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Time dependency of fluid flow near the top of the core
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Fluid flow in the core is assumed to consist of a slowly varying (on time scales > magnetic diffusion time) part and
a smaller, rapidly varying part as in the theory of the hydromagnetic dynamo put forward by Braginsky (1965). On
the basis of this theory, geomagnetic secular variation models for the last 150 years are used to determine a rapidly
varying, axisymmetric, poloidal motion of the fluid near the top of the core as a function of latitude in regions away
from the equator. Approximations made in estimating this motion fail near the equator, thus restricting the estimates
to latitudes ≥40◦. Amplitude of the oscillating part of the axisymmetric poloidal flow is found to be ≤1 km/yr in
the northern hemisphere, and nearly 3 km/yr in some parts of the southern hemisphere. The nature of temporal
variation of this component differs significantly between the northern and southern hemispheres during the period
under consideration.

1. Introduction
Time-dependent maps of the magnetic field at the core-

mantle boundary (CMB) have been constructed by
Bloxham and Jackson (1992) (hereinafter BJ92) using most
of the available data for the last three centuries, and assum-
ing the mantle to be an insulator. The spatial variation of the
magnetic field is described in terms of spherical harmonics
in the usual way, while its temporal variation has been rep-
resented using a cubic B-spline basis. A secular variation
model of the magnetic field at the CMB is thus available for
the last 300 years.

Fluid flow in the outer core together with magnetic diffu-
sion gives rise to temporal variation of the magnetic field at
the CMB. Over time scales much shorter than the magnetic
diffusion time associated with length scales ≥ few thou-
sands of kilometers, the core may be considered to behave
like a perfect conductor, such that the magnetic field lines
are frozen in the fluid (Roberts and Scott, 1965). This argu-
ment has been used by a number of workers to estimate large
scale fluid flow near the top of the core from secular variation
models at the CMB (Whaler, 1980; Gubbins, 1982; Voorhies
and Backus, 1985; Backus and Le Mouël, 1986; Lloyd and
Gubbins, 1990; Bloxham and Jackson, 1991). Apart from the
frozen-flux approximation the above estimates required some
other assumption about the fluid flow in order to overcome
the problem of non-uniqueness inherent in the determination
of fluid flow near the top of the core from the induction equa-
tion (Backus, 1968). Hence the flow was considered to be
either steady or geostrophic or toroidal in order to determine
it uniquely from the frozen-flux induction equation.

In another approach (Rikitake, 1967; Honkura and
Rikitake, 1972; Honkura and Matsushima, 1988;
Matsushima and Honkura, 1989) to estimation of fluid flow
in the outer core from a geomagnetic field model, it was as-
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sumed that the non-axisymmetric poloidal magnetic field is
maintained against Ohmic diffusion by the interaction be-
tween a strong zonal toroidal magnetic field and large-scale
non-axisym-metric poloidal velocity fields as in an αω-type
geodynamo. The strong zonal toroidal field was considered
to arise from the distortion of a large scale axisymmetric
poloidal magnetic field by differential rotation, which is the
so calledω-effect. Rikitake (1967) and Honkura and Rikitake
(1972) further assumed that non-zonal poloidal magnetic
field of various modes and the toroidal magnetic field are in a
steady state. These authors considered the representation of
the non-zonal field in terms of standing and drifting parts sug-
gested by Yukutake and Tachinaka (1969), and treated these
two parts separately. Matsushima and Honkura (1988) ex-
pressed the scalar potential describing the observed poloidal
field in terms of standing and drifting parts with periodically
varying amplitudes, which was then used by Honkura and
Matsushima (1988) to estimate fluid motion in the core at
different epochs at 100 year intervals from 1600 to 2000, by
the same method as Honkura and Rikitake (1972). The con-
vection pattern was found to vary from one epoch to another.
It was pointed out by Matsushima and Honkura (1992) that
the ω-effect may not be as strong as was assumed in the earlier
papers, so that it is necessary to consider the other interac-
tion terms also in the induction equation. Matsushima (1993)
solved the induction equations for the toroidal and poloidal
magnetic fields together with the Navier-Stokes equation for
the toroidal velocity field to estimate fluid motion in the
Earth’s outer core from a geomagnetic field model. The au-
thor prescribed the radial dependence of the poloidal velocity
field and minimized the temporal variations of the velocity
and the magnetic fields. Thus at any particular epoch, the
time derivative of the magnetic field at the CMB calculated
using the velocity field derived by Matsushima (1993) was
much smaller than given by the secular variation model for
that epoch. Since secular variation of the poloidal field at the
CMB contains important information about the geodynamo,
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it is necessary to consider it in attempts to estimate the tem-
poral evolution of fluid flow in the outer core, which would
shed light on the existence of lateral temperature variations
at the base of the mantle.

A time-dependent geomagnetic field model was used by
Benton and Celaya (1991) to determine a unique, unsteady
surface flow at some chosen points on the CMB, under the
frozen-flux approximation, by considering the temporal evo-
lution of the fluid flow to be quartic. They found that at one
illustrative point on the CMB, an exact fit to the 1900–1980
field model of Bloxham and Jackson (1989) required consid-
erable evolution of the flow. Hulot et al. (1993) were the first
to show clearly that core flows are highly time-dependent.
This paper also gave the first account of a definite relationship
of geomagnetic “jerks” with time-varying flow in the outer
core. More recently, Jackson (1997) has obtained models
of time-dependent core surface motions for the period 1840–
1990, using time-dependent maps of the magnetic field at the
CMB (BJ92) and the frozen-flux and tangentially geostrophic
flow approximations.

Fluid flow in the core is expected to show variations on
short time scales because changes in the length of day (LOD)
on decadal time scales are usually associated with changes
of angular momentum of the core (Jault et al., 1988; Jackson
et al., 1993). Further, Jackson (1997) has demonstrated in a
forward calculation, that with steady motion of the fluid near
the top of the core, it is not possible to fit the secular variation
recorded at observatories to the required level of accuracy,
even on short time scales of a few years. In the present
paper, a method put forward by Bhattacharyya (1995), to use
the secular variation of the axisymmetric poloidal magnetic
field at the CMB to determine a rapidly oscillating (on time
scales � magnetic diffusion time) part of the axisymmetric
meridional flow near the top of the core, is utilized to study
the temporal evolution of this component of surficial core
flow over the period 1840–1990.

2. Geodynamo Model
A geodynamo model in which time variations of the mag-

netic field and fluid flow in the outer core are built in, is the
hydromagnetic dynamo model of Braginsky (1965). In this
model, the non-axisymmetric part U′ of the fluid flow in the
core is considered to be a superposition of waves propagating
in the φ-direction, and the axially symmetric part of the flow
is assumed to consist of a slowly varying (∂/∂t ≈ ηc−2,
where η is magnetic diffusivity and c is the core radius)
part and a rapidly oscillating part Ũ. This rapidly oscillat-
ing axisymmetric flow was termed oscillations by Braginsky
(1965). The outer core fluid motion is thus expressed as:

Utot = U φ̂ + UP + Ũ + U′ (1)

where U φ̂ and UP are the toroidal and poloidal components
of the slowly varying axisymmetric part of the flow, φ̂ being
a unit vector in the azimuthal direction. Braginsky (1965)
assumed that for a nearly axisymmetric dynamo, Û ≈ U ′ ≈
U R−1/2

m , where Rm � 1 is the magnetic Reynolds number
defined by Rm = UMc/η, UM being a typical value of U . It
was also assumed in this model that the slowly varying ax-
isymmetric part of the flow is dominated by the toroidal flow
and UP ≈ U R−1

m . With the assumption of large scale, slowly

varying velocity and magnetic fields, Matsushima (1993)
had found the toroidal velocity to be dominant at the CMB.
In Braginsky’s (1965) hydromagnetic dynamo the magnetic
field was also represented in a manner similar to the velocity
field:

Btot = Bφ̂ + BP + B̃ + B′. (2)

The mantle is assumed to be an insulator such that at the top of
the core, B = 0 and B̃φ = 0. Also the CMB is assumed to be
a free-slip, spherical boundary, such that Ur = Ũr = U ′

r = 0
at r = c, where Ur , Ũr , and U ′

r are the radial components of
UP, Ũ and U′ respectively.

Under these conditions, Braginsky (1965) found that for
the time-varying axisymmetric poloidal field B̃P, which can
be expressed in terms of a vector potential Ãφ̂:

B̃P = ∇ × ( Ãφ̂), (3)

only oscillations of the field of order R−3/2
m can pass to the

outside of the fluid core, and these are determined by

∂ Ã

∂t
= [ŨP × BP]φ. (4)

Consideration of the momentum equations governing Ũ and
UP by Bhattacharyya (1995) showed that a term proportional
to UP also makes a contribution to ∂B̃P/∂t at the CMB of
the same order, and hence must be included to obtain the
following equation for its radial component:

∂ B̃r

∂t
= 1

c sin θ

∂

∂θ
(Ũz Br + Uz B̃r ) (5)

where the z-axis is along the Earth’s rotation axis and Br

is the radial component of the slowly varying, axisymmet-
ric poloidal field BP. Determination of fluid flow at the
top of the core from the radial component of the classical
frozen-flux induction equation suffers from the problem of
non-uniqueness because it involves solving a single scalar
equation for a two-dimensional vector flow. Equation (5) is
derived from the longitudinally averaged radial component
of the frozen-flux induction equation, and the problem is now
reduced to solving this equation to determine a single scalar.
Hence it is possible to obtain an unique solution as has been
demonstrated by Bhattacharyya (1995).

The left-hand side of Eq. (5) may be expressed in terms of
spherical harmonics:

∂ B̃r

∂t
=

N∑
n=1

(n + 1)
(a

c

)n+2
ġ0

n(t)Pn(cos θ) (6)

where a is the radius of the Earth, Pn(cos θ) are Legendre
polynomials, ġ0

n(t) is the first derivative with respect to time
of the Gauss coefficient g0

n(t), and N is the truncation level of
the spherical harmonic expansion for the geomagnetic secu-
lar variation model. The solution of Eq. (5) can be written
as an expansion in Legendre polynomials (Bhattacharyya,
1995):

Ũz Br + Uz B̃r =
∞∑

n=0

En(t)Pn(cos θ). (7)
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Fig. 1. Radial component Br of a steady, axisymmetric poloidal magnetic field at the CMB as a function of colatitude, derived from the time average
normal-polarity palaeomagnetic field model of Kelly and Gubbins (1997).

The first term involving E0 is independent of θ and is de-
termined by the condition that on the CMB, at θ = 0 (or
θ = π ), Ũz = Ũr = 0 and Uz = Ur = 0:

E0 = 2

3
c
(a

c

)3
ġ0

1 . (8)

For n �= 0, En is given by

En = (n + 2)c

(2n + 3)

(a

c

)n+3
ġ0

n+1

− nc

(2n − 1)

(a

c

)n+1
ġ0

n−1. (9)

For all n > N +1, En = 0 as a result of truncating the series
expansion in Eq. (6) at n = N . The steady and fluctuating
axisymmetric parts of the Navier-Stokes equation, under the
Boussinesq and magnetostrophic approximations, were also
used by Bhattacharyya (1995) to show that the contribution
of the second term on the left hand side of Eq. (7) equals that
of the first term. Thus the following solution is obtained for
Ũz :

Ũz = 1

2

N+1∑
n=0

En(t)Pn(cos θ)/Br . (10)

3. Fluctuations in Axisymmetric Poloidal Flow
For the period 1840–1990, the Gauss coefficients for the

expansion of the time rate-of-change of the geomagnetic
field, in terms of spherical harmonics upto N = 14, are
available from the time-dependent models of the magnetic

field at the CMB obtained in BJ92. These are used to com-
pute the coefficients En(t) for various epochs. The slowly
varying component Br is, as such, an unknown in the calcu-
lation of Ũz from Eq. (10). However, it should be borne in
mind that, at a given co-latitude θ , by definition Br should not
vary over a time-period of 150 years. Hence the short-period
fluctuations in Ũz are determined entirely by the numerator
of Eq. (10). Thus conclusions drawn from Eq. (10) regard-
ing the pattern of short-period variations in the axisymmetric
poloidal flow will not be affected by the choice of Br except
in those regions where Br is so small as to invalidate the
approximations that go into the derivation of Eq. (10) which
involves neglect of higher order terms. This happens in the
neighbourhood of the geographic equator where the radial
component, Br , of the axisymmetric part of the geomagnetic
field is small. For the estimation of Ũz from Eq. (10), Br

has been calculated from the axisymmetric part of the time-
average palaeomagnetic field obtained by Kelly and Gubbins
(1997). These authors used directional measurements from
lavas, inclination measurements from ocean sediments and
intensity measurements from lavas to arrive at geomagnetic
field models for the past 5 Myr. The time-average normal-
polarity palaeomagnetic field model obtained by Kelly and
Gubbins is not axially symmetric, but the axisymmetric part
is dominant. The radial component of the axisymmetric part
which is used as Br in the present study is shown in Fig. 1.
For reasons stated above, estimation of Ũz from Eq. (10)
using this Br is restricted to latitudes ≥40◦.

Another important parameter in the estimation of Ũz us-
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Fig. 2. Secular variation power at the CMB, calculated from the time-dependent geomagnetic field model BJ92 as a function of the harmonic degree n, for
each decade of the period 1840–1990.

ing Eq. (10) is the truncation level N . The secular variation
power at the CMB, calculated from the time-dependent geo-
magnetic field model of BJ92 for each decade of the period
1840–1990, is plotted in Fig. 2 as a function of the harmonic
degree n. This includes the non-axisymmetric part as well.
An interesting feature that is revealed by this plot is the vari-
ability of the spectrum of the secular variation upto degree
n = 6, from one decade to another. It is seen that the peak
in the power at n = 9 emerges as a more stable feature dur-
ing this period. This is mainly controlled by the regularising
procedure used in obtaining the BJ92 model, which is based
on the smoothest solutions compatible with the observations.
This procedure involved minimization of two model norms,
measuring roughness in the spatial and temporal domains re-
spectively, and this is expected to result in greater stability for
degrees higher than 7 or 8. Secular variation of the geomag-
netic field at the CMB has contributions from both fluid flow
and magnetic diffusion, the latter contributing much more
towards the temporal evolution of small scale features of the
magnetic field than to the large scale features. Thus the tem-
poral variability of the secular variation at n ≤ 6 may be a
direct manifestation of the temporal variability of fluid flow
in the outer core. By this argument it may be sufficient to
consider a truncation level N = 6 for estimating the tempo-
ral evolution of fluid flow near the CMB. Nevertheless, for
checking the convergence of the results, truncation levels of
N = 8 and N = 14 have also been used in the calculations.

At the CMB, the meridional component Ũθ of ŨP can

be determined from Ũz because the radial component Ũr

vanishes there, yielding

Ũθ = −Ũz/ sin θ. (11)

At the poles (θ = 0◦, 180◦), Ũθ must be zero in order to be
physically defined. This should be automatically satisfied
by the solution obtained for Ũθ from Eq. (11). Since Ũz

vanishes at the poles according to the boundary conditions
used in obtaining the solution Eq. (10), l’Hospital’s rule has
to be applied to Eq. (11) to demonstrate explicitly that Ũθ also
vanishes at the poles. Plots of Ũθ as a function of θ for the
epochs 1900 and 1960 are shown in Fig. 3 for N = 6, 8 and
14. It appears that increasing N from 6 to 14 does not change
the estimates drastically. A breakdown in the validity of the
approximations leading to Eq. (10) explains the unphysically
large values of Ũθ in the neighbourhood of Br = 0, where
there is a discontinuity in Ũz as given by Eq. (10). Retention
of higher order terms would remove such a discontinuity in
Ũz which is unphysical. Although Br becomes zero in the
vicinity of θ = 80◦, it is seen from Fig. 1 that Br as a function
of θ has a point of inflection in the neighbourhood of 120◦,
which has no counterpart in the northern hemisphere. Only
for values of θ ≥ 130◦, the pattern of variation of Br with
θ in the southern hemisphere is similar to the corresponding
variation in the northern hemisphere. Also in this region Br

is sufficiently large to make the right hand side of Eq. (4)
the most dominant term in the expansion used by Braginsky
(1965). Hence θ = 130◦ is chosen as one of the bounds.
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Fig. 3. Meridional component of the time-dependent part of the axisymmetric poloidal fluid flow as a function of colatitude for the epochs (a) 1900 and
(b) 1960 computed from the secular variation model of BJ92. The truncation level used in the calculation are N = 6 (solid line), N = 8 (dash-dotted
line) and N = 14 (dashed line).
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Fig. 4. Meridional component of the time-dependent part of the axisymmetric poloidal fluid flow as a function of time for selected latitudes (a–e) in the
northern hemisphere. Solid and dashed lines are for N = 6 and N = 14 respectively. The crosses in (a) are computed using five different secular
variation models for those particular epochs.
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Fig. 4. (continued).
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Fig. 4. (continued).

However, it can not be claimed that this is the correct bound.
It is a non-controversial bound as far as a comparison between
the two hemispheres is concerned. An estimate of the higher
order corrections could yield a lower cutoff value of θ for
which the computed values of Ũθ may still be considered as
reliable. In fact, a comparison of Figs. 3(a) and (b) shows
more pronounced differences between epochs 1900 and 1960
for colatitudes below θ = 130◦, which can not be attributed
to Br . The choice of θ = 50◦ as the upper bound in the
northern hemisphere is on the basis of Fig. 3(a), since for
values of θ > 60◦ the estimates of Ũθ appear to be affected
by the singularity in the vicinity of θ = 80◦. Once again,
a quantitative estimate of the cutoff has not been given, and
the present choice may be an underestimate of the correct
one. The main contention here is the difference between the
patterns of temporal evolution of Ũθ in the two hemispheres,
which is not directly affected by the magnitude of Br at the
higher latitudes. This is studied at selected latitudes for the
150 year period extending from 1840 to 1990, using the time-
dependent secular variation model of BJ92. The results for
northern and southern latitudes are shown in Figs. 4 and 5
respectively. Once again Ũθ computed both with N = 6 and
N = 14 are shown in these figures.

It will be recalled that the diffusion term itself was ne-
glected in arriving at Eq. (4), as a consequence of the assump-
tion that Rm � 1. However in the estimated coefficients
ġm

n for the secular variation of a time-dependent geomag-
netic field model derived from observations, the contribu-
tion from diffusion is included. The smaller the length scale

of the magnetic field, the more the magnetic field diffuses,
hence there may be greater contributions from diffusion to
the secular variation coefficients for higher degrees, and the
temporal evolution of the secular variation coefficients ġm

n
for n > 6 could be such as to make the temporal variation
of the computed Ũθ significantly different for N = 6 and
N = 14. However, it appears from Figs. 4 and 5 that, except
at θ = 170◦, at the other colatitudes shown in these figures,
temporal variation of the computed Ũθ is not very different
for N = 6 and N = 14. To check the sensitivity of the nu-
merical method at different latitudes, five different models
of secular variation listed in table 16 of Langel (1987) for
epochs 1922.5, 1932.5, 1940, 1950 and 1975, are used to
calculate Ũθ at θ = 10◦ and θ = 170◦. These values are
shown by crosses on Figs. 4(a) and 5(e) respectively. For
epochs 1922.5 and 1932.5 the models have a truncation level
of N = 6 whereas for epochs 1940, 1950 and 1975 the mod-
els are truncated at N = 8. Although the magnitude of Br

at θ = 170◦ is greater than that at θ = 10◦, the results at
θ = 170◦ are much more sensitive to the model used and
hence do not appear to be reliable.

4. Discussion
The time-varying part, Ũθ , of the axisymmetric meridional

flow determined here has to be added to the steady, axisym-
metric part and the time-varying, non-axisymmetric part of
the flow, which are unknown, in order to obtain a complete
picture of the time-dependent fluid flow near the CMB. The
purpose of studying only Ũθ is simply to determine the time
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Fig. 5. Meridional component of the time-dependent part of the axisymmetric poloidal fluid flow as a function of time for selected latitudes (a–e) in the
southern hemisphere. Solid and dashed lines are for N = 6 and N = 14 respectively. The crosses in (e) are computed using the same five secular
variation models for those particular epochs, which were used to obtain the results marked by crosses in Fig. 4(a).
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Fig. 5. (continued).
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Fig. 5. (continued).

scales on which this fluid flow shows variations at differ-
ent latitudes and to approximately estimate the magnitude
of such fluctuations. In his theory of the hydromagnetic dy-
namo, Braginsky (I965) considered the non-axisymmetric
part of the velocity to arise from a superposition of waves
travelling in the φ-direction. The basis for this was stated to
be the observation that the geomagnetic field undergoes sec-
ular variations in which the non-axisymmetric components
tend to drift predominantly towards the west, with different
velocities. However, the axisymmetric part of the geomag-
netic field also has a small component varying on “fast” time
scales which are much shorter than the magnetic diffusion
time c2/η. Hence, Braginsky (1965) introduced the con-
cept of “oscillations” which represent a rapidly oscillating
component of the axially symmetric velocity that contains
a slowly varying (on time scales ≥c2/η) part as well. The
poloidal part of this axisymmetric oscillatory motion may be
written as

ŨP =
∑

µ

uµ exp−iφµ (12)

where the amplitudes uµ and the frequencies φ̇µ are assumed
to have a slow time variation, so that the phases φµ of the
oscillations are almost linear functions of time (Braginsky,
1965). An axisymmetric, poloidal flow would have only r -
and θ -components, of which the r -component vanishes at
the top of the core. Hence Ũθ defines the axisymmetric, os-
cillatory component of the poloidal flow and a study of its
temporal evolution is expected to give an idea of the frequen-
cies φ̇µ involved. Estimates of Ũθ in the present study, are

used firstly to check the validity of the description provided
by Eq. (12). Braginsky’s (1965) theory requires that ŨP av-
eraged over a period of time >c2/η should yield zero. Even
for the short duration of 150 years studied here, a tendency
towards such oscillatory behaviour, with periods less than
150 years, is seen at θ ≤ 50◦ in the northern hemisphere and
θ ≥ 150◦ in the southern hemisphere, since at these latitudes
Ũθ changes sign in the course of these 150 years. However
at θ = 130◦ and θ = 140◦ longer period oscillations also
seem to be present which would require a longer data set to
be studied. Nevertheless, even at these latitudes short period
oscillations are seen, modulated by the longer period oscilla-
tions. With a sufficiently long time series, a Fourier analysis
could be carried out to determine the frequencies, which is
not feasible in the present study.

The amplitudes of the oscillations in the axisymmetric
poloidal flow near the CMB determined here are uncertain
to the extent of the uncertainity in Br , which is model de-
pendent. With the model of Kelly and Gubbins (1997) these
amplitudes are found to be ≤1 km/yr in the northern latitudes,
while in the southern hemisphere, for θ = 130◦, this compo-
nent of the fluid flow may be nearly 3 km/yr at some epochs.
As mentioned earlier, Hulot et al. (1993) had clearly shown
that fluid flow in the outer core is highly time-dependent.
A significant difference between the time-dependent fluid
flow in the two hemispheres is also evident from the particle
tracer plots shown in figure 3 of Jackson (1997). Voorhies
(1993), on the other hand, had suggested on the basis of a
simple calculation using decadal fluctuations in the length
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of day (LOD) that fluctuations in core surface flow is about
±1 km/yr. This calculation was for a mean westward flow
near the core surface.

Further differences in the temporal variation of fluid flow
near the CMB in the two hemispheres is evident from Figs. 4
and 5. The axisymmetric meridional flow near the CMB
shows greater variability on short time scales or “jerk”-like
behaviour in the northern hemisphere than in the southern
hemisphere. In the northern hemisphere for 20◦ ≤ θ ≤ 50◦,
there is rapid variation in this component of the flow close
to 1895, 1915 and 1970. Global rms value of secular vari-
ation in the radial component of the geomagnetic field at
the earth’s surface derived from model ufm1 of BJ92 dis-
plays the phenomena of “jerks” as can be seen in figure 1b
of Jackson (1997), whereas the global rms value of secu-
lar variation in the same component at the CMB, derived
from the same model, shows much smoother variation with
time as in figure 1c of Jackson (1997). However, present re-
sults indicate that large scale fluid flow near the CMB shows
more complex temporal behaviour than the geomagnetic field
at least in the northern hemisphere. In the southern hemi-
sphere, for θ ≥ 150◦, there is a sharp change in the axisym-
metric meridional flow close to the 1960 epoch only. For
130◦ ≤ θ ≤ 140◦, the temporal variation of this component
of the flow is quite different showing oscillatory behaviour
with a period of about 60 years superimposed on longer pe-
riod variations.

In this paper, no attempt is made to estimate the time vari-
ation of the zonal toroidal flow. Hence the results obtained
here cannot be directly compared with the root mean square
velocity at the CMB or the zonal toroidal rms velocity over
the CMB, estimated as a function of time by Jackson (1997)
using the time-dependent field model ufm1 of BJ92. The
flows derived in that work are the simplest in a spatial and
temporal sense, while being compatible with the main field
and secular variation values provided by the model ufm1 of
BJ92. Thus, all the short time scale variations seen in some of
the fluid flows obtained in the present work are not expected
to be seen in Jackson’s (1997) results. Nevertheless, both the
root mean square velocity and the zonal toroidal rms velocity
at the CMB obtained by Jackson (1997) show sharp peaks
near the 1915 epoch. The earlier paper by Hulot et al. (1993)
has also discussed such peaks in the outer core fluid flow near
the 1915 epoch. The present results have no contribution to-
wards changes in LOD, and hence cannot be compared with
LOD observations as such. It may simply be argued that
whatever phenomenon causes rapid changes in the toroidal
flow may also have similar repercussions on the poloidal flow.
In that sense the present results for the northern hemisphere
support the earlier results concerning time-dependent flows
(Jault et al., 1988; Hulot et al., 1993; Jackson et al., 1993)
and the recent findings of Jackson (1997). It should be noted
that the particle tracer plots at the core surface presented in
figure 3 of Jackson (1997), which show advection of a tracer
during the period 1840–1990, clearly indicate that merid-
ional components of the flows are mostly small compared
to the zonal components. Hence the smallness of the time-
dependent part of the axisymmetric meridional flow derived
here is in accord with Jackson’s (1997) results.

The new result obtained here is the latitudinal variation in

the time-dependency of the axisymmetric poloidal flow near
the core surface. To start with, the fluid flow is assumed to be
nearly steady and toroidal, as seen from Eq. (1), with a small
time-varying component. The estimated time varying com-
ponent is indeed small compared to earlier estimates of fluid
flow at a particular epoch. The pattern of temporal evolution
of fluid flow is however quite distinct in the two hemispheres.
The time variation of the axisymmetric poloidal flow in the
northern hemisphere obtained here has some similarities with
that of the degree 1 zonal coefficient in a spherical harmonic
representation of the flow (Jackson et al., 1993; Jackson,
1997). However, in the southern hemisphere for θ ≥ 140◦,
the time variation is different being dominated by a sharp
change around 1960. The uncertainities of the model ufm1
(BJ92), which has been used in the present calculations, have
not been considered in order to estimate the possible errors in
the results obtained here. However, conclusions drawn about
the gross features of temporal variation of the estimated fluid
flow are expected to be unaffected by any such consideration,
as in earlier calculations by other authors.

The assumption made in the present paper, about fluid
flow in the outer core, as described by Eq. (1), is not incom-
patible with a mainly tangentially geostrophic flow near the
core surface, since the largest component of the axisymmet-
ric flow is assumed to be steady and toroidal, and a tangen-
tially geostrophic, toroidal flow is purely zonal (Bloxham,
1990). According to equation (17) of Bhattacharyya (1995),
the leading order contribution to the oscillatory component
of the axisymmetric poloidal flow at the top of the core arises
from the Lorentz force acting there, which depends mainly
on the radial gradient of the steady part of the axisymmet-
ric toroidal magnetic field near the CMB. Using the present
method, it has been possible to estimate the time-varying, ax-
isymmetric poloidal part of the flow near the CMB, and this is
found to be small compared to earlier estimates of fluid flow
near the CMB obtained under the tangentially geostrophic
assumption. This finding does not go against the hypothe-
sis that the flow near the core surface is mainly tangentially
geostrophic, with an additional small, oscillatory component
arising from the Lorentz forces acting on the fluid there.

In conclusion, the results obtained here show significantly
different temporal evolution of the axisymmetric poloidal
component of fluid flow near the CMB in the northern and
southern hemispheres. This may be a manifestation of the
way in which magnetic field strength and fluid flow behave
in the two hemispheres in an inherently non-linear MHD dy-
namo operating in the outer core. For instance, the peak
magnetic field strength oscillates between the northern and
southern hemispheres in an intermediate αω-dynamo model
(Glatzmaier and Roberts, 1993). Inhomogeneous boundary
conditions existing at the CMB can also give rise to differ-
ent time evolutions of fluid flow near the CMB in the two
hemispheres. It is, of course, not possible to reach a con-
clusion regarding the relative contributions of the two effects
towards the hemispherical differences in the temporal evolu-
tion of fluid flow near the CMB, based on the present study
alone.
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