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1. Introduction

After the seminal models of Vito Volterra and Alfred James Lotka in the mid 1920s
for predator-prey interactions, mutualist and competitive mechanisms have been studied
extensively in the recent years by researchers. There are so many references in this
context, we have just cited here some books (e.g. see, [14, 16–18, ?] and the refer-
ences therein). Similarly, after the pioneering work of Kermack–McKendrick on SIRS
(susceptible-infective-removal-susceptible) epidemiological models have also received
much attention from scientists. Relevant references in this context are also vast and
we shall again mention here some books (see [1, 2, 4], to mention a few). But little
attention has been paid so far to merge these two important areas of research (see
[7, 21]). In this paper, we shall put emphasis in such an eco-epidemiological system.
We consider a three species eco-epidemiological system, namely, sound prey (suscep-

tible), infected prey (infective) and predator. We consider the case when the predator
mainly eats the infected prey. This is in accordance with a previous model by Hadeler
and Freedman [7] which describes a predator-prey model where the prey is infected
by a parasite, and the prey in turn infects the predator with that parasite. The infec-
tion weakens the prey and increases its susceptibility to predation, while no predator
impairing e�ect is accounted for. While the paper is mainly theoretical and does not
address any speci�c situation, the reader may �nd several examples in [7]. We de-
rive persistence and extinction conditions of the populations and we also determine
conditions for which the system enters a Hopf-type bifurcation. Moreover, we observe
that the bifurcated branches are supercritical in some parametric region space in a
special case when the predator response function is a Holling-type II function.

0362-546X/99/$19.00 ? 1999 Elsevier Science Ltd. All rights reserved.
PII: S0362 -546X(98)00126 -6



748 J. Chattopadhyay, O. Arino / Nonlinear Analysis 36 (1999) 747–766

The organization of the paper is as follows: Section 2 deals with some basic results,
e.g. positivity, uniqueness, boundedness of the solutions. Using these properties and also
making an assumption on the intrinsic growth rate of susceptible population, we convert
our three-dimensional system to a two-dimensional one. A seemingly awkward fact
about our model is that positivity is not preserved in the whole positive octant. In fact,
it holds only if the total prey population is not too much above its carrying capacity (see
Section 2.3). This re
ects a resolute choice for this study: the demographic dynamics
of the prey is supposed to be fast, compared to the other two processes, the epidemics
and the demographic dynamics of the predator. Our main result for the prey-predator
dynamics (Theorem 19) assumes that the parameter r, which is the growth rate of the
prey, is large enough. So, oscillations around the carrying capacity of the prey are not
signi�cant in this work. And, the main practical conclusion of our study is that the
asymptotic behaviour of the system is very close to the one of the two-dimensional
system we just mentioned, to which it reduces when r=+∞. The study when the
prey population is near to a constant is a distinctive feature of our model, compared
to previous models by Hadeler and Freedman [7], and Venturino [21]. Section 3 is
devoted to studying the dynamical behaviour of the linearized two-dimensional system
around each of the equilibria. In Section 4, we present conditions for supercritical Hopf
bifurcation. We remark without a proof that the Hopf bifurcation is subcritical in some
parameter range. Finally, in Section 5, we show, by using a Poincar�e map, that our
analysis for the two-dimensional system is also valid for the three-dimensional system,
for r large. Mathematically, this result belongs to the category of singular perturbations
results.The paper ends with a discussion on the model and the assumptions.
Part of the mathematical analysis will sound familiar to readers experienced in the

study of two-dimensional systems. This is particularly true for Sections 3 and 4 de-
voted to the study of the asymptotic behaviour of the solutions and the onset of Hopf
bifurcation. By now, there are many references of extensive treatments of Hopf bifur-
cation in o.d.e, a small selection of which are the following books: [13, 10, 8, ?]. So,
we are not claiming here the least novelty in the methods we used. Novelty lies in the
ecological framework upon which the model is built. With regards reference sources
for the computations entailed by Hopf bifurcation, to our knowledge or possibly to
our taste, none of the presentations of the Hopf bifurcation theory can be considered
the easiest book of recipes in the world, which by its simplicity would outclass all
the others. As Hassard et al. [10] put it “the question, what is the “best” technique
(when analysing a Hopf bifurcation), has no single answer” (p.92). In fact, system
(5) with a Holling-type-II nonlinearity (given in Eq. (3)) was studied some years
ago by Freedman and Waltman [5] and Kazarino� and Van Den Driessche [10]. The
method used in [10] was developed by Hassard and Wan [8]. The estimates given in
Theorem 15 are based on computations made by Talibi in [20]. Our choice of the
method developed in [20] is justi�ed �rst of all by the fact that our familiarity to
it is greater. We want also to stress that the bifurcation analysis established in [10]
corresponds to the near-linear Holling-type function, while the sensititve paraemter in
our work is the conversion rate � of the diseased prey into new predators. Investigating
the formula stated in [10] in that situation would have cost probably as much work as
the direct computation performed here.
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2. The mathematical model

2.1. The basic ecological assumptions

We shall consider an eco-epidemiological system consisting of three species, namely,
the sound prey (which is susceptible), the infected prey (which becomes infective by
some viruses) and the predator population.
For simplicity, we assume that the sound prey population grows according to a lo-

gistic law involving the whole prey population (sound and infected), which is best
regarded as a purely descriptive equation. The transmission rate among the sound prey
populations and the infected prey populations follows the simple law of mass action.
The disease is spread among the prey population only and that disease is not genetically
inherited. The infected populations do not recover or become immune. The predator
population predates mostly the infective prey and the functional response (trophic func-
tion) is of Holling-type II (Michaelis–Menten kinetics).

2.2. The basic di�erential equations

From the above assumptions we can now write the following di�erential equations:

ds
dt
= r(s+ i)

(
1− s+ i

k

)
− bsi − �
1(s)y;

di
dt
= bsi − 
(i)y − ci;

dy
dt
=(�
(i) + ��
1(s)− d)y:

(1)

System (1) has to be analysed with the following initial conditions:

s(0)¿0; i(0)¿0; y(0)¿0; (2)

where, s is the number of sound prey, i the number of infected prey population, y the
number of predator population, r the intrinsic growth rate of sound population, k the
ecosystem support or environmental carrying capacity, b the rate of transmission from
sound prey populations to infected prey populations, c the natural death rate of infected
prey(not due to predation), d the death rate of predator population, � the conversion
rate, and 
(i) and �
1(s) the predator response functions.

Remark 1. It is to be noted here that we assume that 
(i) and 
1(s) are increasing
and bounded functions of i and s: As an example; we shall consider these response
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functions as of Holling type II; given by


(i)=
mi
a+ i

(3)

and


1(s)=
m1s
a1 + s

: (4)

Remark 2. m and m1 are the search rates and a and a1 are the search rates multiplied
by handling times (see; [15]).

Remark 3. In the subsequent part of this paper we shall consider the case �=0; that
is to say; we assume that the predator eats only the infected prey. The case when
the predator eats also a small fraction (�¿0; small) of the sound prey will be brie
y
discussed in Remark 20.

2.3. Some basic results

We �rst observe that the right-hand side of Eq. (1) is a smooth function of the
variables (s; i; y) and the parameters, as long as these quantities are non-negative, so
local existence and uniqueness properties hold in the positive octant.
From the third equation of Eq. (1), it follows that y=0 is an invariant subset, that

is, y≡ 0 if and only if y(t)= 0 for some t. Thus, y(t)¿0 for all t if y(0)¿0: The
same argument follows for the second equation (1) if we assume 
(0)= 0.
So, either i=0 in which case the �rst equation of Eq. (1) reduces to a pure logistic

law veri�ed by s, and y is going to zero asymptotically; or, i(t)¿0 for all t. Summing
up the �rst two equations of system (1), one obtains

d
dt
(s+ i)= r(s+ i)

(
1− s+ i

k

)
− 
(i)y − ci;

from which one can see that

(s+ i)(t0)≤ k ⇒ (s+ i)(t)≤ k; for t≥ t0;
and (s+ i)(t) is asymptotically ≤ k.
We should notice that positivity of s is not guaranteed and, in fact, if we assume

that s(0)= 0 and i(0)¿k then we have s(t)¡0 for t¿0 small. This inadequacy is of
course entailed by the assumed dependence of the logistic part of the equation upon
s+ i. There is no problem, however, if s+ i≤ k. One can also correct the problem by
putting (1− (s+ i)=k)+ instead of (1− (s+ i)=k). This means that the logistic part of
the equation is just counting births and there is no birth if the total population exceeds
the carrying capacity.
Throughout the paper, we will assume that

s(0) + i(0)≤ k:
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We can also relax the above condition and allow s(0) + i(0) to exceed k; that is;

s(0) + i(0)≤ k + c
b
; i(0)≤ k:

With these latter conditions on the initial values, we have

s(t) + i(t)≤ k + c
b
; i(t)≤ k; ∀t≥ 0:

In this case, we �rst show that: i(t)≤ k ∀t≥ 0: In fact, if this were not true, and for
some t0≥ 0; we have i(t0)= k, we will have at the same time s(t0)≤ c=b, therefore,
di=dt(t0)≤ 0: By standard argument on invariant subsets, we conclude that: i(t) cannot
exceed k. Now, this in turn implies that s(t)≥ 0 for all t≥ 0, because, at each point
where s(t)= 0, we have

ds
dt
= ri(t)

(
1− i(t)

k

)
≥ 0; since 0≤ i(t)≤ k:

So, we can allow s+ i to exceed k provided that it does not exceed

k +
c
b

and i≤ k:
We have 0≤ s; i≤ k. It remains to show that y is ultimately bounded too.
Adding together the second equation and 1=� times the third equation of system (1),

we obtain

d
dt

(
i +

1
�
y
)
=(bs− c)i − d

�
y≤ bk 2−min(c; d)

(
i +

1
�
y
)
;

which implies that

i(t) +
1
�
y(t)≤max

(
bk 2

min(c; d)
; i(0) +

1
�
y(0)

)
:

This also implies that

i(t) +
1
�
y(t)≤ bk 2

min(c; d)
for all t≥ 0;

if it is true for t=0; and

lim
t→+∞ sup

(
i(t) +

1
�
y(t)

)
≤ bk 2

min(c; d)

for solutions de�ned up to +∞, as long as the solution is de�ned on positive axis.
We summarize the above results in the next proposition.

Proposition 4. Every solution initiating in the positive octant and such that s(0) +
i(0)≤ k satis�es the same properties for all t≥ 0 as long as it exists. Moreover; the
following inequality holds:

i(t) +
1
�
y(t)≤max

(
bk 2

min(c; d)
; i(0) +

1
�
y(0)

)
:
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As a consequence; every solution with initial value in R3 verifying; in addition the
condition (s+ i)(0)≤ k can be extended up to +∞.

Remark 5. In system (1), the number r represents the growth rate of the population.
The greater r; the faster the population reaches its carrying capacity. For r=∞; one
can consider that s + i= k and system (1) reduces to the following two dimensional
system: Using s+ i= k; in (1), we obtain:

di
dt
= bi(k − i)− 
(i)y − ci;

dy
dt
=(�
(i)− d)y:

(5)

The relationship between systems (1) and (5) will be examined in detail in Section 5.
The next section is devoted to the study of sytem (5).We shall determine the bio-

logically feasible equilibria and shall carry out the local stability (instability) properties
of the linearized system (5) around each of the equilibria.

3. Equilibria and local stability

In this section we are dealing with a two-dimensional system obtained by taking
r=+∞. We �rst consider the equilibria of system (5 ), and discuss their local stability
properties in terms of the linearization of system (5) near each equilibrium. Next, we
consider global asymptotic properties for the solutions of system (5), namely, we will
show that apart from the solutions lying on the boundary of the positive quadrant –
each solution initiating from the interior of the positive quadrant approaches the orbit
of a periodic solution. Finally, we will show that for some values of the parameters
some of the periodic solutions are asymptotically stable. The latter result which is
obtained as an application of the Hopf bifurcation theorem is preparatory to a result
established in Section 5 of existence of a periodic solution for the complete system,
for r large enough.
The model equation (5) has the following nonnegative equilibria, namely,

E0 : (0; 0);

E1 :
(
k − c

b
; 0
)

and

E∗ : (i∗; y∗);

where

�
(i∗)=d

and

y∗=
�i∗ ((bk − c)− bi∗)

d
:
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The boundary equilibrium E1 exists if

k¿
c
b

(6)

and the existence condition for the positive equilibrium E∗ is



(
bk − c
b

)
¿
d
�
: (7)

Remark 6. From Eq. (5), it is clear that k¿c=b is necessary for the existence of
component of i∗ of the positive equilibrium. It is to be also noted here that this
condition implies the existence of E1: Hence; we can conclude that the existence
of E∗ implies the existence of E1; but the reverse is not true. It is also interesting
to observe that the equilibrium E1 arises from E0 for the value of the parameter k
equal to c=b and persists for all k¿c=b; while E∗ arises from E1 when k reaches the
value c=b+ 
−1(d=�) and persists beyond this value.

Now, we shall present the existence condition of the equilibria taking into consider-
ation the predator response function as de�ned in Eq. (3). It is to be noted here that
the existence conditions for zero and boundary equilibria are the same as in the general
case. The only variation is in the computation of i∗ and y∗: In this particular case, i∗

and y∗ should be read as

i∗=
ad

�m− d
and

y∗=
a�{b(k(�m− d)− ad)− c(�m− d)}

(�m− d)2 : (8)

It is clear that the existence condition for this is

�m¿d+
bad
bk − c :

The local stability analysis can be performed by computing the variational matrices
corresponding to each of the equilibria.
Let V0 be the variational matrix corresponding to E0: V0 is given by

V0 =

(
bk − c 0

0 −d

)
(9)

and, consequently, the eigenvalues are

�1 =−d(d¿0) and �2 = bk − c:
Now, we can state the following lemma:

Lemma 7. E0 is locally asymptotically stable (LAS) if k¡c=b and is unstable if
k¿c=b: Moreover, when E0 is LAS it is in fact globally asymptotically stable (GAS).
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Remark 8. bk¡c means that the maximal renewal rate of infected is less than their
natural mortality rate. Therefore, i→ 0 and y→ 0:

Remark 9. It is to be noted here that when E0 is LAS, then the other two equilibria
E1 and E∗ do not exist.

Now, we shall discuss the dynamical behaviour of system (5) around E1.
Let V1 be the variational matrix corresponding to the equilibrium E1:V1 is given by

V1=

(
c − bk −
(i∗)
0 �
(i∗)− d

)
(10)

and, consequently, the eigenvalues are

�1 = c − bk and �2 = �
(i∗)− d:
Now, we can state the following lemma.

Lemma 10. E1 is LAS if both
(i) k¿c

b
and

(ii) �
(i∗)− d¡0
hold true. And E1 is unstable if one of the above-mentioned conditions is violated.

Remark 11. The point is that condition (i) of the above lemma is necessary for the
existence of E1 as a feasible equilibrium, that is, a point in the positive quadrant and
hence only violation of condition (ii) gives rise to instability of the system around
E1: It is also to be noted here that condition (ii) contradicts the existence criteria
for the strictly positive equilibrium. Hence, we �nally conclude that if E1 is LAS
then E∗ does not exist. These facts are in accordance with the observations made
in Remark 6 about the appearance of E1 and E∗: the curve constituted by the pairs
(k; E1) in (R×R2) branches o� the curve R×{E0} as k crosses the value c=b; where
a simple bifurcation occurs. At this point, E0 loses its stability which passes to the
new equilibrium. This is the phenomenon known as an “exchange of stability” through
bifurcation (see [19]). The same phenomenon takes place at the cross point of the
branches determined by E1 and E∗ respectively.

3.1. Biological interpretation

If E1 is LAS then the predator population will not persist, but on the other hand,
the infected population will survive. Necessary and su�cient conditions for this sort
of phenomenon are the following:
The environmental carrying capacity should have an upper threshold value deter-

mined by the ratio of the death rate of infected populations and the transmission coef-
�cient of susceptible and infected individuals.
Now, if we consider the predator response function (3), then E1 is LAS if both

(i) k¿c=b
and
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(ii) �m¡d+ bad=bk − c
hold true. And it is unstable if one of the above-mentioned conditions is violated.
That is, in this case, �m; the product of the conversion rate and the search rate
must have to attain a lower threshold value.
Now, we shall investigate the local stability properties of system (5) around the

strictly positive equilibrium E∗ .
Let V2 be the variational matrix corresponding to the equilibrium E∗. V2 is given by

V2 =
(
−bi∗ + 
(i∗)y∗

i∗ − 
′(i∗)y∗ −
(i∗)
�
′(i∗)y∗ 0

)
: (11)

The characteristic equation of Eq. (11) is

�2 − �
(

(i∗)y∗

i∗
− bi∗ − 
′(i∗)y∗

)
+ �
(i∗)
′(i∗)y∗=0: (12)

From above, it is clear that if (
(i∗)y∗=i∗ − bi∗ − 
′(i∗)y∗)¿0; then the positive
equilibrium is unstable and if it is less than zero then the system around the positive
equilibrium is stable. Hopf bifurcation occurs when it is equal to zero.
Now, if we consider the predator response function (3), then the characteristic equa-

tion of system (5) around the positive equilibrium can be written as

�2 + �i∗
(
b− my∗

(a+ i∗)2

)
+
�am2y∗i∗

(a+ i∗)3
= 0: (13)

Substituting the value of y∗ from Eq. (8) in to (13), we obtain

�2 + �
bi∗

a+ i∗
(
a+

c
b
+ 2i∗ − k

)
+
�mai∗(bk − bi∗ − c)

(a+ i∗)2
= 0: (14)

A Hopf bifurcation takes place at

k = a+
c
b
+ 2i∗ (15)

and we shall denote this value by k0:
Thus, we �nd a value k0, below which the system is stable and above which it is

unstable.
In the next section, we shall show that the bifurcation branches are supercritical in

some parametric region space for this particular situation and from which one can draw
the bifurcation diagram with respect to k.

Proposition 12. If kb¿c and �
(k − c=b)¿d then for any (i0; y0) in the positive
quadrant with y0¿0; !(i0; y0)∩{E0; E1}= ∅:

Proof. First, we shall prove that E1 =∈!(i0; y0): Assuming the contrary, for some (i0; y0)
one can determine a double sequence tn; qn : tn→∞; qn→∞ and �¿0 such that i(tn)→
k − c=b; y(tn)→ 0 and i(tn + qn)= − � + k − c=b. Now, (k − c=b)¿i(tn + q)¿ − � +
k− c=b; 0≤ q¡qn: Therefore, we can build a solution (i; y) such that i(0)= k− c=b−�
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and k − c=b≥ i(t)≥ k − c=b − �; ∀t≤ 0 and �¿0 as small as we wish. Choose �¿0
so small as to make �
(k− c=b−�)¿d: This implies y(t)= 0;∀t≤ 0 (otherwise y will
be unbounded).
Now,

di
dt
= (bk − c)i − bi2≥ 0

⇒ i(t)≤ i(0); ∀t≤ 0

⇒ i(t)≤ k − c
b
− �; ∀t≤ 0:

Combined with the fact that i(t)≥ k − c=b − �; ∀t≤ 0, we conclude that i(t)= k −
c=b − �; ∀t≤ 0: Substituting this value for i in the above di�erential equation, we
obtain di=dt≥ �bi¿0; t≤ 0; which yields a contradiction and, therefore E1 =∈!(i0; y0):
This proves our �rst case.
Now, we shall prove E0 =∈!(i0; y0): As in the previous case, assuming it is not

true, one can determine a double sequence tn; qn : tn→∞; qn→∞; i(tn); y(tn)→ 0; i(tn+
qn)= � or y(tn+ qn)= � and (i; y)(tn+ q)∈
; 0≤ q≤ qn and 
= [0; �]× [0; �]: From
this, we deduce (i; y) such that (i(0); y(0))∈ @
 and (i(t); y(t))∈
; ∀t≤ 0: For �¿0
small enough, we can conclude that y=0; and i(t)→ k − c=b as t→−∞ and this
implies that E1 ∈!(i0; y0): We have already established that it is impossible. Hence
E0 =∈!(i0; y0) and this completes our proof.

Now, we shall present the following remark:

Remark 13. As both eigenvalues of E∗ have a real part greater than zero, each
solution stays away from a neighbourhood of E∗:

Now, we are in a position to describe the asymptotic behaviour of solutions in the
case when E∗ is unstable.

Theorem 14. If the strictly positive steady state is unstable, then every strictly posi-
tive solution of system (5) tends to a non-constant periodic solution.

Proof. We have already established the fact that the system is bounded and also E∗ is
unstable. We have also proved in the above proposition and the Remark 13 that none
of the equilibria E0; E1 nor E∗ is in the omega limit set of such solutions. Thus, as
a result of the Poincar�e Bendixson theorem, the omega limit set of any initial value
(i0; y0) in the interior of the positive quadrant is made of a single closed orbit of a
periodic solution, that is, any such solution approaches asymptotically the orbit of a
single periodic solution-this ascertains our claim.

In the next section, we shall �nd out the direction of the Hopf bifurcation branch.
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4. Direction of Hopf bifurcation

We consider the Holling-type-II predator response function.

Theorem 15. If �m; the product of the conversion and the search rate, satis�es the
following inequalities:

d+
bad
bk − c¡�m¡min

(
d

1− b ; ab
√
�0 + d− 3ad

)
;

where �0 =
√
abd; then the bifurcation branches are supercritical.

Proof. To prove this result we shall follow the approach of Talibi [20, Ch. 7]. We
shall normalize system (5) by the following change of variables (time scale). We keep
the same notation i; y and t for the new variable.(

i′(t)
y′(t)

)
=

(
i( 1√

�0
t)

y( 1√
�0
t)

)
(16)

with

�0 =

√
�mai∗(bk − bi∗ − c)

(a+ i∗)2
=
√
abd;

we obtain

d
dt

(
i
y

)
=

( 1√
�0
{bi(k − i)− 
(i)y − ci}
1√
�0
{(�
(i)− d)y}

)
=
(
f1(i; y)
f2(i; y)

)
: (17)

Linearizing the above sytem around the positive equilibrium E∗ we obtain the eigen-
values which are purely imaginary with the imaginary part equal to 1.
Let k(�) be the value of the bifurcating parameter. If we write,

k(�)= k0 + �k1 + �2k2 + o(�2)

and using the main theorem of Talibi [20], we obtain that k1 = 0 and k2 is given by

k22�r1 + I + J =0; (18)

where

r1 =Re
d
dk
(�(k0));

I =
�
6
{3�1qu3 + 3�1quv2 + 3�2qvu2 + 3�2qv3};

J =
�
2

{
�1pu2�2pu2 − �1pu2�1puv− �1puv�1pv2 + �2pu2�2puv
+ �2puv�2pv2 − �2pv2�1pv2

}
;

�1=2u∗; �2=2v∗; (19)
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and the derivatives

p=D2f(k0; E∗); q=D3f(k0; E∗):

Here, u+iv is the vector associated with the eigenvalue i of the characteristic equation
obtained from the linearized equation and u∗ + iv∗ is the row vector in C2 such that

u∗u= 1
2 =−(v∗v)

and

u∗v= v∗u=0:

A few computations yield the following expression (see the appendix):

k2 =
�m
d

(
�m− d
a�m

)2 [
−3ad+ d− �m+√

�0ab+ 2bd
(
�m− d
��0

)

− 2ma2d
�0

(
�m− d
a�m

)2]
: (20)

The direction of the bifurcation branch is given by the signature of the value of k2
and after a little algebraic calculation we can conclude that the bifurcation branches
are supercritical if the su�cient condition as stated in the theorem holds.

Remark 16. If the product of the conversion and the search rate has a lower threshold
value determined by �m¿max(d + bad=(bk − c); d=(1 − b); ab√�0 + d − 3ad); then
the bifurcation branches are subcritical. In this case the strictly positive equilibrium
is not GAS.

5. Relation between the two-dimensional and the three-dimensional system

It is important for the three-dimensional case to show that s+ i is ultimately bounded
below by k−Ck=r; for some C¿0; and that C can be chosen so that if s(0)+i(0)∈ [k−
Ck=r; k]; i(0) + (1=�)y(0)≤ bk 2=min(c; d), then this holds true for all t≥ 0.
In view of Proposition 4, we just have to show that s(t) + i(t)≥ k − Ck=r holds

for all t≥ 0. This will be concluded by �nding C so that (d=dt)(s + i)≥ 0 when
s+ i= k − Ck=r:

d
dt
(s+ i)= r(s+ i)

(
1− s+ i

k

)
− 
(i)y − ci

and

s+ i= k − Ck
r

gives

d
dt
(s+ i)=

(
k − Ck

r

)
C − 
(i)y − ci;
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so, we have,

d
dt
(s+ i)≥ k

(
1− C

r

)
C − 
(+∞)�bk 2

min(c; d)
− ck:

Now, it is su�cient to show that the right-hand side of the above expression is
greater than zero, which can be achieved by choosing C in the following way:

C1≤C ≤C2;
where

C1 =
(1−√

�)
2

r; C2 =
(1 +

√
�)

2
r

with

�=1− 41
r

(

(+∞)�bk
min(c; d)

+ c
)
:

Note that with �; b; k; c; 1=c; 1=d bounded above, we have

C1→ 
(+∞)�bk
min(c; d)

+ c as r→∞

while

C2→+∞;
so that there exist r0¿0 and C0¿0, such that (d=dt)(s+i)≥ 0; if s+i= k−kC0=r; r≥ r0:
We summarize the above results in the following proposition.

Proposition 17. It is assumed here that E∗ exists and is unstable. Then there exist
r0¿0; C0¿0 such that for each r≥ r0 every solution of Eq. (1) verifying i(0)≥ 0;
y(0)≥ 0 and i(0) + (1=�)y(0)≤ bk 2=min(c; d) and k − kC0=r≤ s(0) + i(0)≤ k; is such
that k−kC0=r≤ s(t)+i(t)≤ k; for all t≥ 0: We will denote Jr the subset of R3; de�ned
as,

Jr =
{
(s; i; y): s; i; y≥ 0; k − kC0

r
≤ s+ i≤ k; i + 1

�
y≤ bk 2

min(c; d)

}
:

Remark 18. The above proposition can be rephrased as Jr being positively invariant
for r≥ r0:

Now, consider an orbit Y of a periodic solution of Eq. (5), in the positive quadrant,
assumed to be orbitally asymptotically stable. We will show the following result:

Theorem 19. There exists r1≥ r0 so that for every r≥ r1; system (1) has a periodic
solution in the neighbourhood of the set [k − kC0=r; k]×Y . Moreover, one can de-
termine a neighbourhood U of Y in the plane such that the set [k − kC0=r; k]×U is
positively invariant with respect to the system.
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Before proving the theorem, let us draw its consequence for the systems we are
considering. In Section 4, we have established the fact that the bifurcation branches of
system (5) are supercritical in a certain parameter region space. When this is true, we
can take for Y the orbit of any of the periodic solutions which are on the branch of
bifurcation. The main condition of Theorem 19 is satis�ed, so the theorem applies to
this situation.

Proof. Choose a point A on Y:l is a straight line normal to Y at A. We will represent
l as the set

{(i; y)∈R2 : �(i; y)= 〈�0; (i; y)〉+ C1 = 0};
where �0 is 6= 0 and tangent to Y at A.
The assumption on orbital asymptotic stability implies that the Poincar�e map P

de�ned on l, in the usual way, satis�es the condition |P′(A)|¡1:
The periodic orbit associated with Eq. (5) veri�es the condition i(t)+(1=�)y(t)¡bk2=

4(min(c; d)) for all t: This in particular is true for A: Choosing an interval small enough
about A; we have i + (1=�)=y ≤ bk2=4(min(c; d)):
Now, restricting our attention to solutions in Jr; for such a solution the last two

equations of system (1) can be written as

di
dt
= b(k − i)i − 
(i)y − ci + b(s+ i − k)i;

dy
dt
=(�
(i)− d)y:

(21)

We shall treat Eq. (21) as a perturbation of system (5).
We shall build a Poincar�e map on a two-dimensional convex subset of R3, that is

(s+ i; i; y)∈
[
k − C0

r
; k
]
× l:

More precisely, we will restrict the map to a product

�r =
[
k − kC0

r
; k
]
× [−V; V ] (22)

for some V¿0, small enough. The interval [−V; V ] corresponds to a subinterval of
the line l, denoted the same way. 0 corresponds to the point A. First of all, V has to
be taken so small as to have (s+ i; i; y)∈�r ⇒ (s; i; y)∈ Jr . The possibility of such a
choice is ascertained by the above observation that A∈ Jr .
In view of Proposition 17, we already know that solutions of system (1) with initial

value in Jr satisfy

s(t) + i(t)∈
[
k − kC0

r
; k
]

for all t ≥ 0:

It remains to show that the (i; y) component takes its values in a certain subinterval
[−V; V ] of the line l. Restricting V further if necessary, the vector �eld associated
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with Eq. (5) at each point of [−V; V ] is close to its value at A. Therefore, it can be
made transverse to l uniformly in [−V; V ]. This can be made more precise:∣∣∣∣

〈(
b(k − i)i − 
(i)y − ci

(�
(i)− d)y
)
; �0

〉∣∣∣∣ ≥ � ≥ 0
for some �¿0 and all (i; y)∈ [−V; V ].
Now, take two time values t1; t2 (t1¡�¡t2), where � is the minimal period of the

periodic solution of Eq. (5), and, t2 − t1 will be chosen suitably small. Now, we have

�(i(t1); y(t1)):�(i(t2); y(t2))¡0

for every (i0; y0)∈ [−V; V ].
This implies that (i(t); y(t)) hits the line l at a time t ∈ ]t1; t2[ and this time is

unique, since the vector �eld is transverse to l.
By continuous dependence, the same property holds for the perturbed system (21).

So we can determine a Poincar�e map for system (1).
Finally, we shall show that the Poincar�e map takes its values in �r .
From now on, we consider an initial value (s0; i0; y0)∈�r; (s(t); (i(t); y(t))) is the

solution of system (1) associated with (s0; i0; y0). The Poincar�e map for system (1) is
the map Qr de�ned by

Qr(s0; i0; y0) = (s(t); (i(t); y(t))); t = t(s0; i0; y0);

from �r into [k− kC0=r; k]× l, where t is the �rst positive time when the solution hits
the plane �r close to [k − kC0=r; k]× {A}: t is determined by the equation

〈(i(t); y(t)); �〉=0:

We shall have to show that for that value of t, we have

(i(t); y(t))∈ [−V; V ]:

This will be done by evaluating the distance from (i(t); y(t)) to A. For this evaluation,
we introduce an auxiliary point denoted ( i(t); y(t)), the value at time t of the solution
of Eq. (5) starting from (i0;y0): We denote t the �rst positive time when (i; y)) hits
the line l close to (i0;y0).
Now, recall the assumption |P′(0)|¡1, then there exists �∈ [0; 1[, so that for V¿0

small enough and z ∈ [−V; V ], we have

|Pz| ≤ �|z|: (23)

If instead of Eq. (5), we consider a perturbation of system (5), of magnitude not
larger than C0=r; then provided we possibly restrict the [−V; V ] further, for some M¿0
and for each (i0; y0)∈ [−V; V ]; t ∈ [t1; t2], we have

|(i(t); y(t))− (i(t); y(t))| ≤ MC0
r
:
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Provided we choose t2 − t1 ≤ 1=r, and in view of the fact that solutions of system
(5) starting from [−V; V ] have a uniformly bounded derivative on any bounded time
interval, one obtains the following estimate:

|(i(t); y(t))− (i(t); y(t))| ≤ M ′

r
;

where M ′ = M ′(b; c; d; �; 
). Finally, using inequality (23), we have

|(i(t); y(t))− A| ≤ �V:
We are now in a position to conclude the proof of the theorem. Summing up the
right-hand sides of the three above inequalities yields

|(i(t); y(t))− A| ≤ MC0
r

+
M ′

r
+ �V:

If we choose r large enough, then Qr :�r → �r . For this , it is enough that

MC0 +M ′

r
+ �V ≤ V;

which gives

r ≥ r1 = max
(
MC0 +M ′

(1− �)V ; r0

)
:

Therefore, for each r ≥ r1; Qr has a �xed point in �r which corresponds to a periodic
solution of Eq. (1). Moreover, �r is positively invariant: this result corresponds to a
weak form of stability. This completes the proof of the theorem.

Remark 20. One can now extend our analysis to the case when � 6= 0; that is; one
may assume that the predator predates also the sound population. Assuming �¿0
small enough; for example; so that ��
1(k)¡d; one obtains an ultimate bound for
i + y=�; similar to the one derived in Proposition 4. Then; one can determine a
positively invariant subset like the set Jr given in Proposition 17. Finally; one can
determine V¿0 and a value r2 such that for r¿r2; �r ⊂ Jr and Qr :�r → �r: Thus;
the conclusion of the theorem can be extended to the case when �¿0 small enough.

6. Conclusion

Here, we proposed and analysed a model of a three species eco-epidemiological
system, namely, sound prey, infected prey and predator. We considered the predator
response function as an increasing and bounded one. In particular, we assumed that
this function is of Holling-type II, as an example.
Using the boundedness property and making an assumption on the intrinsic growth

rate of the susceptible population, we reduced our three dimensional system to a two
dimensional system. And then we observed the following main results:
(1) equilibrium E1 arises from E0 for the value of the parameter k equal to c=b and

persists for all k¿c=b, while the strictly positive equilibrium E∗ arises from E1
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when k reaches the value c=b + 
−1(d=�) and persists beyond this value. That
is to say, we are able to relate the persistence (or the extinction) conditions in
terms of environmental carrying capacity which is an essential observation from
the biological point of view.

(2) We observed that when the maximal renewal rate of the infected population is less
than its natural mortality rate then both populations (the infected and the predator
ones) go to extinction.

(3) We also pointed out the well-known phenomenon of “exchange of stability” through
simple bifurcation at the crossing point of E0 to E1 as well as at the crossing point
of E1 to E∗.

(4) We observed that under certain parametric conditions the strictly positive equi-
librium enters a Hopf-type bifurcation. Moreover, considering a Holling-type-II
predator response function we found that the bifurcated branches are supercritical
in some parametric region space which con�rmed us the local asymptotic stability
of the bifurcated orbit.

(5) Finally, by using a Poincar�e map we observed the connection between the reduced
and the original system. It was also pointed out that our analysis for the reduced
system is valid for the original system.

All these and more results were interpreted in terms of biological parameters in the
text either in the subheading of remark or in the subheading of biological interpretation.
Now, we discuss the contact process. We considered in our system that the contact

rate between infectives and susceptibles follows the “law of mass action”. The contact
process is admittedly debatable. Some authors argue that the proportional mixing rate
is more appropriate than that of simple mass action law. The data of the Greenwood
experiment suggest that there is no change in qualitative properties upon the contact
process whether it follows the law of mass action or it follows the proportional mixing
rate (see [3]). Heesterbeek and Metz [11] suggest that a Holling-type function is more
appropriate to describe the contact process. For a detailed review on contact processes,
see [6]. To conclude on this point, let us point out that, for r large, the prey population
is near to constant, and hence the two contact processes are roughly equivalent to each
other.
Finally, we mention some future directions of work extending the present paper:

(1) One can consider the case in which the disease also a�ects the predator population
in contact with the infected population.

(2) One can consider the case of a portion of infected population recovering and
coming back to the susceptible population.

(3) The spatial spread of the disease is also an important phenomenon to study.
(4) The delay e�ect incurred in contacts between susceptible and infected populations

is an important characteristic to be considered.
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Appendix

Recall that in Talibi [20], to compute the Hopf bifurcation elements E(�); !(�) and
k(�); one considers Taylor expansions

E(�) = E∗ + �E1 + �2E2 + · · · ;

!(�) = 2�+ �!1 + �2!2 + · · ·

and

k(�) = k0 + �k1 + �2k2 + · · · ;

where !(�) is the period of the solution E(�) of system (17) for the value of the pa-
rameter k(�) and by using equalization according to powers of �; one deduces formulae
for Ei; !i and ki; for i = 1; 2:
Let us now give the details of application of formula (18) to system (17).
If E =

( i
y

)
and f =

(f1
f2

)
, we obtain

Df(E)
(
u1
v1

)
=



u1
@
@i
f1 + v1

@
@y
f1

u1
@
@i
f2 + v1

@
@y
f2;


 ;

D2f(E)
(
u1
v1

)(
u2
v2

)
=



u1u2

@2

@i2
f1 + (u2v1 + u1v2)

@2

@i@y
f1 + v1v2

@2

@y2
f1

u1u2
@2

@i2
f2 + (u2v1 + u1v2)

@2

@i@y
f2 + v1v2

@2

@y2
f2


 ;

D3f(E)
(
u1
v1

)(
u2
v2

)(
u3
v3

)
= A+ B

with

A =



u1u2u3

@3

@i3
f1 + ((u2v1 + u1v2)u3 + u1u2v3)

@3

@i2@y
f1

u1u2u3
@3

@i3
f2 + ((u2v1 + u1v2)u3 + u1u2v3)

@3

@i2@y
f2



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and

B =



(v1v2u3 + (u2v1 + u1v2)v3)

@3

@i@y2
f1 + v1v2v3

@3

@y3
f1

(v1v2u3 + (u2v1 + u1v2)v3)
@3

@i@y2
f2 + v1v2v3

@3

@y3
f2


 :

As u=
(1
0

)
; v=

(0
�

)
; u∗ = (12 ; 0); v∗ = (0; 12� ); with � = − �

d
√
�0; we get

@3

@i3
f1 = �1qu3; �2

@3

@i@y2
f1 = �1quv2;

@3

@i2@y
f2 = �2qvu2; �2

@3

@y3
f2 = �2qv3;

where �1 and �2 are de�ned in Eq. (19).
Thus,

I =
�
2

{
@3

@i3
f1 + �2

@3

@i@y2
f1 +

@3

@i2@y
f2 + �2

@3

@y3
f2

}
:

Similarly, we get

�1pu2 =
@2

@i2
f1; �1puv = �

@2

@i@y
f1; �1pv2 = �2

@2

@y2
f1;

�2pu2 =
@2

@i2
f2; �2puv = �

@2

@i@y
f2; �2pv2 = �2

@2

@y2
f2

and

J =
�
2

{
1
�
@2

@i2
f1
@2

@i2
f2 − � @

2

@i2
f1

@2

@i@y
f1 − �3 @

2

@i@y
f1
@2

@y2
f1 +

1
�
@2

@i2
f2

@2

@i@y
f2

+
@2

@i2
f2
@2

@y2
f2 − �3 @

2

@y2
f2
@2

@y2
f1

}
:

For E=E(k0)=E∗; we obtain

I(k0) =
�√
�0

(
�m− d
�am

)2
{3ab− d+ �m}

and

J (k0) = −�mad
�0
√
�0

(
�m− d
�am

)2{
2b
(
�m− d
�am

)
− 2a

(
�m− d
�am

)2
+ �0

√
�0
b
dm

}
:
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