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Cherenkov radiation in spatially dispersive media
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(Communicated by A. J. C. Wilson, F.R.S. — Received 12 May 1980)

The Cherenkov fields of a proton, and a neutron, moving with a relativistic
velocity in a spatially dispersive medium are studied in the rest frame of the
particle. The model of the medium used is typical of the behaviour of a
dielectric near an exciton transition, and includes as a special case a
screening medium like an isotropic plasma. The Fourier integral for the
field of a proton is shown to split up into three integrals, each of which is
identical to that in an ordinary medium but for a weight factor dependent
on the frequency of the Fourier component. Each of these integrals is as-
sociated with one mode of Cherenkov emission, with its own threshold. The
motion of the charge gives rise to three coaxial diffuse circular field cones
with an azimuthally symmetric intensity distribution. The output of
photons in each mode is evaluated. The field and output of a relativistic
neutron are also evaluated for different orientations of the magnetic
moment of the neutron relative to the direction of motion. It is shown that
there are only two cones in this case, consistent with the fact that magnetic
sources cannot excite the longitudinal plasma mode in a medium which is
spatially dispersive only in its electrical properties.

1. INTRODUCTION

The phenomenological electrodynamics of spatially dispersive media has been the
object of increasing research interest. This stems not only from the theoretical
significance that attaches to the problem of solving Maxwell’s equations with a non-
local polarization (Agarwal et al. 1974; Pekar 1957), but also from the variety of
effects that have their origin in the phenomenon of spatial dispersion. Some of these
effects, for example, optical activity (Landau & Lifshitz 1960) and Debye screening
(Pines & Bohm 1952), are very well known, while some others have been found only
recently, for example, double refraction in cubic crystals (Gross & Kaplyanskii
1960), Doppler spatial dispersion in a plasma (Neufeld 1961), anomalous reflexion
near an exciton band in a solid (Hopfield & Thomas 1963), and, in general, the
optical effects of polaritons (Burstein & Martini 1974).

Irrespective of the mechanism that is responsible for the non-local character of
polarization in space-time, it manifests itself as a dependence of the permeabilities
on the wavevector k in addition to the frequency w. This results in an increase in the
degree of the dispersion equation, which gives rise to the possibility of several waves
propagating in the medium in the same direction but with different velocities. In
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addition to this, the solutions of the equation £(k, w) = 0 are no longer restricted to a
zero group-velocity, so that longitudinal waves become an acceptable mode of
propagation in the medium.

Some of the consequences of incorporating a non-local polarization in classical
electrodynamics were reviewed by Rukhadze & Silin (1961). The optics of crystals
with allowance for spatial dispersion was investigated by Agranovich & Ginzburg
(1966). The controversial boundary-value problem of reflexion and refraction of
light from a spatially dispersive slab was solved entirely within the framework of
Maxwell’s electrodynamics by Maradudin & Mills (1973) and Agarwal et al. (1974).
More recently, the transient optical response of a spatially dispersive medium has
been investigated by Frankel & Birman (1977).

In this paper we work out the Cherenkov effect in an unbounded spatially
dispersive medium, adopting the simplifying features of the special Lorentz frame
moving with the particle. We calculate the radiation fields and output of a charge
(typified by a proton) and a magnetic dipole (typified by a neutron). The techniques
used in this paper follow from the earlier work on a non-dispersive medium by
Majumdar & Pal (1970). The model of the medium chosen describes well a dielectric
in the exciton régime (Agranovich & Ginzburg 1966).

We set up the Fourier integral for the potential of a charge in §2 and find that it
splits into three similar integrals, each of which corresponds to one possible mode of
Cherenkov emission. In § 3 we evaluate the radiative and Coulomb fields and from
these obtain the Cherenkov output in the various modes. In §4, we exploit the
duality symmetry of the augmented Maxwell’s equations and derive the fields and
output of a relativistic magnetic monopole and a magnetic dipole of arbitrary
orientation.

2. FOURIER SYNTHESIS OF THE CHERENKOV FIELD

We wish to evaluate the Cherenkov and Coulomb fields of a charge e moving with
a uniform velocity fc along the 2§ axis in an isotropic spatially dispersive medium.
As the Cherenkov effect and allied problems of electromagnetic radiation in material
media involve a relative motion of the sources and media of varying complexity,
the rest frame of the medium (2°) and that of the source (X) suggest themselves as
specially suitable for a solution of these problems. Whereas the source function is
simply described in X, the constitutive relations take simple forms in X°. For a
particle moving uniformly in an unbounded medium, an evaluation in X is simpler
than one in X° even though an isotropic, non-magneto-electric, spatially non-
dispersive medium in 2°appears to behave as a uni-axial, magneto-electric, spatially
dispersive medium in X' (Sastry 1978). This complication is however offset by the
field becoming static in the rest frame of the particle, and hence it can be derived
from two scalar potentials ¢. and ¢ (Majumdar & Pal 1970). If one uses the
technique of evaluating the output from the work done on the particle by the
retarding force set up by the polarization of the medium (Landau & Lifshitz
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1960), one needs to evaluate only one of these potentials, and that only at the site of
the particle.

Let the homogeneous, isotropic, spatially dispersive medium be characterized by
the following rest-frame permeabilities:

&(kY, 0°) = e(w?) [1 + M—} A(R°, ) = p(w®) (2.1)
’ (k%) — 3]’ ’ ’

where ¢, 1, 7 and i are in general functions of the frequency «°. Equation (2.1) gives
the general form of the permeabilities: with 2 and 2 chosen as appropriate func-
tions of the exciton mass and lifetime of the excited state, it describes a dielectric
medium in the exciton régime; with yy = 0 and # = 3!, it describes a screening
medium, for example, an isotropic plasma, », denoting the Debye length of the
medium; while, withy = 0, werecover an ordinary spatially non-dispersive medium.

The constitutive matrix in X can be evaluated by a Lerentz transformation of the
fourth-rank four-tensor 7},;, connecting the induction and field tensors H,; and F,
(Majumdar & Pal 1970). Inserting the matrix into Maxwell’s equations, one obtains

Y2(B2%H—1) exp (ik- r)
ge(r) = - 81t3f r BT B-y R (2.2)

where y? = (1— f2)!

Since the medium is assumed isotropic, the only preferred direction in the problem
is the x,-axis. Therefore there is symmetry in k, and k, as borne out by (2.2). The
special Lorentz transformation to the rest frame of the charge implies

K =vyky, k=ky k}=k, o°=ypfck,. (2.3)
Equation (2.3) shows that k, is proportional to the frequency ? in the rest frame of
the medium. Hence the k,-integral in (2.2) can be evaluated only if we assume the
explicit functional dependence of ¢, 4, 7 and ¥ on w°. The integrals over k, and k,
can be evaluated in any order since there is perfect symmetry in x, and x,. We shall
start by evaluating first the ks-integral and then the k,-integral, and expect to
obtain a final result symmetric in x, and ;. Substituting (2.1) and (2.3) into (2.2),
we obtain

$o(r) = — 53 f ’;’; ge exp (ik-r)d3k, (2.4)

where n2 = ¢u; De is a product of three factors:
De = 1 (B4, (25)
where 4% = Ekz—k]%, £ = y¥(pni—1) (2.6)
nd FISTAR AN Y| 10
sl BT e

n3 = (Y2 —1)/k3, (2.7¢)
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with k3 = w®2/c?. The denominator of the Fourier integral in the rest frame of the
charge is just the dispersion equation (in disguise) in the rest frame of the medium.
From this it follows that the triple product in (2.5) has its genesis in the existence of
three possible modes of propagation in the spatially dispersive medium. By working
out the appropriate dispersion equations in 2°, it can be checked that the n; of (2.7)
are precisely the three refractive indices of the medium, two for transverse modes
(j = 1,2) and one for the longitudinal plasma mode (j = 3).
The numerator Ne of (2.4) has the form

Ne(kg) = [(*5—A43) (A2n2— 1) +77] (K — A3 —17?). (2.8)

Splitting the Fourier integrals (2.4) into partial fractions, we obtain

3
#e(r) = 3 43, (2.9)
2 Ne(k2 = A2 ik
where $5(r) = _S_ft" %[ ( A;%—l‘i?; ( A%_’)A?)] exkféfj A?’) &k, (2.10)

the 4, j, k being cyclic permutationsof 1, 2, 3. The total field (2.9) is thus an uncoupled
mixture of the three partial fields (2.10).

3. EVALUATION OF THE FIELDS AND THE CHERENKOV OUTPUT

Cherenkov processes occur in those bands of frequencies where the imaginary
parts of the refractive indices are negligibly small. Radiation in these bands is
observable even at large distances from the line of motion of the charge. On the
other hand, it israpidly absorbed when the imaginary parts of n; become appreciably
large (Sastry & Parida 1978). The Cherenkov effect in these bands merely serves as
one more contribution to the stopping power of the medium in addition to excitation,
ionization and ohmic losses (Bohr 1948; Fermi 1940; Price 1955).

To evaluate the scalar potential ¢¢, we start by making the k;-integration in
(2.10), using the residue theorem in the complex k,-plane. The structure of the
field is decided by the configuration of the poles of the k;-integrand, with radiative
fields arising from the poles lying close to the real axis. Apart from the factor in the
square brackets, which is independent of ks, the k;-integrand of (2.10) is identical
to that in an ordinary (spatially non-dispersive) medium, and real poles occur only
if the particle velocity satisfies the condition

pni>1, j=1,2,3. (3.1)

The poles determine the three threshold velocities for the three modes of Cherenkov
emission.

For velocities of the particle exceeding the Cherenkov threshold of the jth mode,
the poles of the integrand lie on the real k;-axis aslong as k3 < £2k2, and shift to the
imaginary axis for k% > £2k3. Viewed from the rest frame X° of the medium, the
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field of the moving charge can be resolved into an angular spectrum of plane waves
that in general consists of both homogeneous and evanescent components. The
occurrence of these two types of plane waves corresponds respectively with the
presence of the real and imaginary poles in the kj-integrand in the rest frame 2 of
the particle. When poles occur on the real axis, the contour along it is indented in
accord with the usual requirements of causality on the sign of the infinitesimal
imaginary part of the refractive index n;. As the factor in the square brackets of
(2.10) is also independent of k,, we find that the k,-integral too is identical with that
in an ordinary medium but for a factor which is a function only of k;. We thus obtain
(Sastry & Majumdar 1974

¢?, Cherenkov — fﬂ’}’ F 7 (k,) exp (iky 2y)

x [@(ky) H{V( g;’ lkll p)—O(—k,) Héz)(gj lkll p)ldk,, (3.2)
where 6 is the Heaviside step function, H}), H are the Hankel functions .J, +iNV,,
p = (224 22)} is the distance of the field point from the line of motion, and

[(n—n3) (B2n2— 1)+ 92 /k3] (n}—nd —n?/k])

Fi= (3= nd) (3 — ) ’ (330
o [(n3—n3) (8n%— 1) +74%/k3] (n§ —n§—9*/k})
F=== (n3 —nj) (nz_n2§ = - (3:30)
4
Fs= 7 (3.3¢)

k§(n§ —n3) (n§—n3)’

Since k, is proportional to the frequency «°, the result of the final integration in
(3.2) depends on the detailed dispersive behaviour of n;(w?). If the medium is non-
dispersive, we can easily check that the Fourier transforms of the Hankel functions
in (3.2) give rise to the sharp infinite Mach cones in an ordinary medium. However,
since the medium under study is intrinsically dispersive, the cones become diffuse
and the Cherenkov pulses acquire a finite width. For the special choice of a step in
the refractive index, the final integration in (3.2) can be made; it yields a linear
combination of the Fresnel integrals C' and S, having an oscillatory build-up and
decay near the site of the non-dispersive field cone. If the particle velocity exceeds
the Cherenkov thresholds of all the three modes, three distinct coaxial diffuse
Cherenkov rings of light will be observed at three different angles from the line of
motion of the charge. Since the F¢, the intensity factors of these pulses, are all
independent of the azimuthal angle around the axis of the cones, we conclude
that the cones are circular in cross section with a uniform azimuthal intensity-
distribution.

If the particle velocity falls below the Cherenkov threshold of the jth mode, the
poles of the k,-integrand in (2.10) lie on the imaginary axis for all values of k, and k;,
and we now have

82 contoms = f ) exp (iky ) Ko(£} ] p) ke, (3.4)
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where the F'$ are the boosting factors that occurred in (3.2), K, is the Bessel function
of the third kind, and £;2 = — £2. The Fourier transform in (3.4) would give in & non-
dispersive medium the Coulomb potential with foreshortened ellipsoidal equi-
potential surfaces. In particular, for ¢ = 0 and B = 0, we obtain the well known
Yukawa potential in a screening medium:

¢Scr 47:6 -1 exp ( 777)/ (3'5)

where 771 is the Debye length of the plasma.
For an arbitrary particle velocity, we can thus write

3
¢ = 3 ¢5, (3.6)
ji=1
where ¢? = @(g?) ¢?, Cherenkov + @(5;2) ¢§, Coulomb* (37)

The energy output per unit path length is equal to the work done on the particle
by the retarding force produced by the polarization in the medium (Landau &
Lifshitz 1960), and can be obtained as

dWe

_ - ag°
=~ OB mpa, = = €B)mo = e (5) . (3.8)

Substituting (3.6) in (3.8), we then obtain
d*Np (@) _ 3, d2Ng,(e”)
dldw° —j=1 dldw®
d2N e,(w ) 0@ et uF$(w®)
oo~ &) fn?

(3.9)

with (3.10)

where N¢;(w?) is the number of photons of frequency «° emitted in the jth mode
(Jelley 1958). In the special case when the particle velocity exceeds the Cherenkov
thresholds of all the three modes, we obtain

d2N3 (0  e? oo
U dw® 41:0%,62%2]?11” 5(°). (3.11)

It can be checked from (3.3) that

z Fe(00) = fon?— (3.12)
so that in this case, the output takes the simple form
d2Ng () e? 1

A do" 4nc2h'u< ,?2772) (3.13)

a formula which is reminiscent of the well known Frank-Tamm result for the

Cherenkov output in an ordinary dielectric. We shall see in the Appendix that such
a result also holds in a very general spatially dispersive medium.
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In spectral regions where the imaginary parts of n; are appreciably large the poles
of the ky-integrand in (2.10) are not confined to the real and imaginary k;-axes, but
are scattered over the complex plane. Energy loss now occurs both below and above
the Cherenkov threshold (Sastry & Parida 1978), which isnow given by the condition
(Hoenders & Pattanayak 1976)

BAn5—n3) > 0, j=1,2,3, (3.14)

where n;r and ny; are the real and imaginary parts of ;.

4. CHERENKOV OUTPUT OF A NEUTRON

When augmented by the formal addition of magnetic monopoles and their
currents, Maxwell’s equations become perfectly symmetric. This symmetry allows
us to write down at once the magnetic scalar potential ¢m of a magnetic monopole m
from the electric scalar potential ¢e of an electric charge e, by making the following
substitutions (Majumdar & Pal 1970; Papas 1965):

ge—>om, e—>m, >0, A->é. (4.1)

However, the medium under study is asymmetric in its electrical and magnetic
properties, since it is spatially dispersive only in ¢ and not in Z. For this reason, the
magnetic scalar potential ¢™ of a magnetic monopole has a slightly different
structure from that of ¢¢ in (2.4), which is in fact much simpler, taking the form

m [ey:!Nm .
¢m(1') = —_8—1!_3 ZET)—E—eXp (lk' T) d3k, (42)
2
where Dm = TT (k2—A42), (4.3)
j=1
and Nm = (k- A2) (f*n?—1)+ 952 (4.4)

We see that the denominator of the Fourier integral now contains a product of
only two factors corresponding to the two transverse modes (j = 1,2). Thus a
magnetic monopole does not excite the longitudinal electric mode in our electrically
spatially dispersive medium. The threshold velocities are again given by (3.1) with
j = 1,2.The evaluation of (4.2) proceeds along exactly the same lines as that of (2.5),
and the final result is again formally identical with (3.6) but with the replacements
e —m, il = ¢. However, the F*(j = 1, 2) are now given by

_ kB(nd —n3) (22— 1) + 72

m
Fl k%(n%—ng) , (4.5@)
_ k§(ng—nd) (B2 —1) +7?
3= RB(ni—n) . (4.5b)

There are now only two diffuse Cherenkov cones, and the fields and output of
photons are again given by (3.2), (3.4), (3.6), (3.7), (3.9) and (3.10) with the sub-
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stitutions e — m, u = . When the particle velocity exceeds the Cherenkov thresh-
olds for both the transverse modes, we again obtain a simple and interesting result
like (3.13). However, the magnetic analogue of (3.5) will not contain any exponential
term. This is quite in order, as the static field of a magnetic monopole cannot be
screened off by a plasma made up of electric charges.

The dipole moment of a neutron can formally be viewed as being due to a juxta-
position of two monopole moments (Frank 1943; Balazs 1956), and the output of
energy can be written as (Sastry & Bhattacharya 1977)

dWM/dl = _MﬂMlaﬂaval(¢m/m)r=0’ (4.6)

where the M,(« = 1,2,3) are the components of the dipole moment along the
coordinate axes. It can easily be checked that the cross terms vanish in the output
(4.6) with ¢m given by (4.2), so that the total output is merely a sum of the three
diagonal terms (W™),. Because of the rotational symmetry of the medium around
the line of motion, (WM), = (WM), = (WM), and (WM), = (WM), are the only two
independent outputs. Substituting (4.2) in (4.6) and integrating as before, we obtain

d2NM(w®) 2, d2N}(®)

Tdod — 2 ddad (4.7)
R woe
where (W)" @(gj)4 ,84y204iin2F (0] (48)
d2NM (@0 N

5. CONCLUSIONS

In this paper we have evaluated the field and the Cherenkov output of a relativ-
istic proton, and a neutron, moving in a spatially dispersive medium. The model of
the medium chosen describes a dielectric in the exciton régime. We have found it
convenient to exploit the simplifying features of the rest frame of the particle. It is
found that a proton emits in general three Cherenkov rings, but a neutron can emit
only two.

The discussion in this paper is confined to isotropic spatially dispersive media. In
general, however, exciton transitions are frequently associated with crystalline
media (Agranovich & Ginzburg 1966). To compare the theoretical formulae with
possible experimental results on realistic samples, it is profitable to extend the
calculations of this paper to anisotropic spatially dispersive media. We note in this
connection that calculations of the Cherenkov field and output have so far proved
intractable in general for biaxial crystals, even in the absence of spatial dispersion.
The situation in respect of uniaxial crystals is more promising. The theory of the
Cherenkov effect in spatially non-dispersive uniaxial crystals is complicated but
well understood, and has found ample experimental confirmation in the photographs
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of the Cherenkov rings in calcite (Zrelov 1964). We hope that the theory of the
simpler case developed here of isotropic spatially dispersive media will serve as
the basis for an extension to include uniaxial anisotropy. A proton moving in such
a crystal can be expected to emit six Cherenkov rings, and a neutron four.

APPENDIX

When the particle velocity exceeds the Cherenkov thresholds of all the modes,
and all the modes lie in typical Cherenkov bands, the total output of photons is
given by (3.13). This result is not only simple, compact and formally identical to the
Frank-Tamm result, but is independent of the spatially dispersive parameters 7
and . This implies that when the single Cherenkov cone emitted by a relativistic
charge is split up into a number of cones owing to spatial dispersion near an exciton
band, the total photon output of all these cones is at best equal to that of the single
Cherenkov cone in the absence of the exciton band.

We wish to show that such a result also holds for a much more general model of
the medium. The dispersion formula (2.1) is a first-order approximation in k°2
(Agranovich & Ginzburg 1966). We now generalize (2.1) in such a manner that both
the permeability and the permittivity are expressed to an arbitrary degree in k02
by the formulae

é(ko, (()0) = 6((1)0) [1 + Z 1&‘3(‘—-%] (A la)
0
and ke, o) = o) [ 14 5 G o], (A1D)

It can easily be deduced from Maxwell’s equations that in the medium described
by (A 1) there can be im(m + 1)+ in(n+ 1)+ 1 transverse modes, m(m + 1) longi-
tudinal electric modes, and in(n+ 1) longitudinal magnetic modes. A charged
particle travelling through such a medium can excite at most p = [m(m+1)
+1in(n+1)+1] modes, but not the in(n+1) longitudinal magnetic modes.
Accordingly it can emit at most p distinct Cherenkov cones, while a magnetic
monopole can emit only ¢ = [im(m+1)+n(n+1)+ 1] cones.

The energy loss per unit path-length of a charged particle can then be written as

dWe ie? (y%(B%pn—1)k,dk,dk,dk, (A2)
dl ~ 8nd F[k +kE—v2p2p—1)k3)
Since we have
B = yky, K=k, K=k o°=yfck, (A3)
inserting (A 1) and (A 3) into (A 2) gives
dWe  ie?

——f’ﬂfak Ak, dk, dk (A4)
& T8 MGG
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where n = (eu)? is the background refractive index, and

G—ECk H(k2 A3), (A5)
ji=0
where A2 = y2(f2n2 — 1) k2 — k3, and n, is the refractive index of the ith mode. The
coefficients ¢; in the polynomial in (A 5) are in general functions of k;, k, and the
spatially dispersive parameters  and .
Splitting ¢ into partial fractions gives

G = r§1 A2' (A 6)
We note the interesting result that the coefficients F, become independent not only
of k; but also of k,. Hence, we can again evaluate the k,-integral in (A 4) by contour
integration in the Cherenkov bands. Since the F, are independent of k,, the k,-
integration also becomes trivially identical to that in an ordinary medium. This
means that the total Cherenkov output splits up into an uncoupled mixture of p
Cherenkov outputs (Jelley 1958):

d2N e?
dlde® ~ 4mc?h ﬂ2n2

Z F.O(pni—1). (A7)

If the particle velocity exceeds the Cherenkov thresholds of all the p modes, we
have for the total output,

d2N e?
(dl dw® )tot dmc’h ﬂ2n2 Z £ (A8)

Equating (A 5) and (A 6) and comparing the coefficients of k3®—D on either side,
we obtain

T E=0 (A9)
Substituting (A 1)—(A 4) into (A 5), we obtain
Cpy = fn2—1. (A 10)

(We do not present the detailed calculations here as they are unwieldy, although
the final result is very simple.) We thus have

dzN e? 1
(dl dwo) tot i (1 - ﬂgnz) ’ (A11)

which is identical to (3.13). This proves the assertion stated at the beginning of the
Appendix. By using the substitutions of (4.1), we can check that an identical result
holds for the total photon output of a magnetic monopole.
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