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ABSTRACT

In the present paper, the variational principle derived in Paper 1I is clarified; and it is shown
how it may be used to treat the damping of the axisymmetric oscillations of a uniformly rotating
star, by the emission of gravitational radiation in an odd-parity mode. It is further shown that
the expression, for the imaginary part of the frequency as a surface integral (at infinity), which
follows from the variational principle, is consistent with the requirements of the conservation of
energy.

Subject headings: gravitation — relativity — rotation

I. INTRODUCTION

In the second paper of this series (Chandrasekhar and Friedman 1972a, b, c; these
papers will be referred to hereafter as Papers I, II, and III, respectively) a general vari-
ational principle was derived for determining the characteristic frequencies of axisym-
metric oscillations of uniformly rotating stars in general relativity. In the applications
of the principle, attention was restricted to the case of slow rotation and to obtaining
a criterion for the onset of instability via a neutral mode of quasi-stationary deforma-
tion, i.e., to situations in which the emission of gravitational radiation plays no role.
In this paper, in considering the more general situations in which gravitational radi-
ation does play a role, we shall restrict ourselves to the case in which gravitational
radiation is emitted in a mode of odd parity, i.e., a mode which leads to vanishing
radiation in the limit of slow rotation. We shall not be concerned in this paper with
the modes of radiation which in the limit of slow rotation tend to the even-parity
modes of nonradial oscillations (with “m” = 0) of spherical stars; we postpone their
consideration to a later paper.

II. THE OUTLINE OF THE PROCEDURE

The basic equations of the problem have been assembled in Paper II (§ IT). They
govern the evolution of axisymmetric perturbations of a fluid system initially axisym-
metric, uniformly rotating with an angular velocity Q, and described by a metric of
the form

ds? = —eP(dt)? + e®(dp — wd)® + ea(dx?)? + eMa(dx)? . (1)

* Present address: Department of Physics, Yale University, New Haven, Conn. 06520.

1 For the sake of brevity we shall not define all the symovols: it would be invidious to attempt it.
And moreover, the present paper cannot, in any case, be followed without a detailed familiarity
with Papers I and II: the present paper takes off where Paper II leaves (in § IV).
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The perturbed configuration is described by equations that are appropriate to the
metric

ds? = —e?(dt)® + e®(dp — wdt — q5,0dx* — q3,0dx°%)?
+ e®#2(dx?)? + e?s(dx®)?, 2)

linearized about equations appropriate to the metric (1).

The equations that describe the evolution of the perturbation are of two kinds: the
initial-value equations, those that ensure the conservation of baryon number, entropy,
and angular momentum (11, egs. [3], [4], and [5]) and those that represent the inte-
grated forms of the linearized versions of the (0, «)- and the (1, «)-components of the
fully time-dependent field-equations (I1, egs. [9], [10], [13], and [14]); and the dyramical
equations, which include the pulsation equation (II, eq. [18]), the integrability condi-
tion (II, eq. [15]) of the (1, «)-components of the field equations, and the linearized
versions of two remaining field-equations (which we may select from I, eqs. [166],
[168], and [169)).

In our present context, the most important dynamical equation is the integrability
condition (II, eq. [15])

(e—3u/+v+u3—uzQ,2)'2 + (e—3w+v+u2-—u3Q’3)’3 + 02e-3w-v+u2+u3Q
= —[w, (38 — & + Suz — Suy)l s + [w (38 — v + Sua — Sus)] .
+ 1617{[(6 +p)u0u1e—211/+2v+2u2§2]'3 - [(6 +p)u0u1e—2W+2v+2u3§3]’2}

=8 (say), (3)
where
Q= e3w+v—u2—u3(q2'a — ¢s,2) - 4

Equation (3) has the form of a wave equation; and the source terms & on the right-
hand side are clearly derived from the currents provided by the rotation: they vanish
when the rotation ceases. It may, therefore, be expected that it is equation (3) that
determines the emission of gravitational radiation in an odd-parity mode of ““ magnetic-
type” (cf. Ipser 1971); it is the mode in which we shall be primarily interested in this
paper. Our procedure, then, will be the following. First, we shall derive the asymptotic
behavior of the solutions of equation (3) which have the forms of outgoing (and in-
going) waves. Next, we shall relate the behavior, at large distances, of the other field-
variables 8¢, 6v, du, and 67 to the solution for Q. And finally, we shall return to the
variational principle derived in Paper II (egs. [25], [31], and [32]) and elucidate how
it can be used to determine and characterize both the real standing modes and the

quasi-normal outgoing complex modes (in the sense of Thorne and Campolattaro
1967).

.. 1. THE ASYMPTOTIC BEHAVIOR OF THE SOLUTION FOR Q
In cons1de;;mg equation (3) it is convenient to introduce instead of Q the variable
D =e"VQ = eV *Haka(gy 5 — gq g) . &)
We find that ® satisfies the equation
(72D 50/ — g),2 + (€7D 50/ — g),3 + %D/ — g
+ 2ev*Mets T el op + Po(—t + v — pg + pa),s]
+ €27 s[h 55 + ha(—% + v + py — ps) P = €S . (6)
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The terms in braces on the left-hand side of this equation can be simplified by making
use of I, equations (70) and (78), governing equilibrium. We find

(7a053/ = @) + (7500 0/ — g),g + e DO/ — g
= 20| e + 2eam()? + e

(1 + V?) — p(1 — 3¥?)
.7

+ 4metatis ](D =e?s ., (7)

In this form it is manifest that @ satisfies a d’Alembertian equation with a potential
and a source. '

The asymptotic behavior of the solutions of equation (7) is most conveniently con-
sidered in the system of spherical-polar coordinates introduced in Paper I (egs. [82]).
Since we are here considering the time-dependent problem (albeit in the linearized
form) it is necessary to generalize I, equations (82) in the manner,

e¥ = rsinfe"tt el = "t and ehs = pen tHOT ®)

to allow for the fact that the coordinate condition e*s ~#2 = r imposed under stationary

conditions cannot obtain when the conditions cease to be stationary. (In the per-

turbed state, n, {, and v will differ from their equilibrium values by 8y, 8{, and év.)
In terms of the new variables

QO = r2sin® 02000, B = %7 sin 0 (ga5 — qa.2) »

and

— — __Q__ ~5-n—-v.
q2,3 93,2 - I‘2 sin3 0 € ’ (9)

and the equation for ® becomes

1
r2sin 6

rl—z(e”“wcp,z),2 + (e75*Vsin 6 @ 5) 5 + 024D

- 2e”+“"[2]grad |2 + Lr2sin? 0 e?"* 2 -2V grad w|?

on -2t e(1 + V2 — p(1 —3V?)

+ 4me =7

]CD = sin 0 e*"*%G . (10)

In the vacuum, outside the fluid sources, the equation is

Ig(en+{+vr2d),2)'2 + (e sin 0 D 4) 4 + 0215V

r?sin 6
— 2"t [2]grad |2 + $r? sin® 0 >+ % ~2"|grad w|*]®

= sin 0e2n+2€{—[w,2(3877 + 380 — Sv + 287)]4

+ [w,3(30n + 380 — &v — 287)]’2} - (11)

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1973ApJ...181..481C

T o181 481C!

484 S. CHANDRASEKHAR AND JOHN L. FRIEDMAN Vol. 181

By the known asymptotic behaviors of the stationary potentials (Paper I, § VII,
egs. [101], [102], and [109], or Paper II, eqgs. [55]-[58]),

ML= 2 (4 - MY £ 0¢Y),

I — L=y = iﬁ‘_l+rlz[,4(1 + 2c0s 20) — IM?] + OG-,
1
2 _ -3 2 _ -8
|grad ¢|? = PR + O(r-%), lgrad w| o@r-9,
wy= 00", and wg = 0(F%). (12)

Using these results in equation (11), we obtain

#{r%{l + %(A — M2+ O(r—3)]<1>,,}r + m{[l + O], sin 6).,

4M

+ 02[1 +—+ 12 (4 + 24 cos 20 + 22 M?) + 0(r'3)]d)

r2
40 ()
~ e 0(7) =0, (13
or, alternatively,

oo 1 o (. ,00 4
el P et - 2 = -
r2or (r 6r) T 77 sin 626 (Smea ) r2sin29q)

+ 02[1 + 4%4 + rl2(lz—5M2 + 24 cos 29)}@ + 0(%) =0. (14

We shall seek a solution of equation (14) whose asymptotic behavior at large
distances is that of outgoing or ingoing waves in a Coulomb potential and expressible
as a series of the form

o (n)
o - Z (Drn(e)e;ia(r+2Mlog r) . (15)

n=1

Inserting this expansion in equation (14) and making use of the formulae given in
§ IV below (egs. [29] and [30]) applicable to such expansions, we obtain the relation

F2o®® = +2Mio(1 + 2Mic)®® + o2(F M2 + 24 cos 260 + DOD | (16)

where ® stands for the operator

1 d(. . d 4
® = sin 0 d6 (sm 0217)) T sinZ 6 (17)

As we shall see presently, regularity conditions on the solutions at the poles require

that the angular dependence of Q be divisible by sin* 8 and, further, that it be skew-
symmetric under reflection with respect to the equatorial plane, 6 = /2. These
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requirements on Q imply that ® be divisible by sin? 8 (cf. eq. [9]) and similarly skew-
symmetric about the equatorial plane. Now it can be shown? that ® operating on
sin? 6 f(cos 0), where [ is some even (or odd) polynomial in cos 8, yields a similar trigono-
metric function, i.e., an even (or odd) polynomial in cos 0 multiplied by sin 20. Conse-
quently, if we set :

OD(6) = sin? 0 cos 0 f(cos? §), (18)

where £, as the notation implies, is an even polynomial in cos 0, then ®OV(8) is again
a trigonometric function of the same form. From this last result it follows from equa-
tion (16) that ®@(0) is again a function of the same form as ®®(0); and the angular
dependence of @ (to an order consistent with eq. [14]) will meet the requirements of
the problem. We conclude, then, that equation (14) allows solutions whose asymptotic
behavior at large distances is given by

O = _Q_r_g eiar+2M 108 1) 5in2 @ cos 6 f(cos? 0) , (19)

2 While the result stated can be verified directly, the following demonstration may be of some
general interest.
With the substitution

® = cosec? 6 P(9), @)
the equation
D0 + kD=0 (ii)
becomes
. d dP
39 Y% [in-3 g &L _ —
sin® 02 (sm 9 do) +(k—2P=0. (iii)
This equation allows solutions regular at § = 0 and § = = only when
k= (m-— Dim-—2) and k—2=mm-13), @iv)

where m is an integer. Equation (iii) then defines the Gegenbauer polynomials P.(cos 8] — 3) of
index —3 (cf. Sommerfeld 1949). It will suffice to consider these polynomials for m = 4; and for
m = 4, the substitution

Pp(cos 8] — 3) = sin* 0 fu(cos 8)(=sin® § O,(9)), )
reduces equation (iii), for the case k = (m — 1)(m — 2), to
d*fn dfm .
— 2y Ln_ picAlA j— = =
(1 — u?) A 6 e +m+Dm—-4)fn=0 (p=cosb). (vi)

This last equation defines a polynomial of degree (m — 4) in p; thus,
f:l = constant , f‘5 =K, fG = #2 - %1'9 and f’T = #3 - %’Fv . (Vil)

p Clearly, any polynomial f(cos 6) can be expressed as a linear combination of the polynomials
m(cos 0):

f(cos 8) = > Am fulcos 6) (viii)
By equations (i), (ii), (iv), and (v),
D sin? 8 f(cos ) = > AnD sin? 6 fu(cos )
= Z A9, (cos §)
= —z (m — )(m — 2)A,;,®n(cos 6)
= —sin? 0 > (m — 1)(m — 2)An fulcos 6); (ix)
and the result stated follows.
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where Q, is a constant. The corresponding asymptotic behaviors of the solutions for
Q and (g2, — gs,2) are (cf. egs. [9])

00— Qoreiia(r+2M log 1 gin¢ @ cos 9f(00529) (20)
and

(42,3 — q3,2) — _Qr_o eiia(r+2M log 1) Sin 0 cos gf(cos2 0) . (21)

IV. THE ASYMPTOTIC BEHAVIORS OF THE REMAINING FIELD-VARIABLES

With the asymptotic behavior of the solution for Q determined in § III, we can
now complete the corresponding solutions for the remaining field variables. For this
purpose we consider the initial-value equations II, (9) and (10), and the linearized
versions of two of the field equations which we shall presently specify.

In terms of the new variables (eqs. [8]), II, equations (9) and (10), take the forms

1 +
Bn,0 = v,987 + [(n + D+ ;]sg = e2<n-c>(4ﬂ e 43“’_’3 g)

— ora =Gy = L= 9a+ 3o @2
and

Sn = nabn + 101+ D + cot 3L = riereo(ar L1 0 4 g0 )

+ $875 + 3[(3n — {—v),5s + cot 0]67. (23)

In view of the known asymptotic behaviors of the stationary potentials (I1, egs. [S5]-
[58]), we can now write

on,2 + %SC = —307 5 — 2%87 + 0(:81”—%#?3) + O(r~%) (24)

and
8.3 + cot 08 = 187 53 + % cot 067

e—-io(r+2M10gr) 87} SC 87.

- %QOJT sin® 0 cos 8 f(cos? 6) + O( =303 ) (25)

where we have used the outgoing-wave solution for Q and written J instead of J; used
in Paper I, equation (109).
We now supplement equations (24) and (25) by I, equations (168) and (169); these
equations give
2 dv, 87, 8L, 8
S0+ M+ 280+ )0 = 4071+ W )og — 2or, 1 0 22200T) o)
and

v, 8

27)
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We shall now assume that each of the four field-variables éx, 8¢, 8v, and 8+ can be
expanded as a series in inverse powers of r in the manner

[eo]

(n),
Sf = _Z ir_n(_g) e—iG(T+2M log 1) (f: 7, l’ v, and 7-) , (28)

where we are presently restricting ourselves to solutions in the form of outgoing waves.
The corresponding expansions for the first and the second derivatives of f with respect
to r are

Sf,r = z %1 [—ioSf(") - (n -1+ 2Mig)3f(n—1)]e—ia(r+2M10g ) (29)

and

= 3 5 [~0%f + dioln — | + 2Mio)3f =D
+ (n — 1 + 2Mio)(n — 2 + 2Mio)§f "~ P]e-icr+2Mle D (3()
For expansions of the form assumed, equations (24)—(27) give
—io8y™ — (n — 1 + 2Mio)dn®~1 4 §{¢-D '
= 3[icd™™ + (n — 1 + 2Mio)d7" V] — 3867™-1 + termsin §f*~2, (31)
™ o + cot 0 8™ = 187 ; + Lcot § 87 — 38";0,J sin® 6 cos 0 f(cos? 0), (32)
— o8 + )™ + io(2n — 5 + 4Mio)(8¢ + Sv)-V
= —40%(&y™ + 4Mén™~ V) + 2icé7" =V + terms in (8¢ + )"~ and §-*~2, (33)
and
—o28™ + 2io(n — 1 + 2Mio)8f™~ Y — 3jodp™ =V — jo(Sy®~V 4 2877~ D)
= —o?0Y™ — 4AMo?6y"~ P + termsin 8 "~2 . (34)
Now let m be the least value of n for which not all 8™, 8™, §»™, and 87™ vanish;
i.e., for n < m all these quantities vanish. Then, letting n = m in equations (31)-(33)
and n = m + 1 in equation (34), we obtain
™ = —187™ (35)
8™ 5 4 cot 6 8™ = 187™ ;5 + L cot 6 8™ — 38,mQ,J sin® 0 cos 8 f(cos? 6), (36)
(8 + &)™ = (8n + 8L + Sv)™ = 46n™ 37
and
@Cm — 3)8™ = 2m — 3)(8y + 8™ = &H™ 4 287™ (38)
In view of equation (35), equation (37) gives

8™ = tan 6 67™ o5 + 187™ — 38™,Q,J sin* 6 f(cos? 6) ; (39)
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and equations (37) and (38) can be written alternatively in the forms

387](m) — SC(m) = opym (40)
and
@Cm + 1)on™ + (2m — 3)8(™ = &™ . (41)
Subtracting equation (40) from equation (41), we obtain
2m — 2)[&p™ 4+ 6(™] = 0. (42)
Hence,
either m = 1 or ™ = —3§{m , (43)

For the case m = |, we readily verify that equations (35), (40), and (41) give

P = =187V, 8V = tan 0 87V 4 + 67V,
and
P = —287 — tan 6 671 4; 44)

and 87 is left unspecified. It will be observed that the corresponding solutions for
8n, 8L, év, and 8t all have an r~'-behavior as r — oo and their amplitudes at infinity
do not depend on Q,.

When m # 1, equations (35), (40), and (43) combine to give

Sy = — 8L = — 185 = Loyim (45)
and equation (39) gives
tan 6 87™ , = 28™,0,J sin? 6 f(cos? 0) . (46)
Hence
m=23 and 87 5 = 30,J sin® 6 cos 6 f(cos? 6) . (CY))

It is clear that equation (47) can be integrated to give a solution of the form
87® = $Q,J sin* 6 g(sin? 6) , (48)

where g is some even polynomial in sin 8. Accordingly in this case, the solutions are
dependent on the amplitude of Q at infinity. We have

&n —56
8 +1%
4 _ el Q_(;J e ior+2M 108 1) gint @ a(sin? 6) (49)
ov -3 r
or +3

We observe that these solutions possess the required reflection-symmetry about the
equatorial plane; and the solution for 8¢ is, moreover, consistent with the requirements
of regularity at the poles, namely, that, here, it behaves (at least) like sin? 6. Not all
of these requirements would have been met had we chosen an odd polynomial for f
in the solution (21) for Q. :

The direct proportionality of 8, 6, év, and 87 to w (at iarge distances) is to be
particularly noted.
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In our further consideration, we shall restrict ourselves to the solution (49). We shall
not be concerned in this paper with the alternative solution (44): it leads to finite
gravitational radiation in the limit of zero rotation; and we are not presently interested
in that case.

V. THE VARIATIONAL PRINCIPLE

In Paper 11, a variational basis for the determination of ¢® was derived. The basis is
provided by equation II, (33), together with the surface integrals that follow from I,
equations (31) and (32). But the precise way in which the variational principle is to
be interpreted and used was not sufficiently clarified in Paper II. We shall attempt to
do so now.

Ignoring for the present matters of convergence and uniqueness (we shall return
to these questions presently), consider II, equation (34), which gives the effect on o2
of evaluating it in accordance with II, equation (33), for two assumed trial displace-
ments £* and €% + 18¢” and associated variations &, du, 87, and Q and S + 182,
Su + +8%u, 87 + £8%r, and Q + 180, consistent only with the initial-value equations.
In II, equation (34), we now allow 8¢% (« = 2, 3), 8Q, and 82 to be arbitrary except
that they satisfy the boundary conditions required of the true variations. Since these
increments must also be consistent with the initial-value equations, we must, in
particular, require that they satisfy the equations

(8% + )0 — v + 8%) + 4,45 — %)
+ )
o ba0e — 5222 ) — 5oy = Qs + 4= )8
— 5u(say) (50)

= g% (877'

and
(8% + 8%u),5 — v,s(8% + 8w) + o 3(8%) — 8%w)

D e R

= 8F; (say), (1)

where, by hypothesis, 6§, and 8F; may be assumed to be known functions.

Equations (50) and (51) represent simple quasi-linear equations for 8%} and §u
and can be solved by standard methods. Thus, eliminating (8%} — §2x) from these
equations, we obtain

.ale (8% + %)) 2 — ¥,ale (8% + %)l s = e (38T 2 — $,25F) . (52)
Letting

F = e (8% + &%), (53)

and expressing the general solution of equation (52) in terms of an equation not solved
for Fin the manner

V= W(F x2x% =0, ' (54)
where ¥ is some function of F, x2, and x3, we have
ov v v
¢,35)‘c‘2 — e +e (‘p,sssz — 208 3) 5F - 0, (55)
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in place of equation (52). The equations defining the characteristics of equation (55)
are

dx? dx® dF . v
P P s e A ©6)
One set of characteristics is clearly given by
Y(x?, x®) = constant ; (57
and the other set is defined by the equation
dF dx? dx®
TR = € Was — a5 = e (03, 5 + 35, %) (59)
The solution of this equation can be expressed as
F =f e~ "(8F2dx? + 3F3dx?) :f e~ V8% ds , (59)
C C

where C is an arc along any curve ¢ = constant.

The required solution for 8% + 8%u can accordingly be derived as follows. Let
%y + 8%u be specified along a curve which intersects all the characteristics ¢ =
constant. Then the solution for 8% + 8%y, along each of the characteristics, is obtained
by evaluating the line integral of ¢~'8g along them; thus,

(82‘/1 + Szﬂ)along ¥ =constant — evf e V6§ ds . (60)

¥ = constant

With 6%} + 8%u determined in this fashion, 6% — 8%u follows from either of the equa-
tions (50) or (51) and completes the solution.

The principal result of the foregoing analysis is the demonstration that for any
arbitrarily assigned values of §¢%, §Q, and 827, the values of %) and 8%y are determined
in terms of them by the initial-value equations. If we now require that 8¢2 given by II,
equation (34), vanish identically for all arbitrarily assigned 6£%, 6Q, and 627, then it
follows from this equation that four linearly independent combinations of the six
dynamical equations, represented by the two components of the pulsation equation,
equation (3), and the linearized versions of the [(2, 2) + (3, 3)]-, [(2,2) — (3, 3)]-, and
the (1, 1)-components of the field equations, simultaneously vanish. However, of the
six dynamical equations enumerated only four can be linearly independent. Hence,
the requirement that 80® vanish identically for all arbitrarily assigned 6§, 6Q, and 821
implies that all the dynamical equations of the problem will be satisfied. We clearly have
an algorism for using II, equation (33), as a basis for a variational determination of ¢2.

VI. THE EMISSION OF GRAVITATIONAL RADIATION DURING AXISYMMETRIC OSCILLATIONS

Consider the expression for o2 given in II, equation (25), together with the surface
integrals IT, (31) and (32). It will be recalled that the integrals in II, equation (25), are
extended over the volume included in a sphere of a sufficiently large radius R; and
the integral II, (32) (which results from the various integrations by parts carried out
during the reductions leading to II, eq. [25]), is extended (as noted) over the surface
of the sphere of radius R. On examining the various terms in the integrands of II,
equations (25), (31), and (32), we find that by virtue of the asymptotic behaviors of the
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