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T. IxTtrOoDUCTION

Ir is pointed out in Part T of this contribution and is now generally agreed
that the influence of genetics on plant breeding has not fulfilled the early
expectations. While there is no doubt that the development of the subject
has affected the general outlook of the breeder, the detailed guidance to
which he bas been looking forward is still lacking. For example, the
breeder is now conscious that the selective capacity of his material
depends upon the amount of heritable variability present, but it is still
necessary to understand in what manner this variability funetions, in
order to e able to estimate it and nse it explicitly in breeding. Similarly,
an analysis of the genetic situation in the character under breeding is of
vital importance, for it is on such points as the number and magnitude of
the factors and their dominance and epistatic relations that the maximum
Improvement attainable, the rate of improvement by selection and also
the most efiicient procedure .of selection depend. In studying these
aspects of the genctical situation and the effect of selection, the influence
of the environment cannot be neglected, since, as it is well established,
* Read ab the Seventh International Genetic Congress, Edinburgh, August 1939,
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all quantitative characters are susceptible to the environment and the
variability from this source persists in a considerable meagure in spite of
a1l the refinement in the experimental technique. A study of the variance
in F, progenies of crosses befween three strains of cotton by Hubchinson
¢l al. {1938) can be guoted as an example on this poins.

Tisher et al. (1932) have pointed oub the diffienlties in the study of
the genetics of quantitative characters and have given an outline of a
statistical approach to the problem. They have shown that it is 1m-
possible to apply the usual method of genetic analysis here, and, therefore,
new and esgentially statistical methods must he developed. Not much
progress, however, in handling actual experimental data on these lines
appears to have been made so far. One of the few examplesis “ Student’s”
(1934) estimation of the minimum number of genes defernining oil con-
tent in Winter's selection experiment. Recently, Charles & Smith (1939}
have given statistical criteria for distingnishing beftween the arithmetic
and geometric type of gene achlon in quantitative inheritance.

The results of a statistical study of the inheritance of staple-length in
cotbon having a bearing on some of the points mentioned above are re-
ported here. Staple-length is the mean length of the cotton fibres and 1s
the principal character governing spinning guality. The results are by no
means complete and are chiefly intended to illustrate a possible mode of
attack on the problem of guantitative inheritance. Tn presenting them
the genetical and plant breeding aspects are emphasized and the mathe-
matical details reduced o a minimum. The statistical method usged 38,
however, of a general application and will be published separabely.

I]. THE ANALYSIS OF EXPERIMENTAL DATA
(o) Experimental material

The experimental data used in the present work were obiained from
crosses hetween three strains of Indian cotton (&. erborewm var. meg-
lectum), Bani, Malvi and € 520. The sources of these stralns and their
agricultural behaviour are described elsewhere (Flutchinson ef al. 1938).
All strains were self-fertilized and line-bred at Indore in Central India
for eight generations before the crosses used in the experiments were made
in 1934, F,’s were grown in 1935. Taking four &, plants from each cross,
the resulting F, progenies were grown in 1936 in a randomized progeny
row brial {Hutchinson & Panse, 1937) with five blocks, each plot con-
sisting of a single Tow of ten plants. The experiment suffered from cle-
fective germination and later from a rather severe attack of wilt, and
consequently the number of plants at the fime of harvest was only about
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50 %, of the expected. Ten plants from each F, progeny were selected at
random, and the #, progenies from these wers grown in 1937 in two blocks,
each progeny-plot congisting of ten plants as before. Instead of random-
izing all the 120 progenies together in each block, the twelve families,
four from each cross and each family consisting of ten sister progenies
arising from a common F, progeny, were first randomized and within
each family-plot the sister progenies were randomized. The chief object
of employing this experimental design was to reduce the environmental
contribution to the variances by providing blocks, and further in the F,
trial, by growing the sister progenies in close proximity of one another.
Only self-fertilized seed was used for sowing and seed cotton from selfed
flowers was picked for each plant separately and was generally used for
examination. The staple-length to which the present date refer was
measured on five random sesds per plant. The method of measurement is
described elsewhere (Panse, Appendix IIT to Hutchinson & Ramiah,
1938).
(&) The regression of Fy progenies on Iy plants

The analysis of variance of the F, data is given below for each cross

separately:

Cross
C 520 x Bani {820« Malvi T Malwi ;< Bani

. s — s = " s I
Dueto ... »rE. 5.8, M.5. DT 5.5, M.B.  D.F. 5.8, M3,
Blocks 4 12-844 a-211 4 5210 1-302 4 £-950 1-487
Progenies 3 0-556 185 3 3-213 1071 3 3 201 1-G6"
Plot ervor 1z 20-051 1-671 12 13-719 1143 12 11-943 0-895
Within plots 71 214085 0019 101 330-622 (505 8% 212571 0-526

The first three items were obtained by analysing plot mean values.
The sums of squares for the last item were caleulated from individual
plant values within each plot and pooled over all plots, The corresponding
mean squares were further divided by the harmonic means of plant
numbers in all plots in order to malke them comparable with the mean
squares obtained from plot values. A conrparison between the mean
squares for plot error and “within plots™ gives the variance ratios 1-83,
1-92 and 1-89 for the three crosses respectively. The last two are signi-
ficant on the 5 % level, while the first is slightly lower than the value
required for significapce. This means that plot to plot differences affect
- staple-length in addition to differences between plants in the same plot.
A similar result was obtained with large plots (45 acre each) in feld scale
varietal trials in Central India {Hutchinson & Panse, 1935). In the present
case, however, part of the differences is genetic.
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The effect of plot differences on stgple length is important in relation
to the method of selection of the hest plants for propagation. The value
of the selected plant will partly depend on the plot to which it belongs,
and, therefore, the mean value of the plot must also be talten into account.
This point was sbudied in caloulating the regression of Fy progenies on 7,
plants. The relevant portions of the analyses of variance of the ,
progenies are shown below.

Ciross
— . — e — s,
(5320 x Bani 520 « Malvi Walvi x Bani

a"‘"—"—/\“'—"—\ f‘—‘—'ﬂ'_lggu'\ f—"_”_)\'_-_'"_‘ﬂ

Due to ... D.F. 8.8, .8, DT 2.8, LS. DL S8, B.E.
Progenies 35 98-63 2.818 3 106-54 2-95% 34 5338 1:570

within families

Plot ervor 35 21-96 0623 36 2771 0710 34 1165 0-343

Data of one progeny in the first cross and of two in the third were dis-
carded on aceount of a doubt regarding their correctness. A portion of
the sum of squares between progenies can he acoounted for by the re-
gression of the progeny mean on the value of the F, parent plant. In
caleulating this regression the staple-length of the Fy plant was used as
one independent variate and the mean staple-length of the plot %o which
it helonged as the other, and a partial regression equation was obtained
in terms of these two variates. The numerical values of the partial re-
gression coefficients were as follows,

Pegression

coefficient (520 x Bamni (1 520 » Malvi Malvi % Bani
b, (plant) 05117 04816 01551

B, (plot) —~ 05808 ~0-1622 — 00311

The regression equations can be expressed with a slight modification
in a more suitable form. If , is the plant value, , the mean plot value
and z=x, — &, then @, =z+2%, and,

Byty - boty = by (7o) + botty = by (my— @) + (D + ) 3

The variate in the first term of the latier expression s now the plant
value minus the plot value. The variate in the second term is the plot
value as before, but the coefficient of this term is the sum of the two
partial regression coefficients. Using the method of solving regression
equations given by Tisher (1936, § 29), the standard errors for the re-
gression coefficients in the modified equation are s+/cy for b and
§ 4/ (033 - 200 0o} TOT By by, where s is the standard deviation obtained
from the residual sum of squares between progeuies and ¢y, G and oy
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are the elements of the multiplying matriz, The numerical values of the
new coefficients and their standard errors are given below:

Cross b, 8.8 of by by +be 8.3 of by +by
C 520 x Bani 4-5117 0-1186 - 00661 0-1267
C 520 » Malvi 0-4816 0-1072 03794 {1680
Malvi x Bani 01551 0-1421 0-1239 0-1565

In the firet two crosses the coefficient b, is highly significant. The
coefficient & +&, is posttive and significant in the second cross, while it
has a very low negative value in the first. The fact that this latter
coefficient has no significant negative value in any 6f the three crosses,
while in one of them it is significantly positive, clearly shows that instead
of selecting plants for propagation on the merit of their own values, it is
profitable to select them on the basis of the excess of their individual
values over the mean values of the plots to which they belong. The plots
will not then depress the regression by their negative contribution, while
there is & possibility of & positive contribution to the regression from this
source through genetic sampling, as the sscond cross indieases. In the
third cross the coefficient b, is non-significant and small. One explanation
of this result would be that in this cross the phenotypic values of the ¥,
plants chosen as progenitors were predominantly influenced by environ-
ment and were not, therefore, sufficiently correlated with their genetic
values. Why the environmental effect should be so high in this particular
cross 1s not clear.

{e) Hstvmation of genetic variance

regression of Fy progenies on Fy parents. If % is the value of the parent
plant and y the mean value of the resulting progeny, the regression

The geuetic portion of the F, variance can be estimated from the

by (v—o
coefficient of 4 on = 1s S’](( )} Now z can be considered as made up
of a genetic component ¢ and a non-genetic modification n, i.e. z=¢ +1.

Then the expected value of y is & :

Therefore, the expected value of y (w—F)=F{£ (£ ~&) +& (n—7)}. The
texm F¢ {(n—1)=0, because & and 7 are independent of each other, while
EE (£~ £) can be shown to be equal to & (£—£)% which is the expected
genetic variance of the parent plants.

The expected value of (z—F)%= B {{£ ~ &) + (5 —7)}%, whick is equal to
B (£~ £+ B (—7)% The first term represents the genetio and the second
Sy (& — &)
S (z -z

non-genetic variance of the parent plants. Therefore which is
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an estimate of @{y@;_@ ig alsc an estimate of MEM
L{m—7)3 7 total variance
of the parent plants. When, as in the present case, the parent plants
belong to different plots and the regression equation of the type,
g =0y (plant—plot) -+ (b, + by} plot, considered in the previous section is
used, the value of the parent plant can be assumed to contain a genetic
component, a non-genetic modification due o variation between plants
in the same plot and a second similar modification arising from variation
bebween plots. The expectation of the mean wvalue of the progeny wiil
again be equal to the genetic component of the parent and it can be shown
(see Appendix) that the regression coeficients b, and b; +b, are expressible
In terms of the expected genetic and non-genetic variances of the parents
as follows: '
B genetic variance genetic variance
" total vaziance within plots total variance between plots
Applied to the present data, the numerical value of the regression
coefficient b, represents the fraction of the total variance within Fy plots
which is genetic. These are given below. The cross Malvi x Bani is omitted
on acconnt of the failure of the regression pointed out hefore:

,and by + by =

by

Total veriance Genetic Non-genetic
within plots, variance  variance within
Cross per plant by of I, F, plota
C 320 % Bani 3-015 0-3117 1-543 1472
C 520 = Malvi 3273 (-4816 1-576 1697

Following Fisher {1930, p. 83), the term “genetic’ is used here with a
special significance and refers to the effects of a strictly additive action
of the genes concerned. It is in this sense that the mean value of the
progeny is equal to the genetic value of the parent. The genetic variance
of the parents estimated on this basis is also the result of the additive
action of the genes and is distinguished from ““genotypic” variance which
is the total variance due to the segregation of genes and includes, in
addition to the genefic variance, variance arising from non-additive
interactions of genes such as dominance and epistacy. The presence of
these interactions tends to depress the regression of the progeny mean on
the parental value by causing the genotypic variance of the parents to be
greater than the genetic. X

The non-genetic fraction of the ¥, variance shown above may thus
include the difference between the genotypic and genetic variance in
addition to the environmental variance. The fact that it is as high as half
of the total variance is important, since selection of the desired genelic
values is rendered more and more uncerfain as the non-genelic com-
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ponent of the variance increases in propartion to the genetic, and conse-
quently the rate of progress by selection is lowered.

(d) Effective number of factors

The mean genotypic variance within F, progenies is half of the F,
genotypie variance (Fisher e al. 1932), while the variance of the mean
variance within Fy can be shown 0 be equal to one-quarter of the sum
of squares of the variances due to individus] factors. If, for example, the
variances due to two factors A and B are a and b respectively, the variance
within F, progenies wiil be due to the segregation of the heterozygotes
only, progenies of homozygous F, individuals having no variance. Now,

Fy progenies Frequency Variance within
beterozygous for  of the progenies the progeny
Aand B 3 o+h
A only * @
B only i [
Neither i 0

Mean variance within F, progenies 3 (g -+b)
And the variance of this variance =
@b 4o R = G (akb) + o R = (a4 00),

If the twofactors are linked a different result is obtained ; because now,

Iy progenies Froquency Variance within
heterozygous for  of the progenies the progeny
A and B 3 (P +?) a+b
A only Py : a
B only Ny b
Neither (P40 ¢

where p and ¢ are the fractions of gamefes in coupling and repulsion
respectively. While the mean variance within Fy is § (¢ +5) as with un-

hinked factors, the varance of this variance is
7 (P47 (@46 4+ pga® + pgb® & (p* 4 ¢°) (a+b) + pga+ pgb)?,

whick can be shown equal to,

L@+ () ab.
With Lnkage, therefore, the variance of the F, variance is increased hy
4 quanfiby 4 (p--¢)® ob. Below are given the values of this incresse as a
fraction of ab for various eross-over fractions:

g F{p-aP

0 05
o1 032
-2 018
03 0-0%
-4 0-09.
05 0

Journ, of (enetics x1. ' 19
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With close linkage, i.e. up to 20 % crossing-over, the increase in
variance is appreciable bub is insignificant beyond this poind. With close
linkage, however, the two factors will behave in segregation ag a single
factor and can be effectively counted as one. Therefore, the increase in
variance due to linkage need not be taken into gonsiderafion in esti-
mating the namber of independent factors concerned with a given
character.

As shown above, if the ¥, variance is (¢ +b+...), the mean VATIIance
within Fy progenies is 5 {(a+b-+ ...} = V,,, and the variance of this VALANnce
is k(a2 B2+ )=V (V) Assuming the segregation in F, to be dus to

N e

7 facbors all with equal variance o, thew, V== and V (V)= i

o 1T ne: M,
V2,V (V) == 5,/ 17

where 1 the number of factors, hypothetically with equal variance and
sithout linkage, can be termed the ““gffoctive” number of factors. This
number can thus be calculated if the mean genobypic vaziance within £y
progenies and the variance of she mean variance within Fy progenies i
Lnown. These guantities are shown below for the staple-length data
assuming the genotypic variance fo be the same as genetic.

Vs (=1 genotyple

Cross wariance in £s) V(¥ V2|V (Vy)=n
{520 x Bani D-772 0-363 1-64
{520 x Malvi 0-788 0-224 2-77

Thie caleulation does not mean thab the actual number of factors is
necessarily only two or three in the above crosses. The effective number
of factors » is merely a ratio of the square of the mean genotypic variance
within F, to its variance and 1s, therefore, equivalent to any number of
factors with different magnitudes that satisfy this ratio. Another
condition governing such a series of factors is obviously a given F, geno-
typic variance. Using the C 520 Malvi cross to supply the data for these
conditions, alternative possibilities in respect to the genetic constitution
of the F, which satisfy themn will be considered in the next section. For
simplification of caloulations the genotypic variance in £y will be taken
as 1-5 and an environmental component of egual magnitude. The value of
n will be equated to 3, the nearest whole number to the caloulated ratio.

111. MoDBELS OF GENETIC FACTORS

Tn sebting up hyposhetical systems of factors for staple-length segre-
gation in the C 520 x Malvi cross, $he two extreme cases considered are
(1) three equal factors, i.e. the actual nwmber of factors equal to the
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effective number, and (2) a very large number of unequal factors amount-
ing to an infinite series. Assuming the ¥, distribution symmetrical, this -
can be due eisher to the absence of dominance in the factors conecerned or
due to equal dominance in opposite directions, the two types of domi-
nence balancing eack other. The latter case deserves special notice for,
a8 will be seen later, it really makes possihle the consideration of conse-
quences of a dominance bias in one direction and thus, while keeping the
algebraic calculations much simpler, malkes a separate examination of the
cases with dominance in one direction only, unnecessary in principle. The
infinite series of factors will be represented by a single convergent geo-
wetric series without dominance and by two such egual series with
dominance in opposite directions.

In forming a geometric series of factors with ¥, variance equal to §
and V%[V (Vy}=3, if 1/r is the common ratio between the variances of
individual factors and o the variance of the first member of the saeries,

oy g

it can be shown that % = F2/V (¥;) =3, and the F, variance =73

il
Therefore, 1/r=1 and e=2. The factors without dominance giving these
variances are, therefore, arranged in a geometric series heginning with
/% and having the common ratio v/3. With two equal geomefric series
o . .or+1 03 .

the F, variance due to each is £ and the ratio TSy making the first

- A
variance in each series 2 with a common ratio 3. With complete domi-
nance in opposite directions factors in each series, therefore, begin with
a magmitude of 2/4/5 and have the common ratio 1/4/5.

The various systems of factors considered are,

I. No dominance, factors in a geometric series and represented as,
ALtyE BByl GGy
Aag 0 Bb 0 Ce 0} ete., with the common ratio 1/r=1/4/2.
aa —/f b —/i oo /i)
The highest possible genotypic value on this set up will be,

Vi VBl
1-14/2 (/2-1) (4/2+41) ’
corresponding to the genotype AABBCC. ..
II. No dominance, three equal factors which of eourse have equal
variances. The factars are
AA+L 'BB41 GC41
Aa 0 Bb 0 Cc 0
aa -1 bb —i cc -1

the highest genotype AABBCC having the value 3.

19-2
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1II. Balanced dominance, factors i two equal geometric series with
complete dominance in opposite directions. Each series will contribute
3 to F, variance and have the ratio #=3. The two series can, therefore, be
represented as follows.
Series [ AA+324/6 BB+
Aa +2//5 Bb -+
aa —32+/D bb —
Series I1:  A'A’+2/4/b BB 5 1
A'a’ =2/ BB —3 C%¢ —3/by/B 5 ete.,
ala.’ ___:)/\/5 blhr . C’Cr -*2/5*\/5}
each with common ratic 1/r=1//5. The highest genotype
AAA'A'BBR'BCCCC ...

CC.AE—‘Z/B\/C)]
Ce +2/B4/B ) eto.,
cc ——:?-,’5-\/5}

5]

O 4254/

Lgs tlen s el (ST )

will be scored as,

TV. Balanced dominance, three factors with equal variance, one of them
without dominance and the other two with complete dominance in
opposite directions. They are,

AA+vE BB+1 CC+V/3

Aa +v/2 Bb 0 Goc-—3

aa —/% bh —1 cc —r/%

The highest genotype AABBGG Las the value 2:633.

V. Balanced dominance, three factors of equal magnitude with domi-
nance as in the last case. These are,

AA+4/2 BB4y/i CG+vE

Aa +/32 Bb 0 Coc—+v3

an —vi Bb —vi eo Vi
This case which is a variation of case IV is also comparable to case 1T on
account of the equal size of the three factors; but it should be noted that
the ratio » is here 32/11 which is very slightly less than the required value.
The highest genotypic value is 2-H98. :

The statistical consequences in the £ generation of selecting as pro-
genitors a certain proportion of individuals in a given range of the F,
populations with these Liypothetical genetlc constitutions can be studied
with the help of a oment generating function. The F, properties de-
termined are (1) the mean value of the progenies, (2) the mean genotypic
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variance within the progenies, (3) the covariance of means and variances
of the progenies, (4) the variance of the mean values of the progenies, and
(5) the variance of the mean variance within the progenies. A selection
of 10 %, of the F, individuals with the hizhest phenotypic values was
aesumed for this purpose.

It is not intended to enter into any detail of the caloulation here, but
the method is hriefly indicated. For each of the genetic models an exact
simultaneous distribution of the F, phenotypic values, the mean valuss
of the resnlting pregenies and the genotypic variance within these
progenies cal be set down in the form of a moment-generating function.

TABLE I

Hughest genotypic values and the statistical properties of Fy from selected Fy's
with different genetic constttutions

Varlanoe of
Mean  Variance of the mean
genotypic the geno- Covariance genotypic
Highest Genotypic variance typicmean -between F, variance

genotypic mean of F, within Fy of Iy means and  within Fy

System of factors value progenies progenies progenies variances progenies

. No dominance, factors in 4-182 1-512 (-695 0744 — {182 9-160
a geomeiric series

- No dominance, three equal  3-000 1-512 0-598 0-748 - 0198 0-1538
factors

. Balanced dominance, fac-  3-236 1-266 0-6432 0-669 ~0-125 0-146
tors in two geometric
series :

- Balanced dominance, three  2-633 1-347 0-629 693 —0-155 0-153
factors with equal vari-

_ance
. Balanced dominance, three  2-598 1-328 0-632 0-G97 — (1146 0-153

equal fastors ,

By expanding it, it is possible to obtain the various sums of powers and
of products necessary to express the F, properties or quantities relabed
to them in terms of the F, phenotypic values by means of a regression
equation of the type, ¥ =4 + Ba+ Oz + Da®-+ Ex' ..., where ¥ represents
the particular #, quantity and @ the F, phenotypic value. An equation
of the fourth degree was found satisfactory. Since ¥ s expressed in terms
of » whose exact distribution is known, the mean value of ¥ over a paz-
tieular range of this distribution can he defermined by integrating be-
tween the limits appropriate to the degree of selection applied. The
agswmption of a symmetrical F, distribubion has made the algebraic work
“much easier but such an assumption is not necessary to use the method.
- The results ohtained are given in Table 1.
These theoretical or population valwes can be used for two purposes,
The last five quantities can be easily caleulated from experimental
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data on F, and F, progenies, the latter grown from 10 % of the F, indi-
viduals selected for highest phenotypic values, By a comparison of the
two sefs of values it should be possible to discover the presence or
absence of dominance in the experirnental matexial, and whether the
observed segregation is due to a few large factors or a large number of
factors of varying magnitudes. Secondly, the values seb out in the table
can be used to compare the effects on Fy of applying selection to F,
populations of different genctic constitutions and to obtain some indica-
tion of the conrse of fnrther selection.

TFor comparing experimental with theoretical values, the standard
error can be used for the mean value of the F, progenies and a x* test for
the three variances, since the smmn of squares obtained from n sample
values divided by the population variance is a x? with n—1 degrees of
freedom. The covariance cannot be compared directly because it 13 de-
pendent on the variance of mean values and of variances of F, progenies.
Where both these variances agree with their theoretical values, the co-
variance ¢an be tested as a correlation coefficient and where only one of
them agrees as a regression coefficient. A separate test of covariance is of
no use when both variances differ significantly from their population
values. In the present case a comparison of the three variances with their
experimental estimates i3 not likely to be helpful as m. thege quantities
the five models differ very little from one another. The mean value of Fy
progenies and the covariance on the other hand show somewhat wider
differences and appear more useful. The experimental data to malke the
comparisons are not available. :

The highest genotypic values given in the fable show the hmits to
which selection can be carried in each case. For equivalent number of
factors these limits are higher in the absence of dominance than in its
presence, and within each type higher when a given genotypic variance is
caused by a large number of factors with varying magnitucles than when
it is due to a few large factors. The genotypic mean values of the g
progenies show the advancé resulting from selection as the mean value
of the whole F, is zero in each case. A greater progress has been made in
the absence of dominance than in its presence, and in the latter case three
factors have raised the mean value higher than an infinite series. Con-
sidered in relation to the highest values atfainable, the progress made in
F, with three factors with and without dominance represents 51 and 50 %
of the maximum respectively, and 39 and 36 %, with an infinite series of
factors. The ratio V2/V (¥,) caleulated from the table indicates on the
same scale as in the whole Fy population, the “effective” number of
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factors operating in the selected portion of the population. Its calculated
values, which are given below, show the greatest reduction in hetero-
zygosity when dominance is absent, and in s presence a greater reduc-
tion with three factors than with an infinite nuraber.

System of fasters PRIV (Vy)
1. Ne dominanee, geometrio series 2.210
II. No dominance, three equal factors 2-265
111, Balanced dominance, geometric series 2-835
TV. Balanced dominance, three factors with 2-586
sgual vartiances
V. Balanced dominance, three equal factors 2611

The genotypic variance within the F, progenies is now approximately
of the same magnitude as that between progenies, whereas in the whole
F, the latter is twice as great as the former in the absence of dominance
and one and a half times as great in its presence (Fisher et al. 1932). Tven
s0, further selection hased on progeny means will be more efficient than
selecting individual values, because the laiter wili be affected by en-
vironmental variation to a considerably greater extent. The negative
povariance between progeny means and varlances in all the five cases
indicates on average a falling off of the genotypic variance of a progeny
as 1ts mean value increases. To achieve ifs object selection of progenies
with high mean values iy necessary, but this at the same time enforces
selection of individuals in progenies with a relatively low genotypic
variance, and a larger number of individuals must, therefore, be selected
to ensure high genotypic values. The weight fo be attached to the
prageny mean and the individual plants selected for further propagation
must be gtudied and a balance maintained hetween the two.

The present analysis must be extended to #, and subsequent genera-
tlons to study the rate at which the different properties of $he populations
with different genetic consfitutions are modified under selection. If is
alao possible that the various statistical guantities caleulated for Fy will
show a wider distinetion between the different genetic systems at some
other level of selection in &, than the one adopted.

o

V. Discussion

In Part I, Hutchinzon has discussed the superiority of progeny row
breeding to masgs selection and the advantage of selecting on the basis of
the progeny meang. When selection is to be continued in the progeny, the
ugsual practice is to select a certain number of mdividuals with the desired
Phenotypic values and grow further progenies from them. On account of
ihe amount of material involved it is usually necessary to restrict the
aumber of individuals whose progenies can be carried forward, and hence
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1t becomes all the more important that the individuals possess a high
genotic potentiality. The result obtained with the regression of F,
progenies on ¥, plants shows that when a progeny is grown in replicated
plots, selection of individuals in the progeny should be based on the excess
of the individual value over the mean value of the plot to which it belongs,
ag by so doing, the environmental influence on individual values of dif-
ferences batween plots can be eliminated,

In the present study the different Mendelian factors are supposed o
ach independently and the complicating feature of interaction between
factors has been excluded. The phenomenon of dominance or the inter-
action hetween the phases of the same factor is, however, faken into
agoount. Fisher (1918) has pointed out that the statistical effects of
dominance and epistacy are similar. e has shown that the hypothesis of
cumulative Mendelian factors fits the inheritance of human stature very
aceurately and it is important to examine how far it can ‘explain the ob-
sexved facts in plant breeding. The effects of dominance on selection have
heen clearly hrought out in the present results. Before discussing them
16 should be noted in what manner dominance plays its part in the genetic
models with balanced dominance. Inthe F, distribution heterozygotes with
dominance for low values will accumulate in the lower portion and those
with dominance for high values in the upper part. Selection for high
phenotypic values will, therefore, almost entirely be restricted to pheno-
types with dominance for high values and this dominance will show its
effects in the F,. Thus the assumption of a symmetrical #, distribution
has not prevented the consideration of dominance.

The table of Fy values shows the retarding effect of dominance on
selection. Comparing the two groups of cases with and without domi-
nance, 1t will be seen that while starting with the same amouns of geno-
typic variance in the F,, selection has raised the mean value of the £
higher in the absence of dominance than in its presence. In the former
case, however, the whole of the ¥, genotypic variance is genetic while in
the latter the genetic variance is lower, a part of the genctypic variance
being due to dominance. This demonstrates how it is the genetic portion
of the variance that determines the immediate capaaity of the material
for selection. The lower value of the covariance between means and
variances of ¥, progenies in the presence of dominance also suggests that
a part of the genotypic variance is not associated with mean values.
Dominance alsc counteracts the other effect of selection viz. increase of
homozygasmy It will be seen that a greater amount of genotypic
variance persists in the ¥, when dommance is present and the ratio
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V2 )V (V,) is similarly higher. This tatio, it will be remembered, corre-
sponds to ‘the effective number of factors. Dominance thus appears to
slow down the change both in mean values and variances brought about
by selection.

The estimate of genetic variance made by the regression of 7,
progenies on K, plants was also used as the genotypic variance in studying
the different genetic systems. This was necessary in the absence of suit-
able experimental data for estimation of the latter. Actually, as pointed
out before, the genotypic variance will be somewhat greater than genetic
in the presence of deminance and has, therefore, heen underestimated.
In the three cases with halanced dominance it can he shown that the
genetic variance of the F, is 22-33 9 lower than the genotypic. The dis-
crepancy hetween the two will become smaller if dominance is partial
+ instead of complete as assumed here. For an accurate estimation of
genotypic variation in Fy 1t 1s necessary to grow progenies resulfing from
crossing £, plants among themselves at random. Then the ¥, genotypic
variance is equal to twice the difference between the covariance of F,
parental value with the mean of the F; ofispring and the covariance of
the F, parental value with the mean of its hiparental offspring (Fisher
et al. 1932).

On the question of the estimation of genotypic variance the paper by
Charles & Smith, referred to in the Introduction, is of some interest. In
developing criteria for distinguishing between the arithmetic and geo-
metric types of gene action they are led to estimate the genotypic variance
by taking the difference between the total and the environmental
variance. They caloulate the latter on the assumption that it is correlated
with mean valnes in the three non-segregating generations viz. the two
parents and the £, and the same correlation holds in the segregating
generations. In the absence of sufficient experimental evidence to justify
this agsumption their tests involving variances and skewness are of
doubtful valne. Under normal field-experimental conditions mean values
and variances do not appear to show any stich systematic relationship
and the two are, therelore, commonly treated as independect. In the
gtaple-length data of the cotton crosses no consistent relationship was
observed befween them in the parental and F, geuerations tested simnl-
taneonsly in replicated trials for two years,

The hypothesis of geometrical effects used by these authors is that a
given gene substitution multiplies the phenotypic value by a constant
guantity characteristic of each factor. On this hypothesis they show that
the mean value of the F, should be equal to the geometric mean of the two
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parental values. As the geometric mean is always smaller than the corre-
sponding arithmetic mean, this hypothesis will not be applicable to the
large number of characters in which the F, has a value equal to or
generally greater than the arithmetic mean of the two parents. Their tests
involving mean values for the arithmetic effects of genes ave capable of a
general application with any type and magnitude of dominance. On the
arithmetic hypothesis the mean value of the F, should be equal to the
mean of the #; and the parental values, i.e. F,= f—jfi +24 . Bimilarly,
the two back cross means should each he equal to the mean of the #, and
the parent involved. Using these tests on the staple-length data in the
three crosses with F, values for two years and hackeross values for one
year, the agreement between the actual and expected values is found
very close, the mean difference hetween the two being, 0-087 4+ 0-175 and
0-173 £ 0-202, respectively.

V. SumMary

The importance of the study of quantitative inheritance for a closer
application of genetics to plant breeding has been recognized. The object
of the present paper is to summarize the resnlts obtained in a statistical
study of quantitative inheritance relating to ¥, and T, progenies. The
genetic and plant breeding aspects of the results are emphasized.

The experimental data used refer to the staple-length measurements
on F, and F, progenies of crosses hetween sirains of cotton belonging to
the species &, arborewm var. neglectum, grown at the Institute of Plant
Industry, Indore, Central India. The regression of mean staple-length of
Fy progenies on F, phenotypic values shows thast it is adv antagecus to
consider plot values and select individuals on the basis of their excess
over the former where, as in the present case, inter-plot variation affects
the character in addition to intra-plot variation. The coefficiens of re-
gression also gives an estimate of the genetic fraction of the total Iy
variance. Thls is an impertant relationship, as it affords a hasis for
separating the inheritable and non-inheritable components of variance in
the experimental material.

The ratio of the square of the ffenotyplc variance within #y progenies
to the variance of this variance is shown %o represent the “effective”
rumber of factors which can account for the segregation in Fy and which
hypothetzmﬂy possess equal variance and are without linkage. With a
given Fy variance and a given effective number of factors, it is possible
to set up different genetic systems or models consisting of factors varying
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in magnitude and mumber and with or without dominance. Five models
with the smallest possible number of factors or an infinite number and
each with or without dominance are considered.

By the use of a moment-generating function in three variables the
moments of the distribution of the ¥, phenotype and of certain related
quantities are calculated for each system. With these it is possible to
express in terms of the , phenotype properties of the F, progenies such
as the genotypic mean or variance, and further to caloulate their mean
values in a portion of the Fy population resulting from a selected pro-
portion of #, phenotypes. Similar mean values obtained from experi-
mental data can be compared with these theoretical values in order to
discover the presence or absence of dominance and to decide on the
possible number of factors operating in the experimental material.

In the present case, assuming a 10 %, selection in F,, theoretical mean
values for (1) the genotypic mean and (2) variance of F, progenies, (3) the
covarlance between the two, and (4) the variance of F, means and (B) of
Fy variances are caleulated for each model. Their usefulness for identi-
fying the genetic situation and the information ohtained from them on
the effect of selection applied and on questions relating to farther selec-
tion are discussed.

The results summarized in the present paper form part of the work
being carried out under the guidance of Prof. Fisher to whom I am
indebted for much help. I should also like to thank my colleague Mr
D. J. Finney at the Galton Labomtoly for his help in discussing with me
several mathematical points arising in the course of the work.
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APPENDIX

To obtain the values of the partial regression coefficients b, and by, ibis
necessary o solve the following simultaneons equations,

b S by S axy=Sny, {I)
by Sayxy+ by St =Sy, {10

where ¥ is the mean value of the progeny, =, the value of the parent plant
and @, the mean value of the plot to which it belongs.

The expectations of sums of squares and of products in these equations
are considered helow.

Let there be n plants in each of m plots. If 7 is the mean value of all
mn plants, the value of any plant (9"1) can he scored as Z+¢g+a+0 and

the mean value of a plot (z,) as Bt (Sg-f—S +nb), g vepresenting the

genetic and o and b the enVlronmental modifications due to variation
within and between plots respectively. The corresponding espected
variances can he set down as,

V=l g8 V=t 886, Vy——— Snbi=1 Sie.
TR, T Y b

These being independent of one another, the total variance between plants
sV, +V,+V,.

The covariance between plants and plot mean values
1 1 Cr P =
= % S8 {0~ %) {2 —F);
SS {(g-l—c&-{—b) (;Sgwksaf-}"%b)

nmz

1

= 5 {(Sg Sa -+ nb) {Sg+ Sa+nb)}

o+ S8a? +n2Sh)

1
= = (mn ¥V, 4mn V, +mn? Vy)

=L vy,

"
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The variance between plot mean values
.

L S (2, — F)°

I

1,01, 1o
za S {~ (;Sg+Sa+9ab)j~

;7"{7?2 (SSg2+ 8Sa? + n? 8b?)
=é (Vo + VotV

The covariance between parent plants and progeny means

= S8 {{m—T) (y—7)}

Vi

=— S5{{g+a+b)g,

T

since the mean value of the progeny is equal to the genetic component
of the parent plant

Sgg”

" mn
=V,.
The covariance between plot and progeny means

1

== 88wy —~F) (y—F)}
o, S8 Uz 3) (Y =)
= m— 88 {(Sg 4 Sa +nb) ¢}
mnt
Ly,
n

Substituting these expectations in equations (I) and (IT) we get,
. 1o
Tt Vo Vbt 5 Pyt P Pl b= Ty, 1T

Ll (Vo Vo) 4 ) 1 = (Vo Va)+ Tﬂ,} b=1 TV, (1Y)
Subtracting (IV) from (ITT) and m{:}tﬁglyﬂlg threughout by »
VbV =V, ~V)b=nV,~V,.

Vet Vo) n=1) 0=V, (n—1)
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b v, genetic variance

YV, +7, total variance within plots”
Substituting for &y in equation (IIT}

and

Vot Vot Vi)

L Tt Vo Tl h=v, -7,

{ V,+V,
AL
7,7
b2: . [Fﬂ Vy ’
Vot Vo) [ Vot V) Vi)
V vV, T,
and by+by= ?ﬁgV — m g ‘
AR AU AN AS

V(W Vataly)—nV, ¥,
(Vﬂ + V!I) (]’75 + T/vu + an)
Vo (Vo + Vo) 14

NP ey

:(Vg+ V) (Vo + VotnlVy)
_ genetic variance
" total variance between plots’




