”
We shall return to the meaning of this indeterminancy in the solution later in this
section.

Equations (90) and (91) are thus seen to become two equations for determining the
single constant Ss. Therefore, in order to be consistent, the two equations must be simple
multiples of one another. To show that this is indeed the case we shall first rewrite
equations (90) and (91) (after suppressing in the latter the terms in S;) in the forms

(93)

(0140«11 + astaszs — 01203211.13) + [0141411(2) + astuss®
(94)

- d12(1321413(2)— 1001203214 3]Sz =0
and

(0140-11 — astazs + alay — aslaz -+ %012E13) + [0141411(2) — astugzs®
(95)

+ a12u1(2) —_ (132143(2) d 2012032A3 — -176‘(114((112/1 11— 2d32A 13)]52 =0,
On substituting for E;; from equation (29), we find that the constant term in equation
(95) is

— Y(ar*ans + astass — aiasais) ; (96)

and this, we observe, is exactly —% of the constant term in equation (94). Therefore,
in order that equations (94) and (95) may be mutually consistent, it is necessary that

artun® + az'uss® — alasfuis® — 10aas’4 3= —T{a'un® — astuss®
(97)
+ 0w, ® — agus® — 2ai’as?4 5] + 16a:*(a’A 1 — 20541 ,
or, alternatively,
8a'un® — 6a3*u33® — alafuis® + 7T[atus® — aztu;®)|
(98)

_ 24(112(132A3 - 16(116A 11 + 3201403244 13 = 0 .

It is shown in Appendix II that this last condition is satisfied. Accordingly, we may
write as the solution for .S,

2 2
ar*an+ astazs — alas’ars

— . (99)
ar*u,® 4+ 034’1433(2) — 01243’ — 10442032 4;

S2=

2 By virtue of the identity (cf. Chandrasekhar and Lebovitz 1962, eq. [20])
20121413 + 3032/1 33 — 3A3 = (.

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1967ApJ...147..334C

T I oTATI7334C!

i
Qi
™~
£9,

!

No. 1, 1967 NEWTONIAN EFFECTS 347

We now return to the meaning of the constant S; having been left undetermined.
As we have already noted in § IV, the displacement £® deforms the Maclaurin spheroid
(Su.) into a neighboring Maclaurin spheroid. The angular velocity of this neighboring
Maclaurin spheroid differs from that of Su. by an amount determined by the equation
(cf. eq. [55] after setting S3 = 0 and ignoring the terms in E;3 and .S3)

0t = — (WGP) 8a2(a?du1—2a32413) . (100)

Accordingly, the free choice we have in selecting the amplitude of the displacement §®
corresponds to the free choice we have in selecting a particular Maclaurin spheroid
(among neighboring ones) for comparison with the post-Newtonian configuration; and
the availability of this choice has clearly no physical content. Therefore, for the pur-
poses of delineating the post-Newtonian Maclaurin sequence, we may, without any loss
of generality, set

S1=0. (101)

With this understanding, the figure of the post-Newtonian configuration, neighboring
a given Maclaurin spheroid, is determined by the equation

w2 2 27Gpa,? S, wt w222)

(102)
27 gg? c? a1t aitas?

where S is given by equation (99); and the corresponding angular velocity of rotation
is determined by the equation (eq. [55] with S and S5 set equal to zero)

(7er) [ 32a,?
7

P=Q Ey; — Se(a?A4,y— 211321413)] . (103)

The solution of the problem is now completed.

VIII. NUMERICAL RESULTS

The post-Newtonian effects of general relativity are most conveniently expressed in
terms of the parameter

Rs, 2GM _ 8nGpaia;

= = (104)
a1 aic? 3¢?

In terms of this parameter, the solutions (102) and (103) take the forms

2 2 4 26,2
Sy =T L q gy B (B2, (105)
a1’ as? a1 \ai* ai’as’
and
002? Rs.
7Gp aS1 [E(e) —-—-527(0121411—2(132/113)] (106)
where (cf. footnote on p. 338)
SJ=%S2 and  E(e) =o2u o)
8a 8aia;

In Table 1 we list the values Ss, Saf, and @1602/(xGpRs.) for various values of the
eccentricity of the comparison Maclaurin spheroid; and in Table 2 we similarly list the
values of the coefficients Py, Ps, etc., which occur in the solution (71) for the pressure.
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From Tables 1 and 2 it is manifest that the solution is singular at

The origin of this singularity is explained in § IX.

e* >~ 0.985226 .

IX. THE ORIGIN OF THE SINGULARITY AT é¢*

(108)

It is apparent from equation (99) for S, that the solution of the post-Newtonian
configuration will have a singularity along the Maclaurin sequence where

a1'u11® + aztuss® — alau13® — 10ala24;3 = 0. (109)
TABLE 1
THE VALUES OF Sy, S2t, AND ¢,002/7GpRs, WHICH DESCRIBE THE POST-NEWTONIAN
CONFIGURATIONS DERIVED FROM MACLAURIN SPHEROIDS
OF VARIOUS ECCENTRICITIES
(es = 0.8126700; e* = 0.985226)
21302/ 1802/
e Sa Sat G pRso e Sz Sa2f G oRs,
0 .. 0 0 0 092 + 0 08505 + 0 08138 4+ 0 28091
0 20 0 00003 0 00001 0 00935 Crmax - + 0 09977 + 0 10176 + O 27855
35 00032 00013 03001 94 + 0 1198 | + 0 1317 | 4+ 0 27087
40 00057 00023 04005 95 + 01489 | + 0 1788 | + 0 25411
45 00098 00041 05196 96 + 01965 | + 0 2632 | + 0 21949
50 00160 00069 06598 97. . + 02966 | + 0 4575 | 4+ 0 13890
55 00254 00114 08238 975 4+ 04122 | 4+ 0 6957 | + 0 04554
60 00394 00185 10149 980 4+ 07351 | 4+ 1 3852 | — 0 20639
65 00606 00299 12369 981 + 08888 | + 1 7180 | — 0 32372
70 00928 00488 .14938 .982 + 11366 | + 2 2566 | — 0.51117
75 01428 00810 17886 983 + 16051 | + 3 2783 | — 0 86278
80 02236 01397 21203 984 + 28344 | + 59658 | — 1 7795
er 02517 01620 22089 .985 +14 943 | +32 474 | —10 771
82 02699 01768 22608 e*. . + to T
84 03284 02270 24026 986 — 42106 | — 9 4695 | + 3 4395
85 03636 02588 24728 987 — 17729 | — 4 1366 | + 1 6245
86 04039 02968 25414 988 — 10901 | — 2 6466 | + 1 1114
87 04502 03424 26072 989 — 07672 | — 19450 | + 0 86470
88 05042 03981 26688 990 — 05779 | — 15362 | + 0 71634
89 05677 04669 27238 9935 — 01955 | — 07342 | 4+ 0 37418
90 06435 05536 27690 0 999 — 00572 { — 04794 | + 0 16084
0 91 0 07357 0 06654 0 27999

As we have seen this condition is met at e* where the singularity occurs. We shall now
show that the condition (109) is precisely the same as for the occurrence of a neutral
point along the Maclaurin sequence for a deformation by a Lagrangian displacement

proportional to £® (cf. eq. [36]).

Consider then the deformation of a Maclaurin spheroid by the displacement

S
2(2) = a_é(aleyw2x2’ - 41322),
1

(110)

where Sz is now an infinitesimal constant. We shall suppose that the deformation leaves
the equilibrium unaffected (as is appropriate for a neutral point); and we shall obtain
the condition for this to be the case.
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By virtue of the deformation, the gravitational potential, Uy,, of the Maclaurin
spheroid will change by the amount
U _S

G oz [%0® + 41 P5? + us @2 + 0, Dot + 01, Pw%? + ugsP2t],
7Gp

where #%,®, u,®, etc., are the same quantities that are defined in equations (67). The
angular velocity of rotation will also change; and its amount will be determined by

(%333 %11 = '—_‘[ (6L — 6Wss) + Qwe?8 11 15 (112

and by equations (51) and (54) (modified appropriately for the present circumstances)
we can write

2
it = —4(a?241— 2a5%4 13)15”1‘1" "'-—-52(012‘411— 2a5°Ay). (113)
7Gp Iy

Now if the deformed spheroid should continue to be in equilibrium, as we have as-
sumed, then the pressure distribution in it will be given by

%—m—Gpang (1-————— + 16Q%*%+ 6 U + constant, (114)
or, in view of equations (111) and (113),
—P—z-—— as?Ad; (1 —————-->+ 52 {[Lu,® — 16(112((1121411—' 20524 1;) Jwt
wGp (115)

+ u; 2% 4wy Pt -+ 41, Pw%? + 453 P2t 4 constant },

where the additive constant is now an infinitesimal one. And we must require that the
pressure given by equation (115) vanishes on the deformed surface, namely,

w? 72 25, @t
S =gt 1= 2 (G- 5r) =0 e

On S(x) the expression for p/p takes the form

(%) =nGp %(Q152 + Q2 + Qua? + Q13@%? + Qs52* + constant ), a7
S 1

where

Ql = 94,2 ‘-376-(112(0121411 —2a42443), Qa ’“3(2)
(118)

Qu=un® — 2 Aa ) Qs =u1s®+84,, and Qss = ug3® .

It is clearly sufficient that (p/p)s given by equation (117) vanishes on the original
spheroid Su.; and the conditions for achieving it lead to the same equations (89), as
formerly. With the present definitions of the Q’s, the conditions are, explicitly,

a1 %11 @ + astuzzs® — 012(132%13(2) — 10a2az243 =0 (119)
and

a1*u11? — astuzs® + 02w ® — afus® — 2020543
(120)
—_— -17—6014(01214 11 — 2(1324413) =0.
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We have already seen (cf. eq. [97]) that equation (120) is —% of equation (119). It fol-
lows then that the necessary and sufficient condition, that the Maclaurin spheroid allows
an infinitesimal neutral deformation by a displacement of the form (110), is that equation
(119) is satisfied.

It is now apparent why the solution for the post-Newtonian configuration diverges at
e*:the Newtonian instability of the M aclaurin spheroid at e* is excited by the post-Newtonian
effects of general relativity.

X. CONCLUDING REMARKS

The completion of the solution of the post-Newtonian equations for the case of uni-
formly rotating homogeneous bodies with axial symmetry suggests the extension of
the solution to include triaxial configurations which will arise from the relativistic defor-
mation of the Jacobian ellipsoids. This extension of the present analysis will be con-
sidered in a separate paper.

I should like to record my indebtedness to Miss Donna Elbert for her assistance with
the numerical work. I am also grateful to Dr. E. Krefetz for checking the analysis and
to Dr. C. E. Rosenkilde for several clarifying discussions.

The research reported in this paper has in part been supported by the Office of Naval
Research under contract Nonr-2121(24) with the University of Chicago.

APPENDIX I

In this Appendix we shall indicate how the relations (76) among the coefficients #;» and
;™ can be established The method is one of straightforward reduction in which systematic
use is made of the following relations among the index symbols:

8al’4A 111 = 74 111 — @34 1113 y 6a:?4 1113 = 7A113 — 3a3?4 1133

7032A 3333 — 74 333 — 208°A 1333 y 4041133 = TA135 — Sas?A 1333 y
(AI.1)
6a24111 = SA11 — as’4 113, 4024113 = 5413 — 3as?4 133

Sag?Asss = SAss — 2a,°A 133 ) 40?411 = 341 — a4 13 ’

and

3(132A 33 = 3A3 —_ 2(112A13 .

The foregoing relations, appropriate for a spheroid (a1 = a2), are special cases of formulae valid
for ellipsoids in general (cf. Chandrasekhar and Lebovitz 1962, egs. [29], [40], [43], and [46]).

Substituting for the various #-coefficients their values listed in equations (66)-(68) and elimi-
nating the B-symbols in favor of the A-symbols with the aid of the formula

B,-jkz... = Ajkl... — a?A,-,-k;... , (AI.2)
we find
au1® + 3a2un® = ta2a*(24a* 4111 — 3ala?Ad 1113
(AI.3)
— 3a3*4 1133 — 21a4 111 + 7032A113) ’
ag?u13® + 3au13¢P = (112(132(12014A 113 — 6a:%a34 1133
(AI.2)
-_ 15(13414 1333 + 21(13214. 133 — 14(112/1 113) )
as?u33® 4 3aPus P = %0124132(4014/1 1133 — Saas?A 1333
(AL.5)

— 35034 3333 + 35a32A4 333 — Ta’4 133) ’
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352 S. CHANDRASEKHAR
ag?u® + 3a2u,(® = 012032(— 120144111 + 2620524113
(AI.6)
+ 3a3'd 135 + 1402411 — Ta?4 13) y
and
astus® + 3a’us® = a2a?(15a5*4 335 + 3020524133
(AL.7)

— 4a:*4 113 + Ta2415 — 21as?43s) .

On reducing the right-hand sides of equations (AI3), (AL4), and (ALS) systematically with the
aid of the relations (AI 1), we find that they vanish identically. A similar reduction of the right-
hand sides of equations (AL6) and (AL7) yields

2012032(2012A 1u— az?d 13) = a.2agfu @ , (AI.8)
and
2012(132(012/1 13 — 3a3%4 33) = aag?usV , (AI.9)

respectively. The relations to be established, therefore, follow.

APPENDIX II

In this Appendix we shall indicate how the relation (98) can be established.
By substituting for the various u-coefficients their values listed in equations (66) and (67) and
eliminating the B-symbols in favor of the 4-symbols, we find

8a1 11 — 6a3*%33?P — a2au13® = 960.1°4 1111 — 60a:%a:?4 1113
(AII.1)

+ 60a:%a584 1333 + 12a,%a3*A 1135 — 482,84 111 + 24a:%a3?4 113 — 60a%as°4 153

and

a?u1® — ag?us® = — 120,34 111 + 12¢%a5?4 113 — 120,%a5%4 133
(AIL.2)

+ 8a:84 11 — 8ar'a?d 13 + 12a:%a5%4 15 .
Making use of the foregoing reductions, we find

8ar*un® — 6astuss® — alas?u13® + 7au® — astus®]
— 24020245 — 16a:°4 11 + 32a,%a4 5
= 960,14 1111 — 60¢,%a524 1115 + 60a:%a384 1335 + 12a:%a5°4 1133  (ALL-3)
— 132434 111 + 108a:%a35?4 113 — 144a:2a584 133
+ 40a,84 11 — 24a,%as24 13 + 84alasid 3 — 24aa?A; .

On reducing the right-hand side of this last equation systematically with the aid of the relations
listed in equation (AI.1), we find that it vanishes, as required.
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