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Co-seismic spring flow changes attributed to the March 29, 1999 Chamoli 
earthquake of Garhwal Himalaya
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ABSTRACT: The moderate magnitude Chamoli earthquake that
occurred on March 29, 1999, in the Garhwal Higher Himalaya
produced, among many other observable effects, changes in flow
of several artisan springs. Qualitative observations of significant
changes in the flow of ten springs located in regions of higher
intensity show a strong spatial correlation with our preliminary
estimates of perturbing pore pressure field induced in the water
saturated shallow rocks of the region by the earthquake in its coseis-
mic phase. The results are significant for it is the first successful
attempt in the Himalayan region to investigate the response pattern
of the local groundwater flow system to perturbations induced to
the ambient tectonic stress regime by a major earthquake.

Key words: Himalayan earthquakes, coseismic phase, hydrologic
response, undrained deformation

1. INTRODUCTION

Hydrological response of the earth to large and moderate
earthquakes are often manifested through liquefaction of
soil, appearance or disappearance of shallow springs and
water level changes in wells. Although such earthquake
induced changes have been known for more than 2000
years, it is only recently that their implications has been
suitably appreciated and highlighted (e.g., Carrigan et al.,
1991; Rojstaczer and Wolf, 1992; Muir-Wood and King,
1993; Quilty and Roeloffs, 1997; Manga, 2001). A number
of significant case studies e.g., those conducted in Califor-
nia (Rojstaczer, 1988; Rojstaczer and Wolf, 1992; Muir-
Wood and King, 1993; Quilty and Roeloffs, 1997; Roeloffs,
1998) and Arakoma Foreland Basin (Ge and Garven, 1992)
in USA, in the Canadian Rocky Mountains (Ge and Garven,
1994) and Western Canada (e.g., Garven, 1989) and in Tottori
City (Kitagawa and Koizumi, 2000) and Kobe (Tadokoro et
al., 2000) in Japan have highlighted the association between
active tectonics and groundwater flow and its significance
in important geological and geochemical processes, espe-
cially within accretionary wedges, subduction zones and
along continental margins. These studies highlight the fer-
tility of carrying out similar investigations in other sedi-
mentary basins, subduction zones, continental margins and
high ambient tectonic stress regimes of the world.

The Himalaya plate boundary seismic zone appears to
one of the worlds best laboratories to study and anal
how the transient hydraulic and thermal states in the s
surface may evolve in response to changes induced by a
tectonic forces within a continent-continent collision zon
This is due to various considerations.

(i) Evidences of significant hydrological changes here due
previous great earthquakes e.g., the 1897 Assam earthqu
1905 Kangra earthquake, 1934 Bihar−Nepal earthquake and
1950 Assam earthquake, are already documented in lit
ture (Oldham, 1899; Middlemiss, 1910; Dunn et al., 193
Poddar, 1953). (ii) The region, drained by several major r
ers, numerous artisan springs and mountainous stream
one of the worlds more seismically active zones and 
locus of some great intraplate earthquakes. (iii) It has b
estimated that presently the Indian plate is underthrust
beneath the Eurasian plate, at a rapid rate of the order o
to 20 mm a−1, creating this arcuate belt of intense tecton
activity. Presence of numerous active faults showing repea
Quaternary displacements also indicate that the collis
process is ongoing even in recent times. (iv) Finally a ma
sedimentary basin, composed of terrigenous sediments, 
grade metasediments and overthrust sheets of middle 
high grade rocks and extending from the Ganga forede
through the Sub and Lesser Himalaya, is trapped betw
these two rigid converging lithospheric plate blocks.

Systematic studies of the various forms of tectonica
induced hydrologic responses have proved useful in und
standing (i) the behavior of crustal rocks under the action
major tectonic forces (e.g., Rojstaczer and Wolf, 199
Manga, 2001), (ii) the processes that underlie the poroe
tic coupling of hydrologic and seismological responses 
the earth (e.g., Roeloffs et al., 1989; Quilty and Roeloffs, 19
Wang, 1997; Roeloffs, 1998; Ge and Stover, 2000) and 
also perhaps triggered seismicity (e.g., Hill et al., 1995; Bee
et al., 2000). Since the style of fault displacement a
nature of ground vibrations also control earthquake-induc
hydrological effects to a considerable extent (Muir-Woo
and King, 1993), such studies should also prove helpfu
providing observational constraints for reliable estimatio
of different parameters of the earthquake source mode

In this study, we translate these ideas to the Himala*Corresponding author: irenefes@iitr.ernet.in
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plate boundary seismic zone and investigate the possible
hydrological changes that were induced in the shallow sub-
surface by the most recent hazardous earthquake of the
region, the Chamoli earthquake. This moderate magnitude
(mb=6.3, MS=6.6, MW=6.4, M0=5.2×1018 Nm) earthquake
occurred on March 29, 1999, 05:35 UT, in the higher reaches
of the Garhwal segment of the Himalayan tectonic zone.
There are differing estimates available for the location of
this seismic event. For example, while the US Geological
Survey (USGS) located the earthquake hypocentre at 30.51oN,
79.40oE, 15 km, the Indian Meteorological Department (IMD)
located it further southeast at 30.30oN, 79.56oE, 18 km. The
earthquake induced significant changes to the topography,
landscape and groundwater regime of the Alaknanda−Man-
dakini river valleys and adjoining regions and caused severe
damage to human life and property there. A systematic
ground and satellite survey of these changes was conducted
immediately after the earthquake occurred. The details of
that survey have already been documented and reported in
literature (Sarkar and Saraf, 2000; Sarkar et al., 2001a;
Saraf and Sarkar, 2002).

During this survey, significant changes in the flow of sev-
eral artisan springs in the region were noted. In this study
we analyze the flow in ten such springs where these
changes were most spectacular. These ten springs were dis-
tributed over approximately 50 km2 area in the Alaknanda−
Birahi Ganga−Mandakini river valleys (Fig. 1), in regions
where the earthquake intensity were generally higher.
Unfortunately there were no hydrographs available for
quantitatively estimating the increase or decrease of dis-
charge of these springs. The survey could provide only
qualitative estimates of the changes in springflow induced
during the coseismic phase of the earthquake (Fig. 1). In

this study we ratiocinate these qualitative estimates and p
vide constraints for selecting the more plausible model 
the causative fault and rupture of the Chamoli main sho
Despite the approximation of analysis adopted, consider
the lack of systematically documented studies of the regio
ground flow patterns evolving within the compressional te
tonics of the Himalaya, we regard our study as significan

2. THEORY

We address the problem as one of time-dependent flow
interstitial fluid in a porous-elastic solid earth under th
action of earthquake related stresses. Biot (1941)’s linearized
quasi-static elastic formalism of the response of a fluid s
urated porous-elastic medium to a transient load provide
a viable framework for the purpose. This theory discus
the coupling between the pore pressure field and the ela
stress field through constitutive linear relationship betwe
changes induced in pore pressure, mean stress and 
mass. A major problem due to the coupling terms is that 
analytical expressions for the response of a porous ela
media to time-dependent stresses under different real
boundary conditions can be obtained only after lengthy a
involved algebra. It is for this reason primarily that th
number of solved stress-related boundary value proble
pertaining to porous elastic media is miniscule in comp
ison to those of the analogous ideal elastic media ca
However, for all the solved cases available in literatu
there are always two specific limiting responses of 
stressed fluid-saturated elastic porous media. These ar
the instantaneous or undrained response and (ii) the lo
time or drained response. It has already been exhibited
literature that, for both these end point responses o

Fig. 1. A map showing the geographic
locations of the sites (filled circles) of 
the springs considered in this article.
The abbreviations denote T−Tilwara, 
A−Agastya Muni, Mt−Maithana, B−
Birahi, V−Vairagna, G−Gwar, P−
Pipalkoti, M−Mandal, K−Kuonja and 
C−Chandrapuri. The accompanying 
plus (+), negative (−) and zero (0) 
signs identify Chamoli earthquake-
induced increased, decreased and 
unchanged flow at these springs. The
solid hexagon marks the US Geologi
cal Survey estimated location of the 
main Chamoli earthquake epicentre. 
The background geology is after Gan
sser (1964). The geographic location
of this figure is identified in the inset 
map with a solid dot.
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porous elastic media, the results of the corresponding ideal
elastic problem can be imported directly (Rice and Cleary,
1976; Detournay and Cheng, 1993).

Our interest in this study is for the undrained response
case. This is because the changes in spring flow that we
analyze were noted immediately after the earthquake occurred
i.e., during the period of short term response of the porous
elastic earth to the Chamoli earthquake-induced stresses, when
the poroelastic shallow subsurface rocks were undergoing
“undrained deformation” (Rice and Cleary, 1976). Undrained
deformation of the porous-elastic solid earth implies that
the earthquake induced stress changes occurred over a time
scale that is too short for the interstitial fluid to migrate
from regions of high pressure to regions of low pressure
through a process of diffusion. In other words, under such
conditions, the diffusive variation of fluid content is zero
(Rice and Cleary, 1976; Detournay and Cheng, 1993).

The change in pore pressure (∆p) during the undrained
response is called pore pressure change due to compression
(Rice and Cleary, 1976). ∆p depends on the changes induced
in both the mean normal stress and deviatoric stress field
(Wang, 1997). It may be estimated from corresponding
instantaneous changes ∆σ1, ∆σ2 and ∆σ3 induced in the
principal normal stresses using the relation (Wang, 1997),

(1)

∆τoct denotes the instantaneous change in the octahedral
shear stress field and can be evaluated from ∆σ1, ∆σ2 and
∆σ3 (Jaeger and Cook, 1976, p. 24).  A and B refer to
Skempton’s coefficients and have been experimentally
determined for different rock and soil types (Detournay and
Cheng, 1993). The sign convention adopted in this equation
is that tensile normal stresses are positive.

3. METHOD OF ANALYSIS OF OBSERVATIONS

The following are assumed for the purpose of analysis. (i)
The hypocentre of the Chamoli earthquake was at 30.51oN,
79.4oE and 15 km depth, as per the estimates of the US
Geological Survey (USGS). (ii) The causative fault has a
strike of 282oN, dip of 9o, similar to that of the gently dip-
ping nodal plane of the USGS fault plane solution. (iii) The
causative rupture was rectangular in shape, with sides mea-
suring 22.0 km in the fault strike direction and 25.0 km in
the fault dip direction. (iv) A uniform slip of 0.4 m occurred
over this ruptured area with the hanging wall moving in the
up-dip direction during the earthquake process. (v) The
earthquake hypocentre was located at the centre of the
down-dip edge of the causative fault. (vi) The earth, in the
region of interest, is a homogeneous, isotropic, porous-elas-
tic half space with shear modulus (G), undrained Poisson’s
ratio (νu) and Skempton’s coefficients A and B having val-
ues of 2.3×104 MPa (Jaeger, 1969), 0.25 and 0.53 and 0.22

(Detournay and Cheng, 1993; Wang, 1997), respective
Regarding our assumptions, the following points may 

noted. (i) The choice of the gently dipping nodal plane 
USGS as the fault plane is consistent with the plate tecto
model for causative faults of moderate magnitude ear
quakes of the Himalayan seismic belt (Seeber and Armbru
1981; Ni and Barazangi, 1984; Molnar, 1990). (ii) The assum
values for the rupture dimensions, amount of fault dip a
G are consistent with the USGS estimated seismic mom
(5.2×1018 Nm) of the earthquake (Aki and Richards, 1980
(iii) The assumed values of G, A and B are compatible w
experimentally determined values of poroelastic rock ty
as is generally found in the shallow upper crust in the reg
of investigation (Detournay and Cheng, 1993; Wang, 199

Closed analytical expressions for internal and surfic
displacement and strain fields, due to different types of s
mechanisms on finite shear and tensile faults in a homo
neous, isotropic earth medium are easily available in lit
ature (e.g., Mansinha and Smylie, 1971; Okada, 199
Since the undrained deformation of a poroelastic medi
and elastic deformation of a linear isotropic medium a
analogous (Rice and Cleary, 1976), we estimated the p
turbations to the ambient pore pressure field, induced by
Chamoli earthquake immediately after its occurrence, in 
following manner. We used the expression for a dip-s
strain field in a homogeneous, elastic earth medium (Oka
1992) and generalized Hooke’s relation applicable in
Poisson solid to estimate ∆σ1, ∆σ2 and ∆σ3 using the fol-
lowing formulae:

∆σi=G(Σ∆ei+2∆ei), (i=1, 2, 3) (2)

Here ∆e1, ∆e2, ∆e3 denote the instantaneous Changes includ
in the principal normal strains induced by the earthqua
This allowed us to estimate the perturbing (i) mean str
field and (ii) octahedral stress field. The Chamoli earthqua
induced perturbing pore pressure field in the region, dur
the short term of the earthquake process (i.e., ∆p) could thus
be estimated from the relation of Wang (1997) quot
above.

4. INTERPRETATION OF RESULTS

We exhibit in Figure 2 the spatial variation of ∆p on a
plane 0.5 km below and parallel to the surface of t
porous-elastic half space. In the absence of any informa
about the depths of aquifers feeding the artisan spring
question, this depth value had to be chosen rather a
trarily. Also, keeping in mind the quality and quantity of th
data to be interpreted, only the regions of increased 
decreased pore pressure changes due to compression, 
tified by plus and minus signs respectively and separated
zero value contours, are shown in the figure.

The projected locations of the ten sites of the sprin
(Fig. 2) provide information about the possible nature of ∆p

p∆ B σ1∆ σ2∆ σ3∆+ +( ) 3⁄ 3A 1–( ) τoct∆ 2⁄+[ ]–=
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within the poroelastic rocks in the local shallow subsurface.
Based on this figure, we predict that, during the coseismic
phase of the Chamoli earthquake, due to undrained defor-
mation of the shallow water-infiltrated rocks near Agastya
Muni (A), Chandrapuri (C), Kuonja (K), Mandal (M), Vira-
gna (V), Gwar (G), Pipalkoti (P) and Birahi (B), ∆p values
were significantly increased. A natural consequence of a
significant increase in the perturbed pore pressure regime at

shallow depths is the squeezing out of interstitial wat
from within the porous rocks, thereby increasing the flow 
the shallow springs there. This is consistent with our fie
observations at these sites. In contrast, the estimated decrea
∆p near Tilwara (T) suggest that during this stage, there w
inward trasportation of the interstitial waters from th
neighbouring shallow rocks, leading to a decrease in fl
of the nearby springs; this is in conformity with our obse
vations at Tilwara. No noticeable changes in flow will b
expected of springs located near regions where ∆p is near
zero. For the spring at Maithana, where there was no p
ceivable change in flow, such an agreement between 
observation and prediction is especially striking. This 
because this site is located near several other sites w
significant increases in spring flows were recorded.

Despite the limited nature of the flow data that is an
lyzed here, we find an overall consistency between o
model-based predictions and field observations. Thus 
rationalization of the changes in springflow that were observ
during the co-seismic stage of the Chamoli earthquake app
meaningful.

5. DISCUSSION

We acknowledge that there is enough non-uniquenes
the interpretation presented here. This is because of 
non-linear involvement of the earth material paramete
viz. G, νu, A and B and the earthquake model paramete
viz. location of the earthquake hypocentre, orientation 
the causative fault and dimensions, mechanism and amo
of slip along the causative rupture, in our analysis. Howe
the following points require to be considered here. First
the average values of G, νu, A and B for the water saturated
shallow rocks of the Alaknanda, Birahi Ganga, Mandak
river valley and adjoining region may differ by a sma
measure from those that we have assumed in this study.
such a difference should not affect the general predic
pattern of induced pore pressure change due to compres
(∆p) or the proposed rationalization of our field observ
tions. Secondly, as mentioned earlier, the location of 
Chamoli earthquake source independently estimated 
USGS and IMD are separated by more than 30 km. T
estimates of magnitude also differ significantly. We co
ducted several iterations of our program with both sou
locations and also with different combinations of the oth
model parameters. The analysis that we report here (Fig
is based on earthquake model estimated by the USGS.
found that this parameter ensemble was most consis
with our field observations. Thus our procedure of rati
nalization of observed spring flow changes induced by 
Chamoli earthquake might be interpreted as indirect supp
for the USGS model. We note that detailed analysis of 
patterns of induced damage to buildings, topography a
hill slopes, observed during the field survey and on the s

Fig. 2. A map showing the estimated regions where the pore pres-
sure due to compression (see text) may have increased (plus signs)
and decreased (minus signs) in response to undrained stress
changes induced by the Chamoli earthquake. The pore pressure
changes are estimated on a plane 0.5 kilometre below and parallel
to the surface of a porous-elastic half space. Only zero value con-
tours (marked with 0s) separating regions of increased and
decreased pore pressure on this plane are indicated. The informa-
tion about the magnitudes of these changes is suppressed in view
of the limited, qualitative data considered. The star marks the loca-
tion of the Chamoli earthquake epicentre as estimated by US Geo-
logical Survey. The rectangle marked by dashes represents the
projected position of the assumed causative rupture of the earth-
quake. The filled circles mark the projected positions of the
springs as in Fig. 1.
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ellite images, also supported the USGS estimated hypocen-
tre location and fault plane solution (Sarkar and Saraf,
2000; Sarkar et al., 2001a; Saraf and Sarkar, 2002).

6. CONCLUDING REMARKS

The status of active tectonics and the ensuing seismic
hazard potential of the Himalaya has been studied and
assessed through detailed studies by numerous authors (see
for example Wadia, 1961; Gansser, 1964; LeFort, 1975;
Valdiya, 1980; Seeber and Armbruster, 1981; Ni and Bara-
zangi, 1984; Gaur et al., 1985; Khattri, 1987; Chander,
1988; Khattri et al., 1989; Ni, 1989; Molnar, 1990; Sarkar
et al., 1993; Khattri, 1999; Bilham et al., 2001; Sarkar et al.,
2001b). In contrast, the transient geohydraulic and geother-
mal state that is evolving here in response to the prevalent
high ambient tectonic stresses, has so far never been sys-
tematically or seriously addressed.

The study reported here is one of the few hydrogeologic
investigations in the Himalaya. Despite the limited field
evidence and highly simplified models of the earth and the
earthquake source, we could successfully suggest here the
possible changes that were induced on the local ground
water regime by the moderate magnitude Chamoli earth-
quake process in its coseismic phase. Thus our study high-
lights the immense prospect of regular and systematic
monitoring of the discharge of the various rivers, springs
and streams and also water level in the shallow wells in the
Himalaya. For such an effort can provide deeper and valu-
able insight into the transient history of the subsurface
hydrodynamics and other pre-earthquake changes being
induced in the ambient stress field here.
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