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UNITARY EQUIVALENCE TO INTEGRAL OPERATORS

V. S. SUNDER

A bounded operator A on L2(X) is called an integral oper-
ator if there exists a measurable function k on X x X such
that, for each / in L2{X),

\ \k(x, y)f(y)\dμ(y) < oo a .e.
J

Af{x)=^k(x,y)f(y)dμ(y)

and

a.e.

(Throughout this paper, (X, μ) will denote a separable, <τ-finite
measure space which is not purely atomic.) An integral oper-
ator is called a Carleman operator if the inducing kernel k
satisfies the stronger requirement:

\ \k(x, y)\2 d μ(y) < oo for almost every l i n l .

In a recent paper ([2]), V. B. Korotkov characterized those opera-
tors that are unitary equivalent to operators A on L\X) such that
both A and A* are Carleman operators. It is natural to consider
the same question with "Carleman" replaced by "integral." This
question is settled by Theorem 2.

An integral operator is absolutely bounded if the representing
kernel k is such that \k\ also induces a bounded integral operator.
Theorem 3 furnishes three-fourths of a characterization of those
operators that are unitarily equivalent to absolutely bounded integral
operators. To be more specific, that theorem yields a necessary con-
dition which is shown to be sufficient under an extra assumption.
It is, however, the author's belief that this extra requirement is met
by every bounded operator on a separable Hubert space. This belief
is formally stated as a conjecture at the end of the paper.

LEMMA 1. Let A be a bounded operator on a separable Hilbert
space £%f. The following conditions on A are equivalent:

( i ) There exists a Hilbert-Schmidt operator K such that
ker (A — K) Π ker (A* — K*)is an infinite-dimensional subspace of S%f\

(ii) There exists an orthonormal sequence {eΛ}~=1 in §ίf such
that | |AeJ|->0 and || A*eΛ||-> 0;

(iii) 0 belongs to the essential spectrum of A*A + AA*.

Proof. The implication (i) => (ii) is proved by picking an ortho-
normal sequence {βj~=1 in ker (A — K) Π ker (A* — K*) and recalling
that K is compact.
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(ii)=*(iii). Pick a subsequence, if necessary, and assume (with-
out loss of generality) that Σ dl-AβJI + ||A*eJ|) < oo. Since

| | (A*A + AA*)en\\ ^ \\A*\\ \\Aen\\ + || A | | \\A*en\\

= \\A\\ (\\Aen\\ + \ \ A * e n \ \ ) ,

it follows that Σ 11 (A* A + AA*)en\\ < «>.
So, if P denotes the projection onto V {β»}ϊ=u the operator

(A*A + AA*)P is compact. Since A*A + AA* is a compact pertur-
bation of (A* A + AA*)(1 - P), and since (A* A + AA*)(1 - P) has an
infinite-dimensional kernel (containing ran P), it is clear that
Oeσe(A*A + AA*).

(iii)=>(i). If 0 6 σe(A*A + AA*), there exists an orthonormal
sequence {φX=, such that 11 (A* A + AA*)9>J | < l/2\ If {^}?=1 is
extended to an orthonormal basis {ψn}n=i of ^g^ and if E denotes the
projection onto V {ψ^=u it follows that

< oo .

Hence, both AE and A*^ are Hilbert-Schmidt operators. Since the
collection of Hilbert-Schmidt operators on £$f is a self-adjoint two-
sided ideal of &{3ίf\ the operator K = AE + £A(1 - E) is also a
Hilbert-Schmidt operator.

Observe that

-K = A-AE- EA(1 - E)

and conclude that ker (A — K) Π ker (A* — £"*) contains the infinite-
dimensional subspace ran E.

In view of the equivalence of (ii) and (iii), Korotkov's theorem
on bi-Carleman operators can be stated thus:

"An operator A on a separable Hubert space is unitarily equiva-
lent to an operator T on L\X) such that both T and T* are Carleman
operators if and only if Oeσe(A*A + AA*)"

The next result is similar.

THEOREM 2. An operator A on a separable Hilbert space is uni-
tarily equivalent to an operator T on L\X) such that both T and
T* are integral operators if and only if 0 eσe(A*A + AA*).
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Proof. Since the "if" half of the theorem follows immediately
from Korotov's result, it suffices to prove that if A and A* are
integral operators on L\X)y then Oeσe(A*A + AA*).

In view of some measure-theoretic isomorphism theorems, there
is no loss of generality in assuming that μ(X) < °°. It is known
(cf. [4]) that in this case, any integral operator, when viewed as an
operator from L\X) into L\X), is compact, that the collection of
operators on L\X) which are U-^L1 compact (to use an ad-hoc symbol)
is a right-ideal of &{L\X)), and that 0 belongs to the right essen-
tial spectrum of every such operator. The assumption that A and
A* are integral operators on L\X) implies, via the last statement,
that A*A .+ AA* is U -> L1 compact and that 0 e σre(A*A + AA*) =
σe(A*A

Observe that if the underlying measure space is Z+(= {1, 2, 3, }),
equipped with counting measure, an absolutely bounded integral oper-
ator on L\Z+) ( = /2) is just an operator on /2 that is induced by a
matrix (ai3) such that {\aiό\) also induces a bounded operator on /2.
Matrices with this property will be called absolutely bounded.

THEOREM 3. If an operator A on a separable Hilbert space
is unitarily equivalent to an absolutely bounded integral operator on
L\X), then 0 e σe(A*A + AA*). Conversely, ifOe σe{A*A + AA*) and
if A has an absolutely bounded matrix with respect to some ortho-
normal basis of J%% then A is unitarily equivalent to an absolutely
bounded integral operator on L2(X).

Proof. It is well-know (cf. [3] and [5]) that the adjoint of an
absolutely bounded integral operator is also an absolutely bounded
integral operator. So, if A is unitarily equivalent to an absolutely
bounded integral operator on L\X), it follows from Theorem 2 that
Oeσe(A*A + AA*).

Conversely, suppose that A has an absolutely bounded matrix
with respect to some basis of Sff, and that 0 e σe(A*A + AA*). Lemma
1 guarantees the existence of a Hilbert-Schmidt operator K such that
ker (A — K) Π ker (A* — K*) is infinite-dimensional. Since K has an
absolutely bounded matrix with respect to every basis of Sίf, and
since every Hilbert-Schmidt operator on L\X) is an absolutely bounded
integral operator, we may (and do) assume that ker A n ker A* is
infinite-dimensional.

Since X is not purely atomic, there exists a subset Xo of positive
measure such that Xo contains no atoms. The non-atomicity of Xo

implies the existence of a partition Xo = X1\J X2 into disjoint sets of
positive measure. Since Xγ and X2 contain no atoms, both L2(Xλ) and
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L\X2) are infinite-dimensional. Since ker A Π ker A* is infinite- dimen-
sional, the operator A is unitarily equivalent to an operator on L2(X)
which has the form A, 0 0 0 0 in the decomposition L\X) = L\Xλ) 0
L\X2)®L\X- Xo). By incorporating a "half3 of the first zero-
summand into Alf we may assume that Ax has the form B 0 0 with
respect to some decomposition of L\X^) into infinite-dimensional sub-
spaces. Since A1 = B 0 0 is clearly unitarily equivalent to A10 0 0 0,
it follows that Aγ has an absolutely bounded matrix with respect to
a suitable orthonormal basis of L\X^). So, it suffices to show that
Ax 0 0 is unitarily equivalent to an absolutely bounded integral
operator on L\X0).

Let {φn}n=i be an orthonormal basis of L\Xλ) with respect to
which Ax has an absolutely bounded matrix, say (aiS). (Thus, aiό =
(Aφj9 φt).) Let {ψn}n=i be an orthonormal basis for L\X2). Since XQ

is non-atmic, there exists a partition {2£Λ}~=i of Xo into pairwise
disjoint subsets of positive measure. Let fn — μ(En)~1/2XEn. The
sequence {fn}n=i is clearly orthonormal. Let {gn}™=1 be an orthonormal
basis for L\X0) Q V {ΛKU.

Let ?7 be the unitary operator on L\X0) such that Ufn = <£>„ and
C/bn = K̂ for n = 1, 2, . Then, if T = i7*(A0O)ί7, it is clear
that V {(7*}SU £ ker T Π ker Γ*. A moment's thought and some rou-
tine verification shows that T is the integral operator on L\X0)
induced by the kernel

Straightforward computations show that the kernel & is absolutely
bounded precisely when the matrix (amn) is absolutely bounded. Since
the matrix (α w j was chosen to be absolutely bounded, it follows that
T is an absolutely bounded integral operater on L\X), and the proof
is complete.

COROLLARY 4. Let N be a normal operator whose spectrum is
contained in a rectifiable curve in the complex plane. Then N is
unitarily equivalent to an absolutely bounded integral operator on
L\X) if and only if 0eσe(A).

Proof. I. D. Berg has shown ([2]) that every such normal opera-
tor is the sum of a diagonalizable operator and a Hilbert-Schmidt
operator. This means that N has an absolutely bounded matrix with
respect to at least one basis—the one which consists of eigenvector
of the corresponding diagonalizable operator will do. Since 0 e σe(N)
if and only if 0 eσe(N*N + NN*), the assertion follows from
Theorem 3.
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Conjecture. Every operator on a separable Hubert space has an
absolutely bounded matrix with respect to some orthonormal basis of
the underlying Hubert space.
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