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In this note,we shalltry to present an elem en-
tary proof of a couple of closely related results
w hich have both proved quite useful, and also
indicate possible generalisations. The results we
have in m ind are the follow ing facts:

(a) A com plex n £ n m atrix A has trace 0 ifand
only ifit is expressible in the form A = PQ ¡ QP
for som e P;Q.

(b)The num ericalrange ofa bounded linearop-
erator T on a com plex H ilbert space H ,w hich is
de¯ned by

W (T)= fhTx;xi:x 2 H ;jjxjj= 1g;

is a convex set 1.

W e shall attem pt to m ake the treatm ent easy-
paced and self-contained. (In particular,allthe
term s in f̀acts (a) and (b)' above w ill be de-
scribed in detail.) So we shall begin w ith an
introductory section pertaining to m atrices and
inner product spaces. This introductory section
m ay be safely skipped by those readersw ho m ay
be already acquainted w ith these topics;it is in-
tended for those readers w ho have been denied
the pleasure ofthese acquaintances.

M atrices and Inner-product Spaces

An m £ n m atrix isa rectangulararray ofnumbersof
theform

A =

0

B
B
B
@

a11 a12 ¢¢¢ a1n
a21 a22 ¢¢¢ a2n
...

...
...

...
am 1 am 2 ¢¢¢ am n

1

C
C
C
A
: (1)
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1  This result is known – see [1] –

as the Toeplitz–Hausdorff theo-

rem; in the statement of the theo-

rem, we use  standard set-theo-

retical notation, whereby x ∈ S

means that x  is an  element of

the set S.
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W e shallsom etim essim ply write A = ((aij))asshort-
hand fortheaboveequation and refertoaij astheentry
in the i-th row and j-th colum n ofthe m atrix A.The
m atrix A is said to be a com plex m £ n m atrix if(as
in (1))A isa m atrix with m rowsand n colum nsallof
whoseentriesaij arecom plex num bers.In symbols,we
shallexpressthelastsentenceas

A 2 M m £ n(C), aij 2 C forall1 · i;j· n:

(Clearly,wem ay sim ilarly talk aboutthesetsM m £ n(R)
and M m £ n(Z)ofm £ n realorintegralm atrices,respecti-
vely;2 butweshallrestrictourselveshenceforth to com -
plex m atrices.)

The collection M m £ n(C) has a naturalstructure ofa
com plexvectorspaceinthesensethatifA = ((aij));B =
((bij))2 M m £ n(C)and ¸ 2 C,wem ay dē nethelinear
com bination ¸A + B 2 M m £ n(C)to bethem atrix with
(i;j)-th entry given by ¸aij + bij. (The z̀ero'ofthis
vectorspaceisthem £ n m atrix allofwhoseentriesare
0;this z̀ero m atrix'willbedenoted sim ply by 0.)

Given two m atrices whose s̀izes are suitably com pati-
ble',they m ay be multiplied. The productAB oftwo
m atrices A and B isdē ned only ifthere are integers
m ;n;p such thatA = ((aik)) 2 M m £ n,B = ((bkj)) 2
M n£ p;in thatcaseAB 2 M m £ p isdē ned asthem atrix
((cij))given by

cij =
nX

k= 1

aikbkj: (2)

Unlikethecaseofusualnum bers,m atrix-m ultiplication
isnot c̀om m utative'.Forinstance,ifweset

A =

µ
0 ¡1
1 0

¶

;B =

µ
1 0
0 0

¶

; (3)

then itm ay beseen thatAB 6= B A.

2 More generally, for any ring R,

we may talk of the set Mm × n (R)

of all m × n matrices with en-

tries coming  from R. This is

also a ring with respect to ad-

dit ion and mult ipl icat ion as

defined above, provided m=n.



16 RESONANCE  June   2002

GENERAL  ARTICLE

Thewaytothinkaboutm atricesandunderstandm atrix-
multiplication isgeom etrically. W hen viewed properly,
thereason forthevalidityoftheexam pleoftheprevious
paragraph isthis:ifTA denotesthe operation of c̀oun-
terclockwiserotation oftheplaneby 90o',and ifTB de-
notes p̀rojectionontothex-axis',thenTA ±TB ,theresult
ofdoingTB ¯rstand then TA,isnotthesam easTB ±TA ,
theresultofdoingTA ¯rstand then TB .(Forinstance,if
x = (1;0),then TB (x)= x;TA(x)= TA ±TB (x)= (0;1)
whileTB ±TA (x)= (0;0).)

Letusseehow this àlgebra-geom etry'nexusgoes.The
correspondence

z= (z1;z2;¢¢¢;zn)$

0

B
B
B
@

z1
z2
...
zn

1

C
C
C
A
= ẑ (4)

setsupanidentī cationbetweenCn andM n£ 1(C),which
is an ìsom orphism ofcom plex vector spaces'{ in the
sensethat

\̧z+ z0= ¸ẑ+ ẑ0

Now,ifA 2 M m £ n(C),considerthem appingTA :Cn !
Cm which isdē ned by therequirem entthatifz 2 Cn,
then

\TA(z)= A ẑ (5)

whereA ẑdenotesthem atrixproductofthem £n m atrix
A and then£ 1m atrix ẑ.Itisthen nothard toseethat
TA is a linear transform ation from Cn to Cm : i.e.,TA
satis̄ esthealgebraicrequirem ent3 that

TA (̧ x + y)= ¸TA (x)+ TA(y)forallx;y2 Cn:

Theim portanceofm atricesstem sfrom thefactthatthe
conversestatem entistrue;i.e.,ifT isa lineartransfor-
m ation from Cn to Cm ,then there is a unique m atrix

3  This algebraic requirement is

equivalent, under mild addi-

tional conditions, to the geo-

metric  requirement that the

mapping preserves ‘collinear-

ity’: i.e., if x,y,z  are three points

in Cn which lie on a straight

line, then the points Tx, Ty, Tz

also lie on a straight line.
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A 2 M m £ n(C)such thatT = TA. To see this,consider

the collection fe
(n)
1 ;e

(n)
2 ;¢¢¢;e

(n)
n g ofvectors in Cn de-

¯ned by the requirem ent thate
(n)
j has j-th coordinate

equalto 1and allothercoordinateszero.Thecollection
fe(n)1 ;e(n)2 ;¢¢¢;e(n)n g isusually referred toasthestandard
basisforCn:notethat

z =
nX

i= 1

¸ie
(n)
i , z= (̧ 1;̧ 2;¢¢¢;̧ n):

Since fe
(m )
i :1 · i· m g isthe standard basis,we see

that the linear transform ation T uniquely determ ines
numbersaij 2 C such that

Te
(n)
j =

mX

i= 1

aije
(m )
i forall1· j· n: (6)

Ifwe put A = ((aij)),then the dē nition ofTA shows
thatalso

TA e
(n)
j =

mX

i= 1

aije
(m )
i forall1· j· n;

and hence,forany z= (̧ 1;̧ 2;¢¢¢;̧ n)2 Cn,wededuce
from linearity that

Tz = T(
nX

j= 1

¸je
(n)
j )=

nX

j= 1

¸j(Te
(n)
j )=

nX

j= 1

¸j

mX

i= 1

aije
(m )
i

=
nX

j= 1

¸j(TA e
(n)
j )= TA (

nX

j= 1

¸je
(n)
j )= TA z:

Thus,wedo indeed havea bijectivecorrespondencebe-
tween M m £ n(C)and the collection L(Cn;Cm )oflinear
transform ationsfrom Cn to Cm . Note thatthe m atrix
correspondingtothelineartransform ationT isobtained
by taking thej-th colum n asthe(m atrix ofcoe± cients
ofthe) im age under T ofthe j-th standard basis vec-
tor. Thus,the transform ation ofC2 corresponding to
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c̀ounter-clockwise rotation by 90o'is seen to m ap e
(2)
1

to e(2)2 ,and e(2)2 to ¡ e(2)1 ,and the associated m atrix is
them atrix A of(3).(Thereaderisurged to check sim -
ilarly thatthe m atrix B of(3)doesindeed correspond
to p̀erpendicularprojection onto thex-axis'.)

Finally,ifA = ((aik)) 2 M m £ n(C) and B = ((bkj)) 2
M n£ p(C),then we have TA :Cn ! Cm and TB :Cp !
Cn,and consequently c̀om position'yieldsthem ap TA ±
TB :Cp ! Cm . A m om ent'sre°ection on theprescrip-
tion (contained in the second sentence ofthe previous
paragraph) for obtaining the m atrix corresponding to
thecom positem ap TA ±TB showsthefollowing:m ulti-
plication ofm atrices is dē ned the way it is,precisely
becausewehave:

TA B = TA ±TB :

(This justī es our rem arks in the paragraph following
(3).)

In addition to being a com plex vectorspace,the space
Cn hasanotherstructure,nam elythatgivenbyits ìnner
product'.Theinnerproductoftwo vectorsin Cn isthe
com plex num berdē ned by

h(»1;¢¢¢;»n);(́ 1;¢¢¢;́ n)i=
nX

i= 1

»í i: (7)

The rationale for consideration ofthis ìnner product'
stem sfrom theobservation { which relieson basicfacts
from trigonom etry { thatifx = (»1;»2);y = (́ 1;́ 2)2
R2, and if one writes O;X and Y for the points in
theplanewith Cartesian co-ordinates(0;0);(»1;»2)and
(́ 1;́ 2)respectively,then onehastheidentity

hx;yi= jOX jjOY jcos(angleX OY):

The pointisthatthe innerproductallowsusto àlge-
braically'describedistancesand angles.

The inner product
allows us to

‘algebraically’
describe distances

and angles.
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Ifx 2 Cn,itiscustom ary to dē ne

jjxjj= (hx;xi)
1
2 (8)

and to referto jjxjjasthenorm ofx. (In thenotation
ofthepreviousexam ple,wehavejjxjj= jOX j.)

One¯ndsm oregenerally (see[1],forinstance)thatthe
following relationshold forallx;y 2 Cn and ¸ 2 C:

² jjxjj¸ 0,and jjxjj= 0, x = 0

² jj̧ xjj= j̧ jjjxjj

² (Cauchy{Schwarzinequality)

jhx;yij· jjxjjjjyjj

² (triangleinequality)jjx+ yjj· jjxjj+ jjyjj

M oreabstractly,onehasthefollowing dē nition:

DEFINITION 1.A com plex inner productspace is
a com plex vector space,say V,which is equipped with
an ìnner product'; i.e.,for any two vectors x;y 2 V,
there is assigned a com plex num ber { denoted by hx;yi
and called the inner productofx and y;and thisinner
productisrequired to satisfy thefollowingrequirem ents,
forallx;y;x1;x2;y1;y2 2 V and ¸1;̧ 2;¹1;¹2 2 C:

(a)(sesquilinearity)h
P 2

i= 1 ¸ixi;
P 2

j= 1 ¹jyji=P 2
i;j= 1 ¸i¹jhxi;yji

(b)(Herm itian sym m etry)hx;yi= hy;xi

(c)(Positive dē niteness)hx;yi¸ 0,and hx;xi= 0,
x = 0.

The statem ent C̀n is the prototypical n-dim ensional
com plexinnerproductspace'isacrisper,albeitlesspre-
cise version ofthe following fact(which m ay be found
in basictextssuch as[1],forinstance):
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PROPOSITION 2.IfV1 and V2 are n-dim ensionalvec-
tor spaces equipped with an inner product denoted by
h¢;¢iV1 and h¢;¢iV2,then thereexistsa mappingU :V1 !
V2 satisfying:

(a)U isalinearm ap(i.e.,U (̧ x+y)= ¸Ux+Uyforall
x;y 2 V1);and

(b)hUx;UyiV2 = hx;yiV1 forallx;y 2 V1.

M oreover,a such a m appingU isnecessarily a 1-1 m ap
ofV1 onto V2,and the inverse m apping U ¡ 1 is neces-
sarily also an innerproductpreserving linear m apping.
A m appingsuch asU aboveiscalled a unitary operator
from V1 to V2.

In particular,wem ay apply theaboveproposition with
V1 = Cn and any n-dim ensionalinner product space
V = V2. The following lem m a and dē nition are fun-
dam ental. (W e om it the proofwhich is not di± cult
and m ay be found in [1],for instance. The reader is
urged to try and write down the proofofthe im plica-
tions(i), (ii).)

LEM M A 3. LetV be an n-dim ensionalinner product
space.Thefollowingconditionson a setfv1;v2;¢¢¢;vng
ofvectorsin V are equivalent:

(i)thereexistsa unitaryoperatorU :Cn ! V such that

vi= U e(n)i foralli.

(ii)hvi;vji= ±ij =

½
1 ifi= j
0 ifi6= j

.

Thesetfv1;v2;¢¢¢;vng issaid to bean orthonorm alba-
sisforV ifitsatis̄ esthe above conditions.

IfV isasabove,and iffv1;v2;¢¢¢;vng isany orthonor-
m albasisforV,then itiseasy to seethat

(i)v=
P n

i= 1hv;viivi forallv 2 V ;and

(ii)hv;wi=
P n

i= 1hv;viihvi;wiforallv;w 2 V.
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4 Here and in the sequel, we

shall write Mn instead of

Mn   × n.

Now ifT :V ! V isa lineartransform ation on V,the
action ofT m ay be encoded,with respectto the basis
fvig,by them atrix A 2 M n£ n(C)dē ned by

aij = hTvj;vii:

W e shallcallA the m atrix representing T in the basis
fv1;¢¢¢;vng.

Itisnaturaltocallann£n m atrixunitaryifitrepresents
a unitary operator U :V ! V in som e orthonorm al
basis;and itisnottoodi± culttoshow thata m atrix is
unitary ifand only ifitscolum nsform an orthonorm al
basisforC n.

M oreorlessbydē nition,weseethatifA;B 2 M n£ n(C),
thefollowing conditionsareequivalent:

(a)thereexistsa lineartransform ation T :V ! V such
thatA and B representT with repectto two orthonor-
m albases;

(b) there exists a unitary m atrix U such that B =
UAU ¡ 1.

In (b)above,theU ¡ 1 denotestheuniquem atrix which
servesasthem ultiplicativeinverseofthem atrixU.(Re-
callthatthe m ultiplicativeidentity isgiven by them a-
trix In whose(ij)-th entryis±ij (dē ned in Lem m a3(ii)
above);and thatthem atrix representing an operatoris
invertibleifand only ifthatoperatorisinvertible.)

Finally recallthatthe trace ofa m atrix A 2 M n(C)is
dē ned by 4

TrnA = TrA =
nX

i= 1

aii

and recallthefollowing basicproperty ofthetrace:

PROPOSITION 4.Suppose A 2 M m £ n(C);
B 2 M n£ m (C).Then,

Trm AB = TrnB A:
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In particular,ifC;S 2 M n(C) and ifS is invertible,
then

TrSCS¡ 1 = TrC;

Proof:Forthe¯rstidentity,notethat

Trm AB =
mX

i= 1

Ã
nX

k= 1

aikbki

!

=
nX

k= 1

Ã
mX

i= 1

bkiaik

!

= TrnB A:

Thesecond identity followsfrom the¯rst,since

TrSCS¡ 1 = TrC S¡ 1S = TrC In = TrC:

2

O n C om m utators, N um erical R anges and Zero
D iagonals

W e wish to discuss elem entary proofs ofthe following
threewell-known results:

(A) A square com plex m atrix A has trace zero ifand
only ifit is a com m utator { i.e.,A = B C ¡ CB,for
som eB ;C.

(B)IfT isa linearoperatoron an innerproductspace
V,then its num ericalrange W (T) = fhTx;xi :x 2
V;jjxjj= 1g isa convex set.

(C) A m atrix A 2 M n(C) has trace zero ifand only
ifthere existsa unitary m atrix U 2 M n(C) such that
UAU ¡ 1 has allentries on its m̀ ain diagonal'equalto
zero.

Asforthearrangem entoftheproof,weshallshow that
(C)followsfrom (B),which in turn isa consequenceof
the case n = 2 of(C).So asto be logically consistent,
we shall¯rst prove (C) when n = 2,then derive (B),
then deduce (C)forgeneraln,and ¯nally deduce (A)
from (C).Further,since the ìf'partsofboth (A)and
(C)areim m ediate(given thetruth ofProposition4),we
shallonly beconcerned with the ònly if'partsofthese
statem ents.
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Our proofs willnot be totally self-contained; we will
need one s̀tandard fact'from linearalgebra. Thus,in
the proofofLem m a 5 below,we shallneed the fact{
atleastin two-dim ensions{ thatevery com plex m atrix
hasan ùppertriangularform '.

In the following proofs,we shallinterchangeably think
aboutelem entsofM n(C)aslinearoperatorson Cn (or
equivalently,onsom en-dim ensionalcom plexinnerprod-
uctspacewith a distinguished orthonorm albasis).

LEM M A 5. IfA 2 M 2(C)and Tr A = 0,then there
existsa unitary m atrix U 2 M 2(C)such that

U AU ¡ 1 =

µ
0 ¤
¤ 0

¶

:

Proof: To startwith,we appealto the fact{ see [1],
forinstance{ thatevery com plex squarem atrix hasan
ùpper triangular form 'with respect to a suitable or-
thonorm albasis;in otherwords,there existsa unitary
m atrix U1 2 M 2(C)such that

U1AU
¡ 1
1 =

µ
a b
0 c

¶

: (9)

Note{ by Proposition 4 { that

a+ c= TrU1AU
¡ 1
1 = TrA = 0;

and so c= ¡ a.In casea= 0,wem ay takeU = U1 and
theproofwillbecom plete.

So suppose a 6= 0.Thishypothesisguaranteesthatthe
m atrix A hasthedistinct èigenvalues'a and ¡a;i.e.,we
can ¯nd vectorsx;yofnorm 1such thatU1AU

¡ 1
1 x = ax

and U1AU
¡ 1
1 y = ¡ ay.In fact,x = e(2)1 and y = pe(2)1 +

qe(2)2 forsuitablep and qwith q6= 0(sincea 6= 0).Thus
x and y are lineary independent. Now,if®;̄ 2 C,we
have:
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hU1AU
¡ 1
1 (®x + ¯y);(®x + ¯y)i

= ah(®x¡ ¯y);(®x+ ¯y)i
= a(j®j2 ¡ j̄ j2 + 2iIm ® ¹̄hx;yi):

Now pick®;̄ tosatisfy j®j= j̄ j= 1and Im ® ¹̄hx;yi=
0 { which isclearly possible. Independence ofx and y
andthefactthat®;̄ 6= 0guaranteethatw = ®x+ ¯y6=
0.Then,hU1AU

¡ 1
1 w;wi= 0.

Let u1 =
w

jjw jj,and let u2 be a unit vector orthogonal

to u1. LetU2 be the unitary operatoron C2 such that
U ¡ 1
2 e(2)j = uj for j = 1;2. It isthen seen thatifU =

U2U1 and B = UAU ¡ 1,then

hB e(2)1 ;e(2)1 i = hU2(U1AU
¡ 1
1 )U ¡ 1

2 e(2)1 ;e(2)1 i

= h(U1AU
¡ 1
1 )U ¡ 1

2 e
(2)
1 ;U ¡ 1

2 e
(2)
1 i

= h(U1AU
¡ 1
1 )u1;u1i

= 0:

SinceTrB = TrA = 0,weconcludethatthe(2,2)-entry
ofB mustalso bezero;in otherwords,thisU doesthe
trick forus.

Proofof(B ):Itsu± cesto provetheresultin thespe-
cialcase when V istwo-dim ensional.(Reason:Indeed,
ifx and yareunitvectorsin V,and ifV0 isthesubspace
spanned by x and y,letT0 denote the operatoron V0
induced by them atrix

µ
hTu1;u1i hTu2;u1i
hTu1;u2i hTu2;u2i

¶

;

wherefu1;u2g isan orthonom albasisforV0.Thepoint
isthatT0 iswhatiscalled a c̀om pression'ofT and we
have

hT0x0;y0i= hTx0;y0iwheneverx0;y0 2 V0:

In particular,ifwe knew thatW (T0)wasconvex,then
thelinejoining hTx;xiand hTy;yiwould becontained
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in the convex setW (T0) which in turn iscontained in
W (T)(by thedisplayed inclusion above).)

Thuswem ayassum eV = C2.Also,sinceW (T¡ ¸I2)=
W (T)¡ ¸ {asisreadilychecked {wem ayassum e,with-
outlossofgenerality thatTrT = 0.Then,by Lem m a5,
theoperatorT isrepresented,with respecttoasuitable
orthonorm albasis,by them atrix

µ
0 a
b 0

¶

:

An easy com putation then showsthat

W (T)= fay¹x+ bx¹y:x;y 2 C;jxj2 + jyj2 = 1g:

Sincefy¹x :x;y 2 C;jxj2+ jyj2 = 1g= fz 2 C :jzj· 1
2g,

wethus¯nd that

W (T)= faz+ b¹z:z2 C;jzj·
1

2
g

and wem ay deducetheconvexity ofW (T)from thatof
thediscfz2 C :jzj· 1

2g. 2

Proof of (C ):W e prove this by induction,the case
n = 2 being covered by Lem m a 5.

Soassum etheresultforn¡ 1,and supposeA 2 M n(C).
Then notice,by thenow established (B),that

0=
1

n

nX

i= 1

hAe
(n)
i ;e

(n)
i i2 W (A):

Consequently,there existsa unitvectoru1 in Cn such
thathAu1;u1i= 0.Chooseu2;¢¢¢:un besothatfu1;¢¢¢;
ungisan orthonorm albasisforCn,and letU betheuni-

tary operatoron Cn such thatU ¡ 1
1 e(n)i = ui for1· i·

n.Then itisnothard toseethatifA1 = U1AU
¡ 1
1 ,then

² hA1e
(n)
1 ;e

(n)
1 i= 0;and
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² ifB denotes the subm atrix ofA1 determ ined by
deleting its¯rstrow and ¯rstcolum n,then,
Trn¡ 1 B = Trn A1 = Trn A = 0;and henceby our
induction hypothesis,wecan choosean orthonor-
m albasis fv2;¢¢¢;vng for the subspace spanned

by fe
(n)
2 ;¢¢¢;e

(n)
n g such that hB vj;vji = 0 for all

2· j· n.

W e then ¯nd that fu01 = u1;u02 = U ¡ 1v2;¢¢¢;u0n =
U ¡ 1vngisanorthonorm albasisforCn suchthathAu0i;u

0
ii

= 0 for1· i· n.Finally,ifweletU bea unitary m a-
trix sothatU ¡ 1e(n)i = u0i foreach i,then U AU

¡ 1 isseen
to satisfy

hUAU ¡ 1e
(n)
i ;e

(n)
i i= 0 foralli:

Proofof(A ):By replacingA by UAU ¡ 1 forasuitable
unitary m atrix U,we m ay,by (C),assum e thataii =
0 for alli. Let b1;b2;¢¢¢;bn be any set of n distinct
com plex numbers,and dē ne

bij = ±ijbj;cij =

½
0 ifi= j
aij

bi¡ bj
ifi6= j

Itisthen seen thatindeed A = B C ¡ CB.

Extensions

Itisnaturaltoask ifcom plexnumbershaveanythingto
dowiththeresultthatwehavecalled (A).Thereference
[2]extendstheresultto m oregeneral¯elds.

Inanotherdirection,onecanseek g̀oodin¯nite-dim ensio-
nalanalogues'of(A);one possible such line ofgener-
alisation is pursued in [3], where it is shown that à
bounded operatoron Hilbertspaceisa com mutator(of
such operators)ifand only ifitisnotacom pactpertur-
bation ofa non-zero scalar'.
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