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Abstract. A class of objects — that are best described as being actions of group-like objects of
von Neumann algebras—is axiomatised and it is shown that there exists a bijective
correspondence between isomorphism classes of such covariant systems and isomorphism
classes of pairs of II, factors (M, N) satisfying N = M, [M:N]<o and MAN'=C.
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1. Introduction

The aim of this paper is to associate with each pair (M, N) of II, factors satisfying
NeM, [M:N]<o and MnN'=C, a group-like object %),y (or rather, an
isomorphism class of such objects) in such a way that

(i) (M,N)=(M, N) if and only if ¥,y = ¥y 5; and

(ii) from each such object % that is abstractly defined, to construct a pair (N x %, N)
of 11, factors (with finite index and trivial relative commutant, as above) in such a
way that (a) Gy . g =¥, and (b) (N x Gy, N) = (M, N).

The object ¢ is quite different in character from the one discussed by Ocneanu in
[1] and [3]; we refer to objects such as ¢ simply as covariant systems. Our notion
of a covariant system (as in Definition (4.1) is defined by five axioms, three of which
are similar to the group axioms, while the other two seem to correspond to the
definition of a group action. Unfortunately, the author has been unable to decouple
the notions of ‘group-like object’ and ‘actions of such objects’; it is not clear whether
the failure to do so is a consequence of the author’s ineptness or of some inherent
feature of this approach (which amounts to identifying axioms that yield the Hilbert
algebra structure of the extension M purely in terms of the subfactor N and some
morphisms associated with N).

The third section is devoted to ‘right bases for M over N', a slight generalization of
the ‘orthogonal bases’ introduced in [5]; the reason for this generalization is that
orthogonality gets destroyed ander certain natural constructions involving products.
This was most probably noticed by Ocneanu, since several results of this section
occur with only slight and notational changes in [3]. This section is included here for
completeness, and since there are few proofs in [3]. Thus, the first half (up till
Proposition 6) of this section is a modified reproduction of parts of [5], while the
second half ([Proposition 7, Proposition 11]) is essentially contained in [3].

The fourth section is the core of this paper, and is devoted to attaining the goals
outlined in the first paragraph of this introduction. This section also contains
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descriptions of the covariant systems corresponding to G/H and G/H, where H is a
(not necessarily normal) subgroup of a finite (not necessarily abelian) group G.

Finally, the author would like to attempt to describe the nature of the relationship
between this work and Ocneanu’s work. The two approaches (to the same problem)
are very similar up to a point, after which they diverge; the common part is that part
which builds on Pimsner-Popa’s discussion of bases, by starting with a basis for M
over N and proceeding to construct bases over N for each member M, of the tower
of the basic construction. Thus, while it is true that the author has benefited greatly
from numerous conversations with Ocneanu and that this work has been strongly
influenced, in spirit, by Ocneanu's work, this paper relies more heavily, in content,
on the paper [5] of Pimsner and Popa.

2. Preliminaries

We shall be concerned with the category ¢ = {(M,N):M, N II, factors, NS M,
[M:N] < 0} and its subcategory

%o ={(M,N)e4:MnN'=C},

where, of course a morphism 7:(M, N) - (1\71, N)is a unital normal *-homomorphism
m:M - M such that ©{N) = N. We begin by recalling some facts from [17], [5] and [6].

If (M, N)e%, there is a notion of an extension M, of M by N, which has the
following features:

(PY) (M,,M)e% and [M,:M]=[M:N]
{P2) There exists a projection e,e M, such that

(i) eoxeo=Ey(x)ey, for all xe M; (ii) My = (M, e > (=:(M U {eo})"); (iii) Epgleg)=7-1.
(Here and in the sequel, the symbol t denotes [M:N] ™!, the symbol tr always stands
for the unique normalized trace, and Ey denotes the unique tr-preserving conditional
expectation of any II, factor onto a subfactor N.)

(P3) For each xeM |, there is a unique m in M such that xe,=me,; in view of (P2)
(iii), we necessarily have m=1"1E,(xey).

If (M, N)e%, we shall let {M,}:% _, denote the tower obtained by iterating the
basic construction; thus M_, =N, M;=M and M, , , is the extension of M, by M, _;
we shall let e, be a projection in M, ; that implements the conditional expectation
of M, onto M, _,. The sequence {e,}, of projections satisfies the following ‘Jones
relations’:

AP4) (i) ene,=eye, for |m—n|>1; (i) e,e,e, = 1e, if [m— n|=1; (iii) Ey (e,) =11

(P5) For n>1, My, is the extension of M, by M., a choice of a projection in
M,, +, that implements the conditional expectation of M, onto M _, being given by
=T """ (e, o) (Ens 180 €1) + (€20800-1 )

We end this preliminary section by introducing some notation we shall employ.
Symbols I, J, K, ete. will denote finite sets. We shall work with the algebra Mat,, (N)
of matrices, with entries in N, and rows and columns indexed by I and J respectively.
An element of Mat,, (N) will be denoted by x = ((x;)); when I = J, clearly Mat,, (N)
is 1, factor, the equation Trx=3,Trx; defining a non-normalized trace on

Mat,, (N). Row-vectors (respectively, column vectors) will be denoted by Mat.,(N)
(respectively, Mat,,.(N)).
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In a natural fashion, we have Mat;, ,(N) < Mat,, (M) s Mat;, (M;)s---. If g,
beu,M, and xeu,Mat;.,(M,), we shall let axb denote the matrix defined by
axb=((ax;b)). Also, if n<m, we shall let the same symbol E,, denote the map from
Mat, , (M ,,) into Mat, , (M,) defined by applying E,,, entrywise. It must be obvious
that the statements (P2)(i), (P2)(iii) and (P3) have the following matricial analogues:

(P2)(ilvar €0x€o = En(x)e, for all xeMat,, (M),

(P2)(iii)y,, Treox=1Trx for all xeMat,, ,(M);

(P3)ya For each xeMat, , (M), there is a unique meMat, , ,(M) such that xe,=meo;
necessarily m =17 E,(xe).

3. Right bases

We shall assume henceforth that (M, N)e® and that {M,} is the associated tower
of the basic construction, and I will denote a finite set.

Lemma 1. The following conditions on a column-vector 1= ((4))eMat; (M) are
equivalent :

(i) A*eod = 1;(ii) Ey(AA¥)=Q, is a projection in Mat, , ,(N) satisfying Tr Q; = [M:N].

Proof. Fix igel and define veMat, . (N) by v;; = 6, 104;, where of course ¢ denotes
the Kronecker symbol. Then (v*v);=0;,0,;4*eol, while vv*=Q,e,. Hence the
assumption (i) is equivalent to the assumption that v is a partial isometry with
Trv*v=1, while (ii) amounts to requiring that v is a partial isometry with Trovv*=
1TrQ;=1 (cf. (P2)(ili)yao); thus, (i) is equivalent to (ii).

DEFINITION 2

A column vector AeMat,, (M) is called a right basis for M/N if A satisfies either of
the equivalent conditions of Lemma 1.

It should be remarked that this notion of right basis is a marginal generalization
of the ‘orthogonal basis’ considered in [5]; a right basis i (in the sense of
Definition 2) is an orthogonal basis in the sense of [5] precisely when the associated
projection Q, is diagonal. The reason for relaxing orthogonality will become evident
later.

PROPOSITION 3. (Existence of right bases)

Let I be any finite set (with |I| necessarily at least as large as [M:N]). and let Q be a
projection in Mat,, (N) such that TrQ=[M:N]. Then there exists a right basis
AeMat;.(N) for M/N such that Ey(AA*)= Q.

Proof. Define PeMat,, /(N) by P;;=§,,0;,; where ioel is fixed. Then TrP =1, and
also TrQe,= 1. Since Qe, and P are projections in the I, factor Mat, . (M) with
equal trace, there exists a partial isometry veMat,, (M) such that v*v=P and
vo*=Qe,. Since v*v = P, it follows that v;; =0 if j # iy; so there exist v, M such that
v;;= 0;,,0;; the assumption vv* = Qe, implies that v=eqv and hence v;=eqp; for each
i. Appeal now to (P3) to deduce the existence of 1, M such that e;d; =eqv; =v;. It
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follows at once that g, = (00*);; = eohid¥e = Ex(4:4})eo; it follows that Q = Ey(/4¥),
and that A is necessarily a right basis for M/N.
DEFINITION 4
If 4 is a right basis for M/N, define n:M — Mat. (N) by n(x) = Ey(x4*); when it is
necessary to indicate the dependence of # on the choice of 4, we shall write n=1;.
PROPOSITION 5
Let 4 be as in Definition 2 and let Q = Ey(A2¥).
@) If xeM, then x = n(x)4 and n(x)=n(x)Q.
(i) If xeM and if x = E4 where EeMat., (N) satisfies £ =£Q, then, &=n(x).
Proof. Start by noticing that if v is the partial isometry as in the proof of Lemma 1, then
eohi = Uiz, = (Qegt)i, = z ;€04
J
=¢,(Q4); and hence 1= QAL 1))
(i) egx = egx:A*eyd = egEx(x4*)A and so (P3) ensures that x = 5(x)4; also,
n(x)Q = Ey(xA*)Q = Ey(xA*Q) = Ex(x4*) by (1).
(ii) If x = ¢4 where & = £Q, then
En(x2¥) = Ep(£A0%) = (E(AA*) =0 = U
PROPOSITION 6. (‘Uniqueness’ of right bases)

If AeMat,, (M) and ZeMat; (M) are right bases for M/N, then there exists a partial
isometry ueMat,, (N) such that
(@) u*u=Q;, uu*=0,; (i) A=ui, A=u*i.

Proof. Putu = E,(A7% and apply the previous proposition to both 4 and 7. Thus, for
instance, since 4 is a right basis for M/N, it follows that
A= Ey(AI1=ul

The other assertions are proved as painlessly. O

For the rest of this section, assume that (M, N)e¥ and that AeMat,, (M) is a right
basis for M/N.

PROPOSITION 7

(i) T~ %e,ieMat,, (M) is a right basis for M /M,
. (ii.) If 1®eMatp (M) is defined by A¥ =1"112), eods. (for i=(iy,i,)€l?), then
A2 is a right basis for M ,/N.
(i) More generally than (i), if for n=1,2,...,A"eMatn,.(M, _,) is defined by
}ngn) = T-"(n— 1)/4}.“(20}.,.28160213 * "}.i“_ le,,..2e,,_3 b eoj-in,

then A" is a right basis for M,_ |/N.
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Proof. (i) (z™%epd)*e (17! epd) = 17 A*ese €A = A*end = 1. (cf. (P4)(ii))

(iii) We have to prove that A", ,)A™ =1 for all n, where e, is as in (P5). When
n=1,A"=1 and ¢, = ¢;, and i*e,l=1 by definition of 1.

Assume now that A""e,_ A" =1, so we need to show that 2"+ A"+ V=1, To
achieve the inductive step, writei_ =(i,...,i,)el” whenever i=(i,,...,i,,,)el"*!, and
observe that the following relations hold:

KD = e, gl @
and
€y =T "Culni 1 C2nCin—1)€2n—1€2m—2"" €y} 3)

note that A™eM,_, and consequently A™ commutes with e, for m>n; finally
compute thus:

(nt+1)* (n+1)
A emh
— =2n )% (m)* (n)
= Z T "'li,.neon'en—lli_)en“'eZne(n—IJEZn—l'"en'li’_len—l'”e()'ll‘nn
iEI"+1
_ —2n 7%
= Z T n;i'i"+1e0"'en—len"'e2n

n+1

|
X (Z}’ft) e(u—l)}‘i(’:)>e2n—1 R P '“eO’li

-
— —2nrx
=Y T2 eorr €m0k

in+y

= Z AE, eoki,,, =1, as desired. 0

vin+

n+1

in+ 1

Remark 8. 1t might be worthwhile to point out here that once one has noticed the
validity of Prop. 7(i), the formulae for A* and ey, are arrived at naturally. Consider
the case n = 3; first, 1~ !/ey4 is a right basis for M /M, so t~le,e,/ is a right basis
for M,/M,; so, if xe M,, we may write

X = _th(f—leleolil) (x;, €M Vi)

=Y X, (17 e A, ) (1 ey e Ay,) (%11, €M)
Z Xisign (i) (T ™ 1/230}%2)("-'_ tejeod;)) = Z XA,
inia,isz e’

A second point to be made here is that even if 4 is an orthogonal basis in the sense
of [5], then A® may fail to be an orthogonal basis; this was the reason for relaxing
orthogonality and introducing Dcfinition 2.

Finally, to see why the formula for e, is also to be expected, note first that if

iV j=(i1,-..,dnsj1,...,)jm) Where iel", jeI™, then we have the following generalization
of equation (2):

AT =TT ey 00} (@nre €1)  @manm2 -t Enm JA™;
in particular, if i, jeI", then

K=t ey 1) (eanmz - DA
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the similarity between this expression and the formula A®, = 1~124; eo4;, should

suggest to the reader that the projection in M3,y that implements the conditional
expectation of M,, onto N would be of the form

T(somepower)(en_l "'eo)(en"'el)"'(leI-—Z"'en-l)' O

PROPOSITION 9

Define Y, eMatpy e (N) bY Y= Ey(A™A"* ) for n20 (with the convention that
10 =-and A© =[1]); also define n,: M, _, —»Mat., (N) by 1,(x) = Ex(xA™"). Then,

(1) s 1(X) = MLy, Jor all xEMy 13

(ii) nEpm,. ¥)= Nl X)E NAMA) = E J(xA™"), whenever XM 1, where n<m;

(iii) if n<m < p, them
Ey(AP) = Ey{ AP E (A,
and consequently,
EdAPAT) =3 Y52 Y.
Proof. Observe to start with that
x=1n,()A" for all xeM,—,
(cf. Prop. 5(i) and Prop. (iii)).

(i) o 106) = B 1) = Ex(m AV )
= 0 E(ADACH ) = (X)W

B B o) = BB, (A7) = EnBag, (2)
| = Ey(x™") = Exlna3A™ ")
= 1 (REN(I™2)

(iii) Fixiel” then APeM,_ and
Ey(APA) = n,(Ey, - A7) by (i)
= 1y(Erty- (Epty (A7)
= N Eptyn- (AP EAA™A) by (i)
= By Ey(AA™)
and hence
Ey(APA™) = Ey(A® J)E (A ACTY,
it follows that
Ey(APA") = Ey(APA® DY (AP~ VAP~ 2").. Ey A+ 1)100%)

=‘/’:-1‘/’:-2"‘l//:- ‘ O

R
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DEFINITION 10

If AeMat;, (M) is a right basis for M/N, we shall let §(=6,) denote the map
0:N - Mat, , (N) defined by 6(x)=Ey(1xA*). Further, we shall write " for 8, so
that 6™: N — Matn, ;«(N).

PROPOSITION 11

Let AeMat;, (N) be a right basis for M/N.

(i) 0 is a faithful normal x-homomorphism such that 6(1) = Q,-in particular, if [M:N]
is not an integer, then 8 is not unital;
(ii) 0(x) = 6;,;, (61, (8;,;,(x))-+-)) for all xeN and i, jeI, for all n;
(i) Yy = 6" (1) and v, = 0"V (1);
(iv) 8™, = ¥,0" V) (x), xeN, n>0.

Proof. (i) The map 8 is clearly linear and o-weakly continuous; also, it is clear that
6 preserves adjoints; finally, if x, yeN,
0(x)0(y)eo = Ex(AXA*)Ey(AyA¥)e, = egdxA*e dyi*e,
= eglxyl*ey, = O(xy)e,

so that 8 preserves products.
(i) If i, jeI"*! and xeN, use equation (2) to deduce that

0+ D(x) =1 "Ep(APe,_ 1 --eoh;, . XA, €0 --en—ll,!'_'")
=1 "Ex(A{e,_;--e:6; , ;.. (X)eg e, - A7) |
=1 "EN(A"6, N o "'eo"'en-ll}'_‘)')
=7 N0, i (e 1 H)
= Ex(A"0,,, ;.. COA™) (by (P4)(ii)
=0_(6,. 1ju. ()
(i) Y = Ex(ADACTIE(AC* D20
= Ey(Ey(APAC* 1))+ D0y
= Ey(A™A™") (since AMeM,_, < M,)
=§"(1)

while the equation ¥, = ¥,0"*1)(1) follows from an entirely analogous computation.
(Alternatively, it follows from ¥ = 60" (1) that , is a partial isometry and
Y, =¥, = 6" (1)y,, and the equation y, = ,60"* (1) is a special case of (iv).)

@iv) 0™ (), = Ex(AMXAM)E (AMA0+ 1))
= Ep(En( Ay l‘")') A nt 1)") =Ey( pOPYLEs 1)*);
W, 0+ D(x) = Ey(AMA®+ DYE (A + Dy jtn+ 1)
= EN(EN(A(")A(" + 1)‘)/{0: +1)ya(nt 1)w)
= Ey(A™xAt* 1), .

in+1
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4. The axioms

For the sake of typographical convenience, we shall adopt the classical ‘summation
convention’ regarding covariant and contravariant indices. Hence, a matrix
xeMat,  ,(N) will be written x = ((x])), so that if also yeMaty, ((N), then xy = ((xy}).
(Caution: an index is a ‘summing index” only if it appears (at least) once covariantly
and (at least) once contravariantly; thus, for instance, 4 L EY 8¢

Sometimes, while dealing with expressions involving ad)omts we shall choose to
dispense with the summation convention, and shall indicate such a departure by
resorting to the familiar symbol .

Finally, if 1 is a right basis for M/N and if 6, Yo, ¥, are as before, we shall write:

600 = ((B5(x)),  82(x) = ((65,(63(9))
Vo=((0)), ¥, = Ill_,k )) and finally,
Y=yt yf=()* and

& =(&)* whenever ¢ =((¢))eMat.,,;(N)

This section will be devoted to showing how the pair (M, N) can be recaptured from
0, ¥, and yr, by a few ‘group-like’ axioms.

DEFINITION 1

Let I be a finite set, N a II, factor, 8:N—Mat;,(N) a faithful normal

*_homomorphism, YoeMat. , (N) and Y, eMat,  ;(N). Let us write t for (Tr6(1 )L
The system % = (I, N, 0,,, ;) will be called a ‘covariant system’ if the following

axioms are satisfied:

Tdentity: Bi(y )% = 1" 205(1) = Y% Vi, jel

- Associativity: YLk = 50001 Vi, j, k, lel

Involution: 04y Yo ="y Vi, j, kel

Embedding: yoy§ =1, Y.yt =0(1)

Module: ayo = o), Ba)y, =y ,0%(a) YaeN

(where of course 8': N —Mat,z,2(N) is related to 0 as in Prop. 3.11 (ii)).
Finally we shall write |%|=1"" and call |#| the order of the covariant system. O

DEFINITION 2

A covariant system % as in Definition 1 is said to be:

(i) outer, if £eMat.,(N), & = ¢6(1) and a&=£E6(a) for all aeN imply £ is a scalar
multiple of y,; and

(i) unimodular, if for every ¢ eMat. . (N) satisfying & = £6(1), the following equality
holds: Tr &&* = 7™ Tr (ol )y B8 (WY

PROPOSITION 3

Let (M, N)e#% and let AcMat,, (M) be a right basis for M/N. Define 8, {1, and \, by
6(a) = Ex(AaA®), Yo = Ex(A*), ¥, = EN(AA®"). Then 4, = (I, N, 0,4, Y,) is a unimodular
covariant system which is outer precisely when MNN'=C.

Rt T AR £
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Proof. The conditions we have chosen to call ‘Embedding’ and ‘Module’ were verified

earlier (cf. Prop 3.11 (iii) and (iv)). Before verifying the other axioms, we pause to
notice that

Vi = EN(F), Y = Ef(A(t™ A jeod)*) = ' PE(A,2FA%)
Y= Ex(1) and Y = 112E\(2 3, 19)
Now compute as follows:
Oy = ; EN(AENANAET P En(AAiAY)
=t/ ; EN(EMAENAR)AR) LAY

=112 Z EN(AiEN(lr)}-tif )
]

= r”zEN(Ai (Z E(l -1;*)1,) ,1;.*)
[]

= T 2EN(AAF) = t26(1),

and
Dbl = T BN i) = C2E,, (; EN(A;f)lkA,-A}‘)
=1 2E\(AAF) = t264(1);
o V= T EMGATADEN A ) = <E (g EN(,lilf/l:)/lpl;"A,’f)
= By
while

Vo Ok = 1Y Ex(Ad3 ANENAEN(AAFARAY)
pq
=1Ey ( D EN(A,.A;,‘%;‘)}.,,EN(A,,A}‘,I;"M{)
p.q
=1Ey ( Y A X (A A% Lk )z;r) = TEp(AAFAFAE),
q

where the last step uses the obvious fact that ‘A* is a left-basis for M/N’; finally,

Ol =1 3. EN(LENAEN(A AN En(2,4,47)

p.gq.r

=Y Ey ( LEy ( y EN(A:)/lqz,f/t:«) ax ) En(A,,0%)
nr q

=1, EN(AENAEADANEN(A,4,4F)
br

= 1Y, ENLENAEIAAE) = TENAREA) = V204,

thus establishing that %, is a covariant system.
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To see that ¢, is unimodular, note first that

Wolh )y =Vl =77 Y, EN(AENAAFAF) = T2 Ex(A}2F); hence,
4

&

{'
U Tr (Yol )y OUEE) TV 1
=Te 3 EAAENIEIGHIEN )
=Tr T EEEEHIEMAA) = To T, ExlA £ ) |

= Tr Y, Ey(fé16) = Tr Y ENGANERG

I b

=Tr;9§(l) H4! g
= Tr&0y(1)& = Tr& (since £ = £6(1))
=Tr éE*, as desired. " 5

Finally, if we write 7(x) = Ey(xA*) for x in M, note then that if xe M and aeN, then
#(ax) = an(x) while

n(xa) = Ey(xal*) = Ex{n(x)lai*) = n(x)6(a);

the last assertion of the proposition follows at once. O

vt e e

Remark. If o is an outer action of a finite group G on N and if M =N x,G, the

natural right basis AeMatg , (M) for M/N is such that s— 4 is a group homomorphism 2
of G into the unitary group of M such that Aal;-, = a(a) for all seG and aeM. The

6, o and ¥/, of the associated ¥, are given by 8}(a) = djua), ¥/, = d,, where ¢ denotes

the identity element of G, and

s JIGITY, ifs=tu v
“71 0,  otherwise.

More generally, if a:G—Aut N, (N a II, factor) is an outer action of a countable

group G on N, and if H is a subgroup of finite index in G, a right basis for

Ny x G/N, x H is given by A= ((4,)) where {s;} is a set of coset representatives, i.e.,
G =11, Hs;. The associated covariant system ‘%, is seen to be given by:

6; ( Z xh’lh) = Z as.-(xh)isihsj‘l )

e

heH {h:sihs; TeH) ?
y 0 sl
A, ifseH
and
. 0 lf SjSk¢HSi
‘/’jk“{[G:H]—llzaSﬁ;‘S}_l, if s;5,€Hs;. -

Lemma 4. Let 9 =(I,N,0,y4,\,) be a covariant system. Then
(i) Yo =1ob(1); (i) Y = Y76(1) (ie. i/ = Y160 Vi, je L (i) 0a) = 6(a)6(1), Viel.
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Proof. (i) follows at once from the (Module) axiom (put a = 1), while (iii) follows from
the fact that 0 is a homomorphism. As for (ii), the embedding axiom ¢t = 6(1)
implies that y¥ = y*6(1), which is the content of the parenthetical remark in (ii).
U

DEFINITION 5
If ¢ is a covariant system, define % = {¢eMat., (N):&=E0(1)}. If &, ned, define

En)=1" szﬁi(’h)‘ﬁla
(fb)i =1 Uzlﬁjl//ile{"(il)‘ |

and

It follows from Lemma 4 that if & ne%, then &= (((€-n)) and & = (((¢*))) both
belong to #. It is easily verified, further, that if £c% and if a, beN, then the
matrix-product aé6(b) also belongs to %; thus % has a natural N-bimodule structure.

Lemma 6. The operations defined above endow % with the structure of an involutive
associative algebra, and \, is the (multiplicative) identity for %.

Proof. Clearly % is a vector space; further, if {e%, then for any iel,

(& W) =17 2L B = £;01(1) (by Tdentity’)
=&

Wo & =1~y BlENWI =1~ V2EW (by ‘Module’)
= fleli(l) =

Next, let &, 5, (e and iel; then

((&m)-O=1~ YHE )L =7 Bl O
=177 1¢;0{n)05 1 (I (by ‘Module)
=17 1,005 (CIBrW W (by “Associativity’)

=771 510,1.(7]19;“:)'//?)‘//55
=1 QI O = (& (- Ois

so “ is an associative unital algebra.
Now for the involution; if £e%,

(&), = T 2y L B(EY) = T~ YOO Y)
=77 Ny 0 (E)OPWAY) = o EW WL OPWSY) (by “Module’)
=17 12¢y 0 (by ‘Involution’)
= £,64(1) (by ‘Identity’)
=¢, (since Ee);
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and if ¢, ned, then

(&)=t~ llz(ﬂb)j Bi((E
R 2 e U R A ()
e R g IRV (9
=732y Ym0 ()OI WEEHE) (by ‘Module’)
=171, Ym 0 (P85 (E) (by ‘Involution’)
=T W, Um 82704 (by ‘Module))
=1 Y Wi0Wss) ‘2”5( ")0"(6‘) (by *Associativity’)
= WO
Sk M1 (4 '?l)") = ((f MP)es
and the proof is complete. 0
Lemma 7. Let A = Mat., (L*(N)) be equipped with inner product (&,n) = Y.;(¢;,n;) and
let # ={EeH &= E0(1)}.

(i) A is a Hilbert space and # is a closed subspace of X’
(ii) the orthogonal projection of A~ onto 3 is given by & E£6(1);

(iii) the following equations define bounded operators on #:
L,¢=aé, aeN
Ry¢=E0(a), aeN
R& =¢x,
where x is any element of Mat,, ,(N) satisfying 6(1)x6(1) = 6(1)x.
Proof. The first two assertions are clear while the last is a consequence of the fact

that if SeZ(#") and S(s#) < #, then S|H e L (H), and the fact that [*(N) is an
N-bimodule. O

Lemma 8. The equation E& = &¥ defines a bounded operator from # to I*(N) such
that E(4) < N; further, for any &, nedl,

(&n) =Tr E¢1").
Proof. Tt is clear that E is continuous and that E(%) < N; finally if £, ne, then
EEn") = (&) = v 00 o )OI
=100V ol e O™ W
=171 (oW D WM (by “Module))
=17 12¢ ] Yy (by ‘Involution’)
= fﬂ{(l)n’: 'fjﬂj;



)

Pairs of 11, factors 169

Thus

E(¢n)) = &jjnj for &, ne (5)
so that, in particular, Tr E(¢-n%) = (£, 7). O
PROPOSITION 9

Let 9 be any covariant system and let U be constructed as above. Then % has the
structure of a right Hilbert algebra whose associated modular operator is bounded. The
modular operator is the identity if and only if 4 is unimodular.

Proof. Ttis clear from the definition of the product in % that -1 = R, (in the notation
of Lemma 7(iii)) where y%=t~'20i(n¥; hence n,(n) = R,. Also, if £, n, {e%, then
by Lemma 8,

(&> =TrE(€n){)=TrEC-Cn"’) = <& 0 n).

We need, now, to estimate || ¢%|| ,.; for this, first deduce from the embedding condition
that Yoy, is a partial isometry and hence || Sty L < || &l Ay Whenever
EeMat. , 2(L*(N)). y

Now, if £e%, then for each iel, define ZPeMat. , ;2(L%(N)) by E;k = 6(&,) and notice
that

EOYE = B EI W IYEY = (128D
hence, for any Ee%,
&8 1% = Z Il <™ Z | &0 =" %k 165(ED 1 E20m)
=t Tr0i(E0IEH = 17! Tr6i(8ee") =77 Trb(g")
=1 2 Trg =172 €)%,

where we used the uniqueness of the trace on N to conclude that Tr 6(a) = 171 Tr(a)
for every aeN.
An easy computation shows that for any e,

€% = 17" Tr (Yo¥ i BHEE) WD),

so that the second assertion of the Proposition is a consequence of the definitions.
O

Lemma 10. The equation A = 6(1) defines an element 2 of % such that E(¢-29") = &
for all €.

Proof. That A%e% follows from Lemma 4(iii); as for the second assertion, if ée,
then it follows from equation (5) that

E(&-20P) = §A00 = £,0)(1) = ¢, -

Lemma 11. Suppose & is a left bounded element of 5 i.e., suppose there is a constant
K >0 such that || 7, (n)é|| , < K| 1l for all ye?. Then EEeN, and || EE ||y < [|7,(8) ).
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Proof. Since the left bounded elements of L*(N) are precisely the elements of N, both

assertions of the Lemma are consequences of the following identity which we shall
establish:

(m(E)ao, bWo D » = C(EE)E, b2y, for all a,beN.

S0, let a,beN, and compute:
(mlQabo, bho ) = <mlaoll, bro ). = Z T HRE Bl ay W BY La)
= Z TR OO WY, B D ey
= Z(f 0@)B(1), by ) L2y
= Z:(é 0a), by Do = ; (&, bB5(a*) Do)
= ; (& ba™ Do = &Y, ba* D ragny=CEE ba* gy »

= <(Eé)as b>L2(N)’ as desired. D

R A v g yeme—

o

CT S TR e e

Theorem 12. Let ¢ be any covariant system, let 9 be constructed as above, and let
M =n(%), N = {m(ayo):aeN}. Then M is a finite von Neumann algebra and N is a
11, subfactor of M. Further, (M,N)e¥%, if and only if % is outer (in the sense of
Def nition 2).

¥ e

© g e ey T

Proof. If aeN and if (e, then

(mla o)) =t~ Pay B EWE
=1~ 2g¢ ¥ (by ‘Module’)
= a¢,0i(1) (by ‘Identity’) ¥
=a(;

and hence m(ay,)=L, (cf. Lemma 7(iii)). It is clear that a—L, is a normal
x-homomorphism of N onto N; since L, =10, and since N is a factor, it
follows that a—L, is a *-isomorphism of N onto N and that N is a I1, factor.
Also, it follows directly from Proposition 9 and the general theory of Hilbert
algebras that 7(%)" is a finite von Neumann algebra. We shall show now that

()" = n(U). So, let xem,(%)"; since n (%) < (m(%)"), it follows that for any ne%,
we have

+ o s g

xn = xm (Mo = mMxifo;

hence & = xi), is a left bounded element of # and x = n,(¢). With A9’ is in Lemma 10,
note that A%%e% so that 1% is left-bounded and consequently 7,(&)A®* is also
left-bounded. The same computation as in Lemma 10 shows then that ¢; = E(,(£)A0%);
an appeal to Lemma 11 shows now that ¢;eN. Since i was arbitrary, deduce that
¢eq and conclude, finally, that xen(%).

Finally, if x = n,(¢), £e%, an easy computation shows that xe M ~ N’ if and only

o e
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if a¢ = ¢{0(a) for all aeN, and hence M~ N'=C1 if and only if the covariant system
4 is outer. If 4 is outer, then MAN'=Cl1 and in particular, M is a factor. Since M
is finite and since M contains a II-subfactor, it must be the case that Misa IT,
factor. Also, notice that m(&) = ¥;m(Epo)m (A7), with A as in Lemma 10; hence M
is finitely generated as a left N-module and consequently [M:N] < o0, and the theorem
is proved. O

We now proceed to show that every outer covariant system is automatically
unimodular. We continue to let ¢ denote an arbitrary covariant system, and to let
%, M, N be as in Theorem 12.

Lemma 13. The equation

o(m (&) =<Yooy, LeU
defines a faithful normal state @ on M such that p(ax) = @(xa) for every aeN and xeM;
in particular, N < pe.

Proof. Since y, is the identity for %, we see that o(m(¢))=<m({Wo,Yo> and
consequently ¢ is normal and positive. Also (p(n,(l,(/o ) = (o, o) =1 (since Y = 1),
so that ¢ is a state; finally, ¢ is faithful since

em(&)*m(€) = <& =&I%

Recall that a typical element of M (resp., N) is of the form (&) (resp., m(aWo) = L)
where £ (resp., aeN); also, notice that for ¢ in % and a in N,

(€ apro) =17 2¢ Blap W = = V20 (@BFW Y
= &,00(a)6¥(1) (by ‘Identity)
=¢;6i(a);
ao=E6(a)
pm(aponfl)) = apo & o = CLaks Vo)

=& Loy =& a*o) = (&, Yolla*))
= {&0(a), o) = L& o, Vo> = @(nE)mlay ).

The final assertion is a consequence of the well-known characterization of M? from [4].

O

ie.,

Hence,

PROPOSITION 14

An outer covariant system is automatically unimodular.

Proof. Tt is easy to see that % is unimodular if and only if the state ¢ (of Lemma 13)
is a trace. To see that ¢ is a trace, appeal first to the Radon-Nikodym theorem of
[4] to deduce the existence of a (possibly unbounded) positive self-adjoint operator
h affiliated to M such that ¢ = Tr(h-). (Recall from Theorem 12 that the ‘outer-ness’
of 4 ensures that M is a II, factor.)
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covariant system, if 1 is any right basis for N x /N and if 4, is the associated covariant
system, then 4= %,.

Proof. (a) An isomorphism n:(N x 4,, N)——(M, N) is given by n(n (&)=Y A,
(b) Begin by appealing to Proposition 14 and Lemma 13 to note that thetrace on N x &
is given by ¢. Note next, that by definition, ¢(m,(¢)) = Tr E(). Via the identification

N+ N, we deduce that the restriction of E to N x & is the trace- -preserving conditional
expectation of N x 4 onto N.

Next, note that by Prop. 17(a), it suffices to prove the assertion for any one right
basis for N x %/N. For this purpose, define AeMat,, (N x ) by 4, = m,(1?), with A®
as in Lemma 10. We need, first, to verify that 1*e,A=1 where ¢, is the orthogonal
projection of # onto [ay,:aeN].

If {e# and aeN, note that

Capo)y = Z<§na!//>L1(N) <6W a>L2(N)
= (EYE, ad g = (Yo, alo)

(since (éolﬁo, Moo v = {&osMo L2y for &o, noeL*(N)), and hence ey = Eyds,; thus,
(eo)i=EWMY;, Ee e, iel.
Now fix £e% and compute:

(i) = (eo(AD &) = (AN- Oy, = 1~ 2 IDORE WYY,
THROLDOFENIY Yy =T POLENEY s

hence,
Bileo &)y’ = ™ ROCIE VO OR W
= 05 (&)0n(FYn05(1) (by ‘Identity’)
= 02 (E)OTW Y

also, in view of Proposition 14, note that the Hilbert algebra % is unimodular so that
A¥ = 1, (A9)* = 7, (AD%); hence,

(Z A;*eol,-é> = Z (A9-eq2:8),
| - IR (O
=27 A O T WIY)
=2 o DGO EOTUEY)

" WY 0P DO EBT (WY
T (Wo¥ Dubing” (EIOTWIY)

= r“‘é‘s (U BVCA )
=1 W 0TI
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=1 1/z§s¢j¢{s {(by ‘Involution’)
= £05(1) (by ‘Identity’)
= él;

i.e., Zil?eoli = 1
Hence A is a right basis for N x ¢/N.
Next, if m,(af,)eN, then

E(QP-ayg A9 = (AP ay,); (by Lemma 10)
= (120(a)); = 0}(1)0%(a) = O5(a);
this shows that 8, (the 6 of ¥,) may be identified with 6. This shows in particular
that [N x 4:N] = (Tr6,(1)) ' =(Tr §(1)) " '=7"1.
To complete the proof, we now verify that also Yo, =y, and ¥, =1, so that, in
fact, 9,=9%.
E(A") = E(f4- A%y =), (by Lemma 10) and
(WT;);;J =¢l2 E( 0. 20). A(k)b)
=g 2()®-}9), (by Lemma 10)
= 1000w
= 0,(DO5OI) W
=02
=¥ (by Prop. 3.11 (iii)),
and the proof is complete. O
We digress now to make a few observations on the duality theory in €. The ‘duality

theorem’ is the following result (cf. [5]): if (M,N)e¥ andif NeMcM,csM,c
is the tower of the basic construction, then

(M3, M) = (Mat;,, (M), Matg,.(N)),

where by Mat,(N) (r a-positive real number) we mean Q(Mat,, (N))Q, where I is a
finite set and Q is a projection in Mat,, ,(N) satisfying TrQ =r.

In view of Proposition 3.7(i), it is natural, then, to let %; denote the ‘dual covariant
system’ of %,, where, if 4 is a right basis for M/N, we let A=1"121. This leads
naturally to the followmg definition.

DEFINITION 19

If 9=(,N,6, Yo, Y1) is a covariant system, the dual of ¢ is the covariant system
G =(I,N x%,0,,,V,) defined by

Bifm (&) = o~ POEWI", Cel
i =1122*, where 4, = m,(A?) (cf. Lemma 10)
and 1ﬁj,, =0 1)Y;. 0

7,

i



Pairs of 11, factors 175

It is an immediate consequence of the duality theorem stated above that
(N x %) x 4 =~ Mat,- i(NY); this statement is more similar, in form, to Takesaki’s duality
theorem.

In view of the known (and fairly easily established) fact (R,R%) =(R x G, R) for
outer actions of finite groups on the hyperfinite I, factor R, we conclude this minor
digression into duality theory with an identification of the covariant system associated
with (N, N9), at least in the case of a specific model of an outer G-action on the
hyperfinite 11, factor.

Example 20. Let G be any finite group, and let Q = G%* be equipped with the usual
Borel structure and Haar measure. Then Q admits a natural measure preserving G
action thus: if s€G, o= (0g, &;,...)€Q, then s o = (s, sey,...). Let R denote the ‘tail
equivalence relation’: (e, 8)eR iff a; = B, for all but finitely many j. Let N denote the
von Neumann algebra of bounded left multiplication operators on L*(R) (the measure
on R coming from Haar measure on Q and counting measure on equivalence classes).
Then N is the hyperfinite IT, factor; if xe N, we write x(«, f) for (x¢)(a, f) where ¢ is
the indicator function of the diagonal. It is well-known and easily established that
the equation ({,x) x (o, f) = x(s~ -0, s~ 1+ B) defines an outer action of G on N; thus xe N¢
iff x(e, B) = x(s ™ *-a, s 71+ B) for almost every (e, B), for each s in G.

Let us denote by G a set consisting of exactly one member from each equivalence
class of irreducible unitary representations of G. If neG, write #, for the Hilbert
space on which = represents G, and let d, = dim . Further, fix an orthonormal
basis {¢;:1 <i<d,} for #,. Now, dcﬁneI—{(n, i,j):meG, 1<i,j<d,}, and for each
(m,1,j)el, define an element Awijy of N by

im0 B) = 8 Cnlorg e, &> -

In order to verify that 1 = (4, j))eMat; . (N) is a right basis for N/NY, note first
that the conditional expectation of N onto N¢ is implemented by the projection e,
defined on I(R) by (eon)(a, f) = 1/|G| Tsen(s ™ -, s~ * B); so, if (n,i,j)el and xeN,
we have

(A& i 5€oAmipX) (@ B) =

it follows that

( ) lﬁ,i.j»eol(n.i.j)x)(d, B)

(m.i,j)el

|G| e Cl0o) s € Z {mlag '$)Ei, & x(s™ a5 B);

B Y d <‘ﬂ(5)€n (a0 Cr0)E 5 612

(m,i.J)
= x(s“-a,s"-ﬁ)zdn<n(s)<ff,é.->
G| seG i

! ~l.y g1
“Ta&* x(s /3)2 dyt(8) = (2, ),

where we have written y, for the character of m, used the fact that >'d y, is the

character y, associated with the regular representation, and the fact that

()= |G}, if s =identity ofG
7710, otherwise

- 9[-~
QM
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Hence 2 = ({4 ) is a right basis for N/NC. A fairly straightforward calculation
(which makes use of the orthogonality relations for the matrix entries of the irreducible
representations) shows that the constituents of the covariant system %, are given
as follows:

(Bg;f‘i{)j')(x))(a: ﬁ) 611:7: i’ <7[ aO IBO é} :i >x o, ﬁ XENG,
1, if = is the trivial representation,
w(nu) =

)0, otherwise
and

(l‘b("l 1111)(112 lz.lz) !ﬁ)

o (AP L
AT Pratag rep® Prry@nydny @7)g 116, 05,8, ©8),)

where we have used the notation (@, 0, ) =1/|G| Yc0.(5)@4(s) for functions on G
and Qe (s)=<{n(s)é,n). (Note, in particular, that the matrix ¥, carries the
Clebsch-Gordon data.)

More generally, if H is a subgroup of G (where G is still assumed finite), and if N
is as above, a right basis for N¥/N® may be constructed as follows: let G be a set
consisting of one irreducible (unitary) representation n of G from each unitary
equivalence class with the property that n/H contains the trivial representation of H,
thus if J#, is the representation space of =, then V, = {{e A’ :n(H)¢ = ¢} #0. For
each 7 in Gy, fix orthonormal bases {¢;:1<j<d,} and {;:1<i<d¥} for #, and
V, respectively. Finally, let

I={(mij)neC¥ 1<i<d!, 1<j<d,),
and define A ; ;eN* by

i1 (05 B) = 8o /e Cnleg s, €5
It may then be verified, using the fact that

0, if s¢H
1, ifseH,

d.
ZH G H]<n( S 1y = {

1<I<LI

that A=((Ay;)) is a right basis for N¥/N¢. The associated covanant system may
be easily computed. |

Finally, we would like to make the following remarks:

(1) If (M, N)e% and if A is a right basis for M/N, let A", 8* be defined as in §3. Let

= {€eMatpm, (N):¢ = E6™(1)}. Since A is a right basis for M, _, it follows that
there is a bijection between M,_, and %,; we think of M, _, as m,(%,) where %, is
the Hilbert algebra defined in the way #(=%,) was defined in this section. Let M,
denote the I1, factor obtained as the inverse limit of thetower Ne M c M, c M, <
The preceding observations lead to an interpretation of the standard form of M, as
‘the space of bounded N-valued martingales defined on the space of paths in I, as
follows: one defines ‘the space of square-integrable martingales’

-

»

S s ERIETI <
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‘#ao = {(én)nm= 1 :‘anMat[" X (LZ(N))5 én = 6"6(")(1),
51: = €n+ 1KI/'TV” and Supn ” én !ll < OO}

where the i, are defined as in Proposition 9; one next defines

U, ={(EN-€H o:E €M, foralln }
and sup [|m,(&) | <o)

n

Then # ,, admits a %, action as follows: if £e%,, ne#,,, we have

(& my = Lim (m, (Wi Wz 0

if we denote the map #+—¢&+y by m,(&), it can finally be shown that M =n(U,)
(2) Tt should be noted that the definition of a covariant system clearly makes sense
when N is any finite von Neumann algebra, and that a large proportion of the results
continue to hold there. In fact the author can prove the following result: there exists
a covariant system ¢ =(I,N,0,\,,¥,) with N a finite-dimensional von Neumann
algebra if and only if there exists a rectangular matrix A with non-negative integral
entries such that 7 is the Perron-Frobenius eigenvalue of AA" It is the author’s belief
that it should be possible to prove the ‘if’ part of the above assertion, with
‘finite-dimensional von Neumann algebra’ replaced by ‘the hyperfinite T, factor’, by
using the model for AF-algebras discussed in [7] to explicitly write down the outer
covariant system which does the job.
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