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ON THE RADIATIVE EQUILIBRIUM OF A STELLAR ATMOSPHERE. V
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ABSTRACT

In this paper the methods developed in earlier papers are extended to solving the problem of radiative
transfer in curved atmospheres, i.e., to solving the equation of transfer

1—u2dl
.uar-l- el v kol + Kpffdu,

where «p is a function only of 7. After outlining a general method for replacing this partial integrodifferen-
tial equation by an equivalent system of 2» linear equations in the nth approximation, the most conven-
ient forms of the equations for the first two approximations are found. The equations of the second ap-
proximation for the astrophysically important case kp « ™ (n > 1) are explicitly solved and found to in-
volve quadratures over Bessel functions of purely imaginary arguments. For the case n = 2 the solutions
have been found in their numerical forms. Finally, the physically interesting case of diffusion through a
homogeneous sphere is‘also considered.

1. Introduction.—In the earlier papers of this series! an attempt has been made to pre-
sent the solutions to the various plane problems of radiative transfer in the theory of stel-
lar atmospheres in forms which would enable one to derive results to any desired degree
of ‘accuracy without much difficulty. In this paper we propose to extend this discussion
to include the case of the radiative equilibrium of “extended atmospheres” in which it is
not permissible to ignore the curvature of the outer layers. First approximations to the
solution of this latter problem in-curved atmospheres have been given by N. A. Kosirev?
and the writer.® But all attempts to improve on the “first approximations’ given by
these writers have so far proved unsuccessful.* However, in view of the fact that the
theory of extended atmospheres is finding increasing applications to a variety of practi-
cal problems,® it would appear worth while to re-examine the basic problem with a view
toward developing systematic methods of approximation for obtaining solutions of
higher accuracy. This is the object of this paper.

2. The reduction of the equation of transfer to an equivalent system of 2n linear equations
in the nth approximation.—Let r denote the distance measured outward from the center of
symmetry of the atmosphere and ¢ the angle measured from the positive direction of
the radius vector. The equation of transfer which we have to deal with is

0l sind a9l
cos 031—-—;———@——KpI+§xp[I(r,0)SInﬂd0, (1)
where I, «, and p have their usual meanings. Writing u for cos ¢, we can re-write equa-
tion (1) in the form
— 2 +1
ﬂg—l—-l-l a é£=—ma1-i-%ruo_/‘ I(r,u)du. (2)
r ou -1

4

1 4p.J., 99, 180; 100, 76, 117, and 355, 1944, These papers will be referred to as “I,” “II,” “III,” and
“IV,” respectively.

2M.N., 94, 430, 1934.

3S. Chandrasekhar, M.N., 94, 444, 1934; see also Proc. Cambridge Phil. Soc., 31, 390, 1935, and Russian
Astr. J., 11, 550, 1934. ’

4 Cf. L. Gratton, Soc. asitr. italiana, 10, 309, 1937.

5 See F. L. Whipple and C. Payne-Gaposchkin, Harvard Circ., No. 413, 1936, and C. Payne-Gaposch-
kin and Sergei Gaposchkin, 4. J., 101, 56, 1945. .
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According to the ideas developed in papers IT and III, we replace the integral which oc-
curs on the right-hand side of this equation by a sum according to Gauss’s formula for
numerical quadratures. This permits the replacement of the integrodifferential equa'aon
(2) by a system of linear equations which in the nth approximation is

’“( = —kpli+tkpZad; G=+1,...., +n), (3)

r=p;

where we have used I; to denote I(r, u;). Further, as in papers II, III, and IV, the u;’s
are the zeros of the Legendre polynomial Ps, (1) and the a;’s are the appropriate Gaus-
sian weights. It is at once seen that our present system of equations (cf. eq. [3]) differs
in an essential way from those which occurred in our earlier studies on the plane prob-
lems; for equation (3) now involves (87/0u)u=u;, and before we can proceed any further
we must know the values which we are to' assign to 0I/0u at the points of the Gaussian
division p; in our present scheme of approximation. At first it might be supposed that
the assignment of values to I /du at p = p;, ¢ = +1,...., +n, is largely arbitrary,
particularly when » is small. However, on consideration it appears that this assignment
can be done in a satisfactory manner in only one way and, indeed, accordmg to the fol-

~ lowing device:

Define the polynomials Q,,(u) according to the formula ',
dQum ,
Pm(p)=——dQ— (m=1,....,2n), (4)
J7
and adjust the constant of integration in Q. by requiring that
Q0.=0 for lul=1. ‘ (5)

This can always be accomplished, since when m is odd Om is even, and when m is even,
the indefinite integral of Pm(,u) a]ready contains (1 — ,u2) as a factor 6 The first few of
the polynomials Qn(u) are g1ven in Table 1.

TABLE 1
m P (i) . Om(w) - , L)
..., [ (1 —p?) 3
2. ... +(3u12—1) 2u(l—p2) e
KPR 3(5p3—3u) #(Spr—1)(1—p?) $(5u2—1)
4......... $(35pt—30u2+3) tu(Tu2—=3)1—pu?) %/J(7 2—3)
Sooo. $(63ub—T70u34-15u) T5(21pt—14p2+ DN(1—u2) 75 (21ut—14p24-1)

Now by an integration by parts we arrive at the identity
‘ +1 a7 _ de +1
S L dum— [ 1% gy [Py au. (6)

Expressing the first and the last integrals in equatlon (6) as sums according to Gauss’s
formula, we have in the »th approximation

Sa:0, (M)("’I) e d P, (u) (m=1,....,2n). (T)

1=y,

Equation (7) provides us with exactly the right number of equations to express

6 Actually, Qm (&) = [(Pma — Pm+1)/(2 # + 1)] + constant.
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(01/0m)u=yi, ¢ = *1,...., £n, as linear combinations of .7 Accordingly, equations
(3) and (7), together, provide the required reduction of the equation of transfer (2) to
an equivalent system of linear equations for the I.’s in the nth approximation.

For purposes of practical solution it appears most convenient to combine equations
(3) and (7) in the following manner: ‘

Since we have arranged Q,.(u) to be divisible by 1 — u?, we can clearly write

CQn(p) =2 (p) (1 —p). (8)

The first few of the polynomials 9,,(u), defined according to equation (8), are also listed
in Table 1.
Now multiply equation (3) by ¢;9.,(u;) and sum over all ’s. We obtain

d 1, 2 ar .
dr EaiMiQ.m(ll-i) If‘f'; Za;(1 fﬂi) Q.m (.U«z')(m)#:“.— - sza'igzm(.ui)[i (9)
3kp(Zal;) [2a;2,, (p:)] ; ‘ (m=1,...., 2n).

But, according to equations (7) and (8),

Za;(1—u3) 2, (us) <g_£)n=#s =200 () (%li—)ﬂ=#,;

(10)
=2aP,(p:)I;;
and equation (9) reduces to 0P (13)
d " 1 ’
7 20ipiQm(p) Ii+=2a:P, (u) I;= — kp2a; 2, (u;) I,
r r , (11)

F3kpCaid;) [20:Qm (us)] . (m=1,....,2n),

which is the required system of linear equations in the nth approximation.
Equation (11) for the case m = 1 admits of immediate integration. For, when m = 1,

Pi(p)=p and Zi(p)=3%, (12)
and equation (11) yields

14 1 ,
- imzaiﬂili+7zdiﬂifi=0- (13)
‘Accordingly, 1 F
0
2(1'5”,;],,;=§7§4, . (14)

where Fy is a constant of integration. Equation (14) is the expression in our present ap-
proximation of the flux integral ‘

(15)
which the equation of transfer (2) admits directly.

Again, since 9,.(u) is odd when  is even, equation (11) reduces for even values of 7
to the form

d 1 ' |
d—zai#iQ.m (w)Ii+=2a;P, (u;)I;= —kpZa;2,,(us) I;
r r : (16)
(m=2,4,....,2n).

T Essentially what eq. (7) allows is to determine in a “best possible way”” the derivatives of a function
in terms of its values at the points of the Gaussian division. This problem has apparently not been con-
sidered before.
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For m = 2n the foregoing equation further simplifies to

d
z';zaminn(lu) Ii=—«p2a; Q0 (u:) I, (17)
since the u;'s are by definition the zeros of the polynomial Py, (u).

Finally, for further reference we may note here the explicit forms of equation (1 1) for
the first few values of 7. Using the definition of the polynomials P,, and 2, given in
Table 1, we find p

3720¢#¢15+720iﬂi1¢=0, _ (18)

d

Ezailfili‘}"%zai(s#i*l)li:—szai#ili, (19)

%zam(sni—1>1i+-‘§zm(su“:—3)’1,~=—%xpzam#%-—m,-, (20)

‘Tdrzami(hi— 3)I¢+—}Eai(35n‘§— 30ui+3) Ii=—«kpZaum: (Tu;—3) I, (21)

et cetera.
3. The first approximation.—In the first approximation we consider equation (11)
for m = 1 and 2 only, with (cf. I, eq. {33])

a=a—=1 and M= —M—1=_~ (22)
We have (cf. egs. [14] and {19])

0)(

V3 F
‘ 11—‘1—1=-2—;§ (23)
and . L g : o :
337([1+I~1)—~ Kp \/3(11 I-)). (24)
Combining equations (23) and (24), we have ‘
d 3 F
5(11+I—1)=—§ Kpr_g- (23)
Hence, : 3 ld
Il+1_1=§F0f £P2Y | constant (26)

where 7 = R defines the extent of the a.tmosphere. The constant of integration in equa-
tion (26) is determined by the condition that 7_; = 0 at » = R. In this manner we ob-

‘tain for the source function J the solution

;  V3F, , 3. [Ekpd '
J=%(I1+I—1)=—\£——R%+ZF0[ K—I;z—r, (27)

which is to be compared with the solution given earlier by Kosirev® and by Chandra-
sekhar.?

For an atmosphere which extends to infinity we should require that both Iyand I,
tend to zero as r — «. In this case the solution for J reduces to

3 ® kpdr . F
J_ZF(,]; e (28)

8 M.N., 94, 430, 1934. See particularly eq. (8) in this paper.
9 M.N., 94, 444, 1934. See eqgs. (49)~(51).
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or, alternatively, :
7 . 3 F Tdr 20
=zt 57 (29)

where 7 denotes the radial optical thickness. Tt is in the form (29) that the solutlon to
the problem of the extended atmospheres has been used in practice.

4. The equatwns for the second approximation.—In the second approximation we
choose for the u/’s the zeros of P4(p) and for the a/’s the appropriate Gaussian weights
[(II] c[aq ])[38]) The equations which we have now to deal with are (cf. egs. [14] and
19]-[21

1F
Eaimh=§;§, (30)
d 2 -1 2
d_r'zaiﬂili"l";zai(s#i—'l)li: —kpZapuil;, ,(31)

%Zaim(sui— 1) I,-+§za,-m(5u% —3)I;= —4$«kpZa; 3ui— 1)1, (32)

and

dizam%(7u%—3) Iri= — kpZa (Tut—3)I;. (33)

The foregoing equations can be written more compactly in terms of the quantities J, H,
K, L, and M, defined as follows:

3Za;l;=17; 1Zapuil;=L,
3Zau;l;=H; 1Sawil,=M . (34)
%EdiM%Ii=K;
We have
_1F, no
H=12, (34%)
dK |1 '
d 4 :
H—;(SL-—H) +7(5L—3H)=—§»xp(3K—J), (36)
and ' ’
i(m-sx) = ko (TL=3H). (37)

Equations (35)- (37) provide us with three equatlons for the four unknowns J, K, L,
and M. However, in our present approxmatlon we can express M linearly in terms of
J and K; for, since the us (¢ = +1, £2) are now defined as the zeros of Ps(u), we have
1dent1cally

EaiPal(ﬂi)IiEO; (38)
or, substituting for P(u), we have
Ba;(35ut—30u2+3)1,=0. (39)
In other words,
35M —30K+37=0. (40)
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Accordingl , ‘
&y M —3K=3K—4§J, (41)

~and equation (37) becomes

L (3K —47) = — xp (IL—310). (42)

Equatlons (34)-(36) and (42), together with the relevant boundary conditions on the

- I’s, make the problem determinate.

We now transform equations (35), (36), and (42) to more convenient forms. Letting
X and Y stand for

X=3K~—~J and V=5§L-3H, (43)

we can re-write equation (35) as

dK X 1 Fy

Franiaa L1 (4

where we have substituted for H according to equation (34’). Equation (44) can be for-

mally integrated to give
_ dr 1 kpdr
K= —fX——ZFOf S (45)
Considering next equation (36), we obtain, after some minor reductions,

dY4

ot V= —§«p X—I— (46)
Again, since '
3K -3/ =4K+3BK~J)=¢K+1iX, (47)

equation (42) is clearly equivaient to
dK aX

———I———— %xp(7L—'3H). (48)
We can eliminate dK /dr from this equation by using equation (44). We obtain, in this
manner, ix 2

Equations (46) and (49) provide us with a pair of simultaneous equations for X and V.
These equations can also be written in the forms

L (5)=—1xe7 (50)
and 14 7
__( rY) = —fxpX +3. (51)

From these equations we can readily eliminate X or ¥ to obtain a single second-order
differential equation for either of them. We shall not perform this elimination at this
stage, since to solve any of these equations we need a prior assumption concerning the
dependence of kp on 7.

5. The solution in the second approximation for the case kp < r™, when n > 1.—In
terms of the radial optical thickness defined by .

dr= —«kpdr, (52)
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the equations of the second approximation derived in the precedmg section (egs. [45],
[46], and [49]) become ‘

dr TdT
| k=[x xpf*zFO = (53)
iX | 2
W_FKP'X‘_gY" (34)
and '
iy 4 P,
dr  kpr V=4X—00 (53)

We shall now show how the foregoing equations can be solved in the case where xp is
assumed to vary as some inverse power of r. Suppose, then, that

kKp=cr—, (56)

where ¢ is a constant. For a dependence of «p on 7 of this formand » > 1 we can define the
optical depth = measured from r = « inward; for in that case the integral

r= [ kpdr, | (57)
converges, and, in fact, we have
¢ 1
T=——T (n>1). (58)

For » < 1 the integral (57) diverges; but, as these cases have no astrophysical interest,
we sha]l not consider them here.
From equations (56) and (58) we obtain the relations

kpt = (n—1)r _ , (59)

T -.‘=<§)n~1, ' (60)

where R denotes the distance at which 7 = 1. Using these relations in the equations (53),
(54), and (55) and measuring the various quantities J, H, K, L, X, and ¥ in units of
Fo/R? (i.e., in units of the emergent flux at 7 = R), we 'obtain the equatlons

and

-1
o (n+1)/(n—1)
K = n_le 4( ToFD , (61)
ix 2
dT+(n“‘1)TX—%Y, (62)
‘and
iy 4 1
et y_sx_ (3=m)/(n—1)
R i e . (63)

It will be noticed that in the integral occurring in equation (61) we have set the lower
limit for 7 as zero. This is in accordance with the requirement that, since the atmosphere
now extends to infinity, all the quantltles must vanish at » = », i.e, at 7 = 0.
Eliminating ¥ between equations (62) and (63), we find for X the differential equa-
tion
. d*X 2 daX 2n+3) 7

—_ -~ X =23 _— 3 m)/(n1)
PRl e el bl erpmy e B ¥ (g s 1 - (64)
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With the substitutions
g2=qr  (g=4/35/3=1.9720), (65)

and
X = T(n+1)/2(n—1)f = q—(n+1)/2(n—-1) z(n+1)/2('n—1)f ( Z) , (66)

we find that equation (64) can be brought to the form

2
e A e e T (67)
where we have written
_ n+5 33—
Trm—1) HFTom =) (68)
and
7 )
= g—GtD2e-)
E T =1) q RE (69)

The accompanying short table (Table 2), giving the values of » and u for a few values of
n, may be noted.

TABLE 2
” v I3 n v »
12.5 3.5 |[3.0............. 20 |0
6.5 1.5 l4.0............. 1.5 —1/6
5.0 1.0 {[7.0............. 1.0 —1/3
3.5 0.5 © . 1/2 —1/2

Before proceeding to the solution of equation (67) we may observe that, if ¢ be de-
fined as the solution of

d:;-l—z — (22 +1*) p= — zH1, (70)

we have, according to equations (66) and (69),
7

X = g—m+D/e=1) o=

) g D2 g () (71)

Substituting this solution for ¢ in equation (61), we obtain

7 Z e ol n—1
Tor=ye), 2@ sty

Moreover, since 3K — J = X, we have for the source function J the solution

K = g—@+D)/m=1) [ z(n+1>/(n—1>], (72)

- 0
7 3 1 (73)
BEICES AN AL +ﬁi% %‘"ﬂmn_n] .

It now remains to solve equation (70).
First, it will be observed that the homogeneous part of equation (70) is simply Bes-
sel’s equation for a purely imaginary argument. The general solution of the homogeneous

|
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equation is, accordingly, known and can be expressed as a linear combination of the
fundamental solutions 7,(z) and ;K,(z).1° The solution of the nonhomogeneous equation,
therefore, can be found most conveniently by the method of the variation of the param-
eters.!! Thus, writing

é6=A(2)1,(z) +B(2) K. (3), (74)

we determine the functions 4(z) and B (z) by the equations

A’ (2)I,(z) +B'(3)K,(3) =0 (75)
and

A'(5)1,(5) +B'(5) K, (2) = — 2" (76)

where we have used primes to denote differentiation with respect to the argument. Using
the relation (Watson, p. 80, eq. [19])

I,(z)K:(z)—IZ(%)KV(z)=—%, (77)
we readily find from equation (75) and (76) that
A'(z) = —#K,(3) and B'(z) = s, (3). (78)
Hence, ‘ ,
A(z)=f01z"K,,(z)dz and B(z)=/:z"ly(z)dz, (79)

where ¢; and ¢, are constants unspecified for the present. The general solution of equa-
tion (70) can, accordingly, be expressed in the form

¢=zy(z)f”’znm(z)dﬁm(z)fzzuf,(z)dz, (80)

c2

For the problem on hand the arbitrary limits ¢; and ¢. in the general solution (80) are
determined by the following considerations:

First, since none of the quantities must tend to infinity exponentially as z — ®, we
must require that ¢; = « in equation (80). This readily follows from the known asymp-
totic behaviors of 7,(z) and K,(z) as 53— « (cf. Watson, § 7.23, p. 202). Second, the
vanishing of all the quantities as z — 0 requires that (cf. eq. [71])

z( ) 2—D g (3) —0 (z—0). (81)

But K,(z) diverges at the origin, and condition (81) can be met only by setting ¢z = 0.
Thus the solution for ¢ appropriate for our problem is

6=1L(2) [ #K (9)ds+K.(3) [ #L(2)ds. (82)
z 0

With this we have formally solved the equations of the second approximation for the
case kp « r—", where n > 1.

10 We shall adopt, throughout, the definitions and notations of G. N. Watson in his Treatise on the
Theory of Bessel Functions, Cambridge, England, 1922. In our further references to this work we shall sim-
ply refer to it as “Watson ” In our particlar context see pp. 77-80. ‘

¢ 11 The treatment of Lommel’s equation
%y
zdeZ + z + (22 — )y = kz#+1
in Watson, § 10.7, p. 345, is followed in our dlscussmn of eq. (70).
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6. The numerical form of the solution for the case kp < r2—As an example of the
solution obtained in the preceding section, we shall consider the case kp « 2. For this
case the solutions er X, J,and K given in § 5 (egs. [71]-[73]) become

X =q7%%2%%¢ (2),

K=q= [ [ o9 () ds 1522, X (83)

T=q 7[5 (5)d5 — 35 () +15]

where it might be recalled that

s=g¢r and q=___V33’5=1.972. (84)

Moreover, when# = 2,» = Jand u = } (cf Table 2); and the solution (82) for ¢ takes
the partlcular form

0=TIin(s) [ 2Kip(2)ds+ Kun(z) [ SALp(a)ds.  (85)
The Bessel functions I7/5(z) and K7/2(z) are known explicitly, and we have (cf. Watson,
p- 78) _ _
’ 2 \12 15 6,15\ . -

I5(2) =(E> [(1—]—?) cosh z—(;-?——g—a—) sinh z] (86).
and ,
r\V2 _, 6 15 15 BN
Kpn(s) =(55) e (1+5+5+3). (87)

Accordingly, we can re-write equation (85) in the form

1/2 <1+ 15)co hz—(6 sinh z coe‘z(l—}-g—l——l—g—l—l‘;)dz
z 2 2 2

+ 6—2(1 +g+%+—1§>/{:z[(l +lz;>cosh F4 —<%+}z—§>sinh z] dz % .

It is seen that the first of the two integrals in equation (88) can be expressed in terms of
known functions. We have

ST (143 D D) as= e (T o)~ 4B (), (z;9>

(88)

" where Ei(s) stands for the exponential integral

Ei(z) —flmﬂ a. (90)

The functions ¢*X, ¢3K, and ¢%J, defined as in the foregoing paragraph have been
evaluated numerically for a range of values for z; and the results are given in Table 3.7
For comparison we have also tabulated the function 23/4, which is the solution for %7 in
the first approximation (cf. eq. {29]). It is seen that the second approximation introduces

27 am indebted to Miss Frances Herman for carrying out the necessary numerical work.
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corrections to the extent of about 10 per cent. In view of this, it would be of interest
further to examine the solution given in § 5 for other values of #. The case of n = §
would be of particular interest.

7. Diffusion through a homogeneous sphere—The discussion of this case, while it has
no special interest for astrophysics, is, however, likely to be of importance for problems
of diffusion in physics.!® But, apart from possible applications, the consideration of this

TABLE 3

X K ] 148

0 0 0 0
0.0002322| 0.0001605| 0.0002500 0.00025
0.0018377| 0.0012825| 0.0020097| 0.00200
0.0061122| 0.0043092| 0.0068154! 0.00675
0.014237 | 0.010158 | 0.016238 | 0.01600
0.027265 | 0.019718 | 0.031890 | 0.03125
0.046111 | 0.033844 | 0.055420 | 0.05400
0.071559 | 0.053357 | 0.088512 | 0.08575
0.10426 | 0.079047 | 0.13288 | 0.12800
0.14475 | 0.11167 | 0.19026 | 0.18225
0.19345 | 0.15195 | 0.26241 | 0.25000
0.25067 | 0.20059 | 0.35109 | 0.33275
0.31661 | 0.25824 | 0.45813 | 0.43200
0.39146 | 0.32557 | 0.58523 | 0.54925
0.47522 | 0.40317 | 0.73429 | 0.68600
0.56792 | 0.49165 | 0.90703 | 0.84375
0.66950 | 0.59158 | 1.10524 | 1.02400
0.77985 | 0.70352 | 1.33072 | 1.22825
0.89876 | 0.82800 | 1.58525 | 1.45800
1.0261 0.96556 | 1.8706 1.7148
1.1616 1.1167 2.1884 2.0000
1.3051 1.2819 2.5405 2.3153 -
1.4563 1.4616 2.9286 2.6620
1.6148 1.6564 3.3545 3.0418
1.7805 1.8667 3.8197 3.4560
1.9529 2.0930 | 4.3259 3.9063
2.1319 2.3356 | 4.8749 4.3940
2.3171 2.5951 5.4682 4.9208

an 3K 37 1g3

2.5081 | 2.8719 | 6.1075 | 5.4880
2.7048 | 3.1664 | 6.7944 | 6.0973
.| 2.9068 | 3.4791 | 7.5304 | 6.7500
.1 3.1137  3.8103 | 8.3172 | 7.4478
.1 3.3254 | 4.1606 | 9.1564 | 8.1920
3.5414 | 4.5303 | 10.0494 | 8.9843
3.7617 | 4.9199 | 10.9979 | 9.8260
3.9858 | 5.3297 | 12.0033 | 10.7188
4.2136 | 5.7603 | 13.0671 | 11.6640
4.4448 | 6.2119 | 14.1910 | 12.6633
4.6792 | 6.6852 | 15.3763 | 13.7180
4.9165 | 7.1804 | 16.6246 | 14.8298
5.1565 | 7.6979 | 17.9373 | 16.0000
5.3991 | 8.2383 | 19.3159 | 17.2303
5.6440 | 8.8019 | 20.7618 | 18.5220
5.8011-| 9.3892 | 22.2766 | 19.8768
6.1401 | 10.0006 | 23.8617 | 21.2960
6.3909 | 10.6365 | 25.5184 | 22.7813
6.6434 | 11.2973 | 27.2484 | 24.3340
6.8975 | 11.9835 | 29.0529 | 25.9558
7.1528 | 12.6954 | 30.9334 | 27.6480
7.4095 | 13.4336 | 32.8914 | 29.4123
7.6672 | 14.1985 | 34.9283 | 31.2500
7.9260 | 14.9905 | 37.0454 | 33.1628
.| 8.1856 | 15.8100 | 39.2443 | 35.1520
.| 8.4461 | 16.6574 | 41.5263 | 37.2193
.| 8.7072 | 17.5333 | 43.8928 | 39.3660
.| 8.9690 | 18.4381 | 46.3453 | 41.5938

1
w
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case is of definite interest, inasmuch as it provides the simplest illustration of the use of
the equations of the second approximation obtained in § 4.
~ For a homogeneous sphere we naturally assume that

K p = constant = ko (say) . (91)

As kg is of dimensions (length) it is convenient to measure length in units of 1/ke and
intensity in units of Fok? (i.e., in units of the emergent flux at » = 1/ko). In these units,
equations (45), (46), and (49) now reduce to the forms

X 1
aX 2
W—7X= —-3v, | (93)
and ay 4 1
P R (94)

13 Cf. W. Bothe, Zs. f. Phys., 119, 493, 1942.
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Eliminating ¥ between equations (93) and (94), we obtain for X the differential equa-
tion
2
dX+2 i{_éx sﬁ&Xﬂ_%. | (95)
Making the substitutions ‘
e \/335, , (96)
and A
X =571y, (97)
we find that equation (95) is transformed to '
d?y dy 735 _
2 &7 @Y (2 - _ 1/2
#aatag— ()Y o — & (98)
We verify that
: y=7\g35 =52 (99)

represents a particular integral of equation (98); and, as the homogeneous part of this

“equation is Bessel’s equation of order § for a purely imaginary argument, we can write

the general solution of equation (98) in the form

7+/35
9

y = 372+ ALy, (2) +BKs(2), (100)

where 4 and B are two constants to be determined by the boundary conditions appro-
priate to the problem on hand. At this stage we can determine the constant B. For,
as 3— 0,

Kun(2) -3 (3) s (s-0); (10D)

and this is seen to be too high an order for the singularity at the origin. But by choosing

B= — ()”27‘/_, (102)

we can lower the order of the singularity at z = O by one to z73/%; for, with this
choice of B the term in 72 in Kjs/2(3) cancels the particular integral (99). Accordingly,
we write for ¢ the solution

/ / .
y = 7\/35 5 _( >12 7\/35 KE/Z(Z) +AI5/2(Z); (103)

where A is a constant to be determined later by conditions at the boundary of the
sphere.
Corresponding to the solution (103) for y, we have

7%“ ( )1/27\/35 _

1/2K5/2(Z)+AZ 1/215/2(2) (104)

Equation (93) now enables us to determine ¥, for, writing this equation in the form

_— ~§ (X) \/35 2&(;) (105)
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and substituting for X according to equation (104), we find that
Y=35L—-3H

(1006) |
—agasm— (2 sk () ~ 33 AL (o),

In obtaining the foregoing result we have made use of the recurrence relations satisfied
by the Bessel functions (cf. Watson, p. 79, eq. [67]).

Again substituting for X in equation (97) according to equation (104), we similarly
find that

/33 /2
k=135 - (2)1 7\/35 5=V Ky (2) — A 2~%2T 4 (2)

27
V35
123

(107)

+Y75+C.

Where C is another constant of integration. Finally, remembering that J = 3K — X,
we obtain for the source function J the solution

_(Z 127 /35
T \r 27

2732 [ 2 K52 (2) —3K30(2)] — Az %2 [ 3152 (2)

3Ty (3)] +—‘i3-—+3c

(108)

With this we have explicitly solved all the equations of the second approximation for the
case under consideration. It only remains to determine the two constants of integrations
A and C. These can be determined by the conditions at the boundary of the sphere,
namely, that here both I_; and J_; must vanish. But we shall not continue here with the
details of the elementary calculations necessary for the determination of these constants.
We may, however, note that for the case of an nfinife homogeneous sphere the con-
stants 4 and C must vanish and that the solution for J reduces to

7=(3)" 15 s sk — 3K +—*—/3—5 (109)

or, substituting for K;/» and K3/, their known explicit forms and reverting to the origi-
nal variable 7, we find

J——(1+%%e—l or2r) | (110)

which is to be contrasted with what would be obtamed on the first approximation,
namely,
_ 3
. T 47
It is seen that'in going to the second approximation we introduce a ‘“‘correction” term
which amounts to 14.5 per cent at » = 1 and which further decreases rapidly for in-
creasing 7.

(first approximation) . (111)

I wish to record my indebtedness to Drs. J. Sahade and C. U. Cesco for their careful
revision of the manuscript.
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