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ABSTRACT
The stability of acoustic modes

trapped in the solar envelope is studied

in the framework of linearized perturba-

tion theory, by incorporating the mechani-
cal and thermal effects of turbulence on
the mean flow through the eddy transport
coefficients. Many of these acoustic

modes are found to be overstable, with the
most rapidly growing modes occupying a -
region centred around 3,2 mHz spread over
a wide range of length-scales. The numeri-
cal results turn out to be in reasonable
agreement with the observed power-spectrum
of the five-minute oscillations. It is
demonstrated that these oscillations are
most likely to be driven by a simultaneous
operation of the k-mechanism and the
turbulent conduction mechanism, the
dominant contribution to the generation of
self-excited acoustic waves arising from

the turbulent mechanism.

The discovery of solar five-minute oscillations

by Leighton, Noyes and Simon (1962) has provided a
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very valuable tool to probe the interior of the sun.

The selence of solar seismology originated with the

observations ol Deubner (1975) who resolved the
apatial and temporal structure of these oscillations.
A detailed power-spectrum of the five-minute oscilla-

tions of high degree (spherical harmonic degree

¢ > 150) was provided by the work of Rhodes, Ulrich
and Simon (1977) and Deubner and Rhodes (1979). The
low degree oscillations (& < 3) were detected by
Claverie et al (1979) and Grec et al (1980) using the
integrated sunlight and the gap between the observa-
tions of high degree and those of low degree was
bridged by the recent observations of solar oscilla-
tions of intermediate degree (1 < % < 150). These
observations have confirmed the suggestion of Ulrich
(1970) and Leibacher and Stein (1971) that the five-
minute oscillations represent non-radial acoustic modes

trapped in the solar® envelope.

The important question of the excitation mechanism
responsible for these oscillations was addressed by
Ando and Osaki (1975) and Ulrich and Rhodes (1977). The
stability of non-radial oscillations in a realistic
solar envelope model was investigated by these authors
with full effects of radiative exchange included,
although the interaction between turbulent convection
and oscillation was neglected. This situation was
remedied by Goldreich and Keeley (1977) by incorporat-
ing the influence of turbulent convection on the
stability of acoustic modes which were shown to be

stabilized by the presence of turbulent viscosity.

It is well known that, except for the top few
tens of kilometers, the major fraction of the total
flux in the solar envelope is transported by convection.
Furthermore, the turbulent conductivity is much larger
than the radiative conductivity for the most part of

the convection zone. Therefore, the turbulence is
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"expected to play a major role in modulating the heat

flux and oscillations. This prompted Antia, Chitre and
Narasimha (1982) to embark on a study of the over-
stability of acoustic modes in the solar envelope by
approximately including the mechanical and thermal
effects of turbulence through the eddy transport

coefficients.

The governing equations for this purpose are the

usual hydrodynamical eguations:
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Here Mg is the coefficient of turbulent viscosity, P
the thermodynamic pressure including gas and radiation
pressure, g£ the turbulent pressure, Et the turbulent
energy density, F is the total flux made up of the
radiative flux, ER and convective flux, Ec. The
radiative flux calculated in the Eddington approxima-

tion is given by
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The convective flux is computed adopting the standard

mixing length formalism. Thus,




Ec = —Kt %— Vs, where the turbulent heat conductivity

K

€ apCpWL. In this expression, a js #n efficiency
factor of order unity, L is the mixing length and W the
mean convective velocity. The foregoina equations are
linearized and the generalized eigenvalue problem is
solved numerically with realistic boundary conditions

to obtain the complex eigenvalues.

Many of the acoustic modes trapped in the solar
envelope turn out to be overstable with the most un-
stable modes occupying a region centred around a period
of 300 s. The calculations in fact show that turbulent
heat exchange plays a significant role in destabilizing
the acoustic modes. In an earlier analysis Ando and
Osaki (1975) had concluded that the acoustic modes are
largely overstabilized by the k-mechanism operating in
the hydrogen fonization zone, while our analysis indica-
ted that a simultaneous operation of the k-mechanism
and the turbulent conduction mechanism is responsible
for the excitation of the five-minute oscillations, the
latter making the dominant contribution to the genera-
tion of self-excited acoustic anes. It should be
stressed that both the radiative and turbulent conduc-
tion mechanisms have their origin in the strongly
superadiabatic region near the surface, but the
efficiency of the turbulent mechanism is larger by a

factor (cf Unnc, 1976)

In adopting an expression for the turbulent
viscosity we follow essentially the treatment of
Goldreich and Keeley (1977) and write
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‘\)t = o, a WLE’nin {l, (l/wtc)z}],

where Oy is the turbulent Prandtl number, tc = L/W is
the turn-over time for the convective element at that
depth and w the frequency of the oscillatory mode
under consideration. The factor in the square brackets
ensures that the contribution from only those eddies
whose turn-over time is < the period of the given mode

is included. The parameter o, is adjusted so as to

obtain the best possible agrzement between the length
and time-scales of the resultant convective modes with
the corresponding nbservations of granulation and
supergranulatibn, Th. value of o, turns out to lie in
the range of 0.2 - 0.3 1¢ a typical convection zone
having a thickness of ~ 200,000 km. It is gratifying
to fjnd that the same model yields frequencies of
acoustic modes which are in reasonable agreement with
the observations of Deubner, Ulrich and Rhodes (1979)
for high degree (%) acoustic modes and with Duvall and

Harvey (1983) for intermediate values of 1.

The results of the stability calculations are
displayed in the accompanying figure which shows the
contours of constant stability coefficient n (= growth

rate/frequency) of a given acoustic mode in the hori-
zontal wave number, kh-frequency, w diagram. The outer-

most contour éorresponds to the marginally stable case
(n = 0), within which all the modes are unstable, while
the modes outside this region ares stable. We make the
plausible assumption that only those modes with signi-
ficant growth rates will have substantial observed
power. It is interesting to note that the region in the
figure where n > 10—4 approximately coincides with the
region where substantial amount of power has been
observed. In particular, the high frequency cut-off

yielded by our analysis around 4-5 mHz, more or less
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% The contours of equal stability coefficient 71 are shown
in the (w-0) diagram where the crosses (X) denote the stable

modes and open circles (0) the unstable modes.

independent of &, is in rough agreement with the obser-
vqtions of Duvall and Harve, (1983). Furthermore, for
low %, the lower harmonics are either stable or have an
extremely small growth rate - this is consistent with

the low observed power in these harmonics.

Our analysis indicates, in agreement with the
earlier results of Ando and Osaki (1975) that the most

unstable acoustic modes are spread over a region centred
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mainly around 3.2 mEz with a wide range of horizontal
length scales. However, there is one significant
difference, namely, we get closed contours of the
stability coefficient n with a distinct peak, while Ando
and Osaki have open contours with n increasing with <.
This is clearly the influence of turbulent viscosity
included in our work which because of its effectiveness
at short length scale end decreases the growth rates at

high 2%.
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