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ABSTRACT

The extent of overshoot from stellar convection zones into the adjoining stable layers has been recognized
to have a non-negligible influence on evolutionary tracks of stars. Recently, Stothers & Chin (1992) have
carried out a detailed model-independent analysis of substantial body of observational data to conclude that
the maximum permissible overshoot is 0.2 times the local pressure scale height. In the present work a realistic
solar convection zone model is constructed by employing a nonlocal equation for the velocity of convective
elements and by including dissipative effects in the calculations. The convection model approach and the
analysis of linear eigenmodes are combined to estimate the penetration depths below the base of the convec-
tion zone and into the overlying solar atmosphere. It is demonstrated that for an arbitrary extent of overshoot
into the underlying stable region, it may not be possible to find a combination of linear modes capable of
reproducing the model convective flux profile over the overshoot layers. The acceptable overshoot distance
below the base of the convection zone turns out to be <0.2H, with a probable value of 0.1H,, which appears

to be consistent with helioseismological data.
Subject headings: convection — Sun: interior

1. INTRODUCTION

It has been widely recognized that the extent of penetration
into the adjacent stable layers beyond the classical boundary of
a stellar convection zone, would have a non-negligible influ-
ence on the evolutionary history of stars. The theoretical stellar
models, however, rarely incorporate the effects and extent of
convective overshooting, even though in the context of labor-
atory, meterological, and geophysical fluids, there is ample
evidence for convective penetration (cf. Massaguer 1990).

The question of convective overshoot into the bounding
stable layers has been addressed by a number of investigators,
albeit with widely differing conclusions. Unno (1957) con-
sidered the overshoot from the solar photosphere to conclude
that the degree of penetration into the atmosphere decreases
with the increasing stability of the overlying layer. In fact, for a
simple two-layer model it can be shown that for linear pertur-
bations the velocity scale-height in the penetration zone is

roughly given by
’ lV _ Vadlconv
H T v 1
P | V- Vad I over

where H, is the pressure scale height and the subscripts
“conv” and “over” refer to the convection zone and over-
shoot layer, respectively. Adopting this expression for estimat-
ing the extent of penetration at the base of the solar convection
zone, we get an overshoot of order of 0.01H, into the under-
lying radiative zone. This result is readily understood from the
fact that a convective element which is being accelerated under
a small superadiabatic gradient in the convection zone experi-
ences a strong deceleration as soon as the gradient becomes
strongly subadiabatic; with the large magnitude of the sub-
adiabatic gradient in the overshoot region compared to the
superadiabatic gradient across the boundary of the convection
zone, the convective elements virtually hit a solid wall and their
motion is quickly contained. Saslaw & Schwarzschild (1965)
performed a linear calculation in the adiabatic approximation
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for the interior convection zones and they found practically no
penetration beyond the convective cores of upper main-
sequence stars for there to be any significant evolutionary con-
sequences.

There are two distinct approaches that have been followed
to treat the problem of convective penetration:

1. Model approach: modeling of the stellar convection zone,
where the mixing-length formulation may be suitably adopted
to set up a nonlocal prescription.

2. Modal approach: analysis of fluctuations excited in the
convective zone; in this approach, an equilibrium model is
assumed and the development of some perturbation may be
considered either in the linear or nonlinear regime.

It is customary to restrict the nonlinear analysis to idealized
situations over a limited region, and most of these nonlinear
calculations deal with cases where the magnitudes of (V — V,4)
on both sides of the boundary separating the unstable and
stable regions are comparable. This treatment is, therefore, not
strictly applicable to the stellar penetrative convection zones
where such a condition does not generally obtain. The claims,
based on these calculations, of substantial overshooting below
the solar convection zone may consequently be regarded as
somewhat unrealistic.

The models of convection zones constructed using the local
mixing-length approximation tend to yield a large sub-
adiabatic gradient below the base of the convection zone
(designated to be the layer where V = V,,). If magnitude of the
subadiabatic gradient below this layer is reduced, then the
convective element can penetrate a significant distance which
may be of the same order as the local scale height. In that case,
the prevailing temperature gradient and consequently the radi-
ative flux, will turn out to be larger and in such a situation, in
order to satisfy the condition of the constancy of total flux, the
convective flux should become negative. This is, indeed, how a
significant amount of overshooting from the interior convec-
tive cores is obtained in the model of Shaviv & Salpeter (1973),
where the overshooting region is assumed to be nearly adia-
batic. The temperature difference between the overshooting
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elements and the ambient medium, and consequently the decel-
erating buoyancy force is then very small and this results in
penetrating elements covering a distance which can be compa-
rable to the local pressure scale height. Using the nonlocal
mixing-length theory of Shaviv & Salpeter (1973) Skaley & Stix
(1991) have calculated an overshoot of up to 0.5H, below the
base of the solar convection zone.

It should be emphasized that if one wants to ensure the
temperature gradient to remain close to the adiabatic value
over a sizable overshoot distance, it is necessary that the con-
vective flux is not only negative but its magnitude should
increase with depth precisely by the amount required to make
the gradient very nearly adiabatic. The occurrence of negative
convective flux is then an unavoidable consequence of the
downward moving convective elements being colder and hence
heavier than the surrounding medium when they arrive at the
V = V,4 boundary. The elements continue to accelerate down-
wards, but during the passage through the subadiabatic region
the temperature difference starts decreasing and eventually
becomes negative. The elements are liable to be decelerated
after this development; nevertheless, they continue their down-
ward journey until the velocity becomes zero, but in the mean-
while the convective flux has become negative. Such a negative
convective flux has appeared in the nonlinear simulations by
Nordlund & Dravins (1990). However, in these calculations the
magnitude of the negative convective flux seldom exceeds 10%
of the total flux and also the convective flux tends to zero
smoothly at the edge of the overshoot zone. This is not the case
with the type of nonlocal models adopted by Shaviv & Salpeter
(1973) and Langer (1986) which give rise to a sharp discontin-
uity in the convective flux and the temperature gradient at the
overshoot boundary. Normally, a nonlocal model is expected
to smoothen out sharp features inherent in local models by
some kind of averaging, but in the foregoing models the
motion of convective elements is characterized by a somewhat
unphysical description involving infinite acceleration and
sudden arrest at the edge of the overshooting region (cf.
Renzini 1987).

In the linear theory it is then fair to conclude that there is
some overshoot occurring beyond the unstable zone, but the
extent of penetration appears to depend on the assumption
about the relative degree of subadiabaticity in the adjoining
stable region. The extrapolation to the nonlinear regime has
been attempted by a number of investigators including Moore
& Weiss (1973) and Zahn, Toomre, & Latour (1982). These
studies, performed in the Boussinesq approximation express
the velocity field as an expansion in a set of prescribed, hori-
zontal planforms and have indeed found much more overshoot
than would be obtained using the linear theory. Later, Mas-
saguer et al. (1984) adopted the anelastic approximation to find
again the extent of pentration depending on the degree of sta-
bility of the bounding medium and on the radio of the horizon-
tal to vertical cell-size. The simulations for penetrative
convection in a fully compressible fluid in two and three
dimensions by Hurlburt, Toomre, & Massaguer (1986); Stein
& Nordlund (1989); Cattaneo, Hurlburt, & Toomre (1989);
Nordlund et al. (1992), show the presence of motions which are
directed downward; these downdrafts are found to have a sub-
stantial overshoot into the underlying stable region. The
numerical simulations, however, do not necessarily deal with
realistic stellar models. Simulations are usually restricted to
idealized situations where the radiative gradient may be at
most twice the adiabatic gradient. In the realistic solar convec-

tion zone models, the radiative gradient could be 10° times
the adiabatic gradient and as a result gross extrapolation
is involved in predicting the extent of overshoot from such
calculations.

Zahn (1991) has stressed the importance of the Peclet
number, WL/k 4 (W is the mean convective velocity, L is the
length scale and k., is the radiative diffusivity) in controlling
the extent of overshoot into the adjoining stable region. We
should like to point out that the Peclet number and the degree
of convective efficiency are equivalent physical concepts, in the
sense that a large Peclet number corresponds to high convec-
tive efficiency. It may be remarked that for the types of models
used in nonlinear simulations with low convective efficiency,
even a straightforward linear theory will predict substantial
overshoot in agreement with nonlinear calculations. Thus,
until nonlinear calculations become available for situations
with very high convective efficiency, it is clearly not possible to
deduce the amount of overshoot below the base of the solar
convection zone.

Apart from this, numerical simulations also involve approx-
imations which may affect the final results. Thus, in direct
numerical simulations, while the large-scale features are
accounted for adequately, it is not altogether clear if the effect
of sub-grid scales are treated in a satisfactory manner. It is well
known, for example, that a full-scale simulation of the solar
convection zone will require of the order of 10°° degrees of
freedom which is, of course, beyond the capability of any com-
puter. All existing numerical simulations, therefore, are either
restricted to small Reynolds number which is hardly applicable
to the solar case, or they make some drastic simplification like
introduction of artificial viscosity to approximate the effects of
small-scale motions. It is conceivable that nonlinear effects
may assume importance in the overshoot layer, but at the
moment we have a choice between linear calculations for a
realistic convection zone model and nonlinear calculations for
a highly idealized model which need not represent a realistic
stellar convection zone. There is no a priori reason to believe
that the latter is closer to reality than the former. In the present
work we have adopted the linear approach for a realistic solar
convection zone model.

Another approach adopted by Xiong (1985) and KuhfuB
(1986) is based on the use of some statistical properties of the
mean flow-field, in much the same manner as the treatment of
turbulent flows. Again the overshoot into the stable region is
found to be substantial, although it is not clear how far the
penetration length is controlled by values of the dimensionless
parameters introduced in the analysis (cf. Zahn 1991). On the
other hand, Canuto (1992) has recently tried an approach
based on Reynold stresses to obtain equations governing
various turbulent quantities. These equations can be solved to
obtain the extent of overshooting.

Recently, Stothers & Chin (1992) have studied the star clus-
ters NGC 458 and NGC 330 in the Small Magelanic Cloud to
conclude that the observational data involving the maximum
effective temperature of hot evolved stars and luminosity ratio
of the hot and cool evolved stars are consistent with no convec-
tive core overshooting and in fact, constrain the overshoot
distance to be less than 0.2H,. In an earlier work, Stothers
(1991) has applied 14 tests for the presence of overshooting
from stellar convective cores for stars in the mass range of 4-17
M, to find that each of these data is consistent with no over-
shoot, and he has put a conservative upper limit of 0.4H, on
the extent of overshooting from at least four of these tests.
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Similarly, Monteiro, Christensen-Dalsgaard, & Thompson
(1993) have attempted to estimate the extent of overshooting
below the solar convection zone using the measured fre-
quencies of solar oscillations, and fail to find any evidence of an
overshoot region. Thus, there is considerable observational
evidence to suggest that overshooting from stellar convection
zones may not be significant.

In the present work we make an attempt to combine the
convection zone model approach and the modal analysis. For
this purpose, we construct the equilibrium model using an
admixture of local and nonlocal mixing-length theory and then
calculate the linear convective modes in such a model in order
to check the consistency of the mixing-length formulation, as
suggested by Narasimha & Antia (1982). Basically, the formal-
ism is anchored on the assumption that the overshooting of
individual linear convective modes would correspond to the
penetration of the corresponding Fourier component of the
velocity field of turbulent convection (B6hm 1963). The main
thrust of this paper is to demonstrate that for an arbitrary
extent of overshooting it may not be possible to find a super-
position of linear convective modes which is capable of repro-
ducing the model convective flux-profile over the unstable zone
and the overshoot region. Thus, it is hoped that with the con-
sistency requirement which, in some sense combines the model
and modal approaches, it may be possible to put some con-
straint on the extent of pentration into the stable region.

2. PHYSICAL FORMULATION

A realistic stellar convection zone model can be constructed
using a nonlocal equation to determine the velocity of moving
elements or the convective flux. A simple nonlocal prescription
for determining the convective velocity is given by Shaviv &
Chitre (1968) which has been used by Antia, Chitre, & Nara-
simha (1984; hereafter Paper I). In this formulation the convec-
tive velocity is determined by using the nonlocal differential
equation:

2 T D 2
BT (%) 1y v 2
P

dr ~  pH,\oT L’

while the convective flux is given by the usual mixing length
expression,

@

F¢ = —apC, WL<VT — V.4 % VP) . 3)

Here « and f are the usual mixing length parameters of order
unity, D = 4C,, C;, being the aerodynamic drag coefficient, L
is the mixing length, W is the mean velocity of convective
elements, H , is the local pressure scale height,

dinT olnT
V=ldmp Ve~ (amp)s’

and r is the radial distance. It may be interesting to note that
an equation similar to (2) can be obtained from equation (59)
of Canuto (1992), with simplifying assumptions such as the
isotropy of turbulence. Equation (2) incorporates the aero-
dynamic drag experienced by an ascending element which
suffers resistance because of the eddies generated around it
during its passage through the descending elements. Clearly,
this equation can only be used to account for overshooting in
the upward direction, but not the penetration below the base of
the convection zone. This is evidently due to asymmetry in the
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differential equation for calculating the velocity, since equation
(2) is set up for a convective element which is rising upward
under the influence of buoyancy forces. In actual practice, there
will be both ascending as well as descending elements, in
general, moving with different velocities. For obtaining the
equation applicable to convective elements falling under the
influence of gravity, we use the simple prescription of changing
the sign of dW?/dr in equation (2) to determine the velocity of
downward moving elements by the nonlocal equation

aw? _ BgT (dp DW?
dr - PH,, (aT PL(V - Vad) + L ° (4)

If we incorporate this equation, it should be possible to
account for the overshoot below the base of the convection
zone. In reality, we should define two distinct velocity fields
and specify some prescription for determining the area covered
by rising and falling elements. This will lead to a somewhat
involved scheme for determining the convective flux. In this
paper, we have adopted a simplified approach, as a first
approximation, by merely switching from equation (2) to (4) at
a point in the lower part of the convection zone where dW?/
dr = 0. The choice of the point at which this derivative van-
ishes is obviously arbitrary and will depend on the initial value
of velocity from which the integration is started. Naturally, by
changing the initial velocity one can adjust the extent of over-
shooting in the model convection zone. However, such a sim-
plified treatment may be admissible near the bottom of the
convection zone, since the temperature gradient becomes
essentially adiabatic in the deeper layers of the convection zone
as well as in the overshoot region. The convective flux profile
consequently depends only on extent of overshooting, with the
convective flux becoming negative in the penetration zone.
Furthermore, below the boundary of the conventional convec-
tion zone where V = V4, the magnitude of the convective flux
increases rapidly with depth; typically, at a depth of 0.1H,
below this boundary, the convective flux F€ ~ —0.18FT, where
FT is the net flux. This would imply that for a substantial
overshoot, the negative convective flux will also be of signifi-
cant amount.

The standard stellar structure equations with the mixing-
length approximation are integrated using equations (2) and (4)
for the velocity. The linear stability analysis is performed with
the usual hydrodynamical equations governing the conserva-
tion of mass, momentum, and energy, incorporating the turbu-
lent thermal conductivity and turbulent viscosity, and the
convective eigenmodes are computed by perturbing the equi-
librium stellar convection zone model as described in Paper 1.
The linear stability analysis by itself clearly does not give the
amplitudes of these convective modes. If these eigenmodes
transport the convective flux and if the modes are assumed to
be statistically independent, then it should be possible to con-
struct a linear superposition of these modes which is capable of
reproducing the required convective flux as determined by the
mixing-length formulation. This is essentially a test for the
self-consistency of mixing-length theory or for that matter, of
any other prescription for calculating the convective flux in
stellar models. Narasimha & Antia (1982) indeed demon-
strated that it is possible to construct a linear superposition of
unstable convective modes that can reasonably reproduce the
convective flux profile inherently assumed in the local mixing-
length model. Such a superposition enables one to estimate the
amplitude of individual convective modes. Furthermore, the
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linear eigenfunctions with large values of harmonic number /
tend to peak near the surface, while those corresponding to
small | peak near the bottom of the convection zone, and it
then becomes possible to identify the width of convective flux
profiles of individual modes peaking at different depths with
the local mixing length. This procedure can be effectively used
to determine the mixing-length at a given depth, since for a
convection zone model constructed using an arbitrary mixing-
length prescription the width of the relevant eigenfunction will
be at variance with the mixing-length. In this manner, in a
self-consistent approach the choice of the mixing length is no
longer an arbitrary parameter.

Let us fix the boundary of the penetration region as the
furthermost place reached by the overshooting elements before
their motion is arrested. The convective elements can only
penetrate roughly to the depth where the negative convective
flux ensures a very small subadiabatic gradient; beyond this
depth, the individual elements essentially hit a solid wall
(because of highly subadiabatic gradient), which destroys their
downward momentum. Thus, we get into an embarrassing
situation which has been aptly described by Renzini (1987) in
that the extent of overshooting is small if assumed small (as in
the case of the local mixing-length theory), while the over-
shooting can be large if assumed large. We believe this
dilemma can be resolved if the consistency argument proposed
by Narasimha & Antia (1982) is applied to the penetrative
convection. For example, we can use an equilibrium model
with substantial overshoot and check if the linear super-
position of convective modes gives a significant amount of
negative convective flux in the overshoot layer. In this sense,
our approach to the penetration problem may be regarded as
combining the stellar structure construction with the modal
analysis, since we use the stellar model to calculate the equi-
librium structure and then employ the modal analysis to check
for its consistency.

3. NUMERICAL RESULT

The solar convection zone model is constructed with the
usual stellar structure equations as given in Paper I along with
equations (2) and (4). The integration started from a depth of
112 km below the 7 = 1 level is carried out in both directions.
The starting values of temperature, density and mass fraction
are adjusted to satisfy the outer boundary conditions

10)=1,
M (ZO) =M (O]
K(zo)p(zo)H p(ZO) = 1(zo) , (6]

where z, is the depth (measured from the t = 1 level) up to
which the integration is carried out, and M(z) is the total mass
contained in the sphere of radius Ry — z. Typical value of z.
Typical value of z, is approximately —600 km. Further, the
starting value of the velocity W is adjusted to get the required
extent of overshooting below the convection zone, for a partic-
ular model. Following the approach adopted in Paper I, we
identify the mixing length with the full width at half maximum
of the convective flux profile contributed by individual modes.
It is clearly seen from the results displayed in Figure 1 that
beyond some level, the width of the eigenfunctions decreases
with depth. In particular the first subharmonic (C2-mode) cor-
responding to low [ has a narrow peak close to the base of the
convection zone pointing to a small value of mixing length in
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F16. 1.—Mixing length is plotted against logarithm of the pressure for a
solar envelope model with C =001, D=0.1, and L=min (z+ 459,
220000 —z) km. The equivalent width of the luminosity profile of various
convective modes is indicated by circles.

these layers. We therefore, choose the mixing length to be
roughly the distance from the nearest boundary. Such a choice
for the mixing length has indeed been discussed in the context
of convection zone models (cf. Canuto & Mazzitelli 1991).

Another advantage of this prescription for the mixing length
is that it is possible to construct convection zone models with
reasonable extent of overshooting even when the drag coeffi-
cient D is small. This possibility arises because the mixing
length L appears in the denominator of the second term on the
right-hand side of equations (4) and hence as L—>0, W —0
giving a reasonable overshoot distance. With the traditional
form of mixing length as some multiple of the local scale
height, it is very difficult to construct a convection zone model
with small values of D, as the velocity may not approach zero
even at very large depths.

With the computed realistic solar convection zone model we
can study the convective eigenmodes using the linearized equa-
tions and the appropriate boundary conditions given in Paper
I. From the eigenfunctions associated with the linear convec-
tive modes we can compute the flux profile due to an individual
mode specified by the horizontal harmonic number [ and radial
order n, using the expression (cf. Narasimha & Antia 1982)

Fult) = po v,( Tos, + 5) ‘ ©
Po

The individual convective flux profiles may be normalized such
that the maximum of F,(r) over the entire convection zone
equals the total solar flux at that depth. For the fundamental
mode (designated C1) it is found that the flux profile has only
one peak and the convective flux becomes negative at larger
depths. However, it turns out that the magnitude of the nega-
tive flux is significant only for low value of I. The magnitude of
the flux actually depends on the vale of | and the corresponding
growth rate w, and for small values of | and w, it is possible to
get a significant negative convective flux close to the convec-
tion zone boundary. Thus, it is necessary to make w very small,
which can be achieved by increasing the damping due to turbu-
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lent viscosity, i.e., by increasing the turbulent Prandtl number
o,.
In practice, we calculate the eigenfunctions for a representa-
tive set of l-values, and using these profiles a least-squares fit is
performed to obtain a linear superposition of these modes
which attempts to reproduce the convective flux profile as
computed in the mixing-length framework :

lZ aj, Fi(r) = F5(0) , ™

F§(r) is the convective flux in the equilibrium model. With the
normalization mentioned above the amplitudes of these modes
in the superposition is less than unity and the maximum nega-
tive flux in the superposed flux profile may not, as a result, be
larger than that in any individual mode. This helps in setting
an upper limit on the extent of overshooting. We explored the
parameter space for the solar model as well as the turbulent
Prandtl number to find that the maximum negative flux for the
I = 1 convective eigenmode is unlikely to be larger than 80% of
the solar flux. This in turn implies an upper limit of 0.5H, for
the overshoot region. However, in general, the numerical
results indicate that the amplitude of this mode is actually
much smaller and this results in a distinctly smaller overshoot.

Notice that at the edge of the overshoot region, the model
flux drops abruptly to zero, while the flux profile of the individ-
ual convective modes as well as the superposed flux profile
smoothly attains the value zero. We attribute this difference to
the possible presence of a thin boundary layer at the base of
overshoot region, which of course, has been neglected in our
study; any realistic model of the overshoot zone should natu-
rally incorporate this boundary layer in the analysis.

For estimating the extent of overshooting we must ensure
that the model flux profile is in a reasonable agreement with
the superposed profile in the overshoot region. It turns out that
for large values of the drag coefficient D in (2) and (4), the
convective flux due to individual modes becomes negative long
before the boundary of the convection zone where V = V,_4 and
it becomes impossible to produce any accordance between the
superposed profile and the actual convective model flux profile
in the overshoot zone (cf. Fig. 2). But if we were to reduce the
drag coefficient D along with the turbulent pressure in the solar
envelope model, we get a demonstrably better agreement. Note
that the turbulent pressure is controlled by the parameter C =
P/(pW?). With D = 0.1 and C = 0.01 (i.e., negligible turbulent
pressure) the agreement with the model flux profile over most
of the region close to the base of convection zone, in fact, turns
out to be quite satisfactory. If, further, we were to reduce the
turbulent Prandtl number (i.e., diminish the damping influence
of turbulent viscosity) this results in even better agreement.
But, with the reduction in Prandtl number, there is an increase
in the growth rate and a corresponding decrease in the magni-
tude of the negative flux in the overshoot layer. This amounts
to cutting down the extent of penetration in the solar model.

With a view to study this problem in detail, three solar
convection zone models with C = 0.01 and D = 0.1 are con-
structed which give different extent of overshoot. We construct
the following three models with different choices of the mixing
length:

Model I: L = Min (z + 4.59 x 105, 2.30 x 10® — z)m,
Model II: L = Min (z + 4.59 x 10°, 2.20 x 10® — z)m ,
Model III: L = Min (z + 4.59 x 10°, 2.15 x 10® — z2)m ,
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F16. 2—Dotted curves show the convective luminosity due to individual
convective modes for various /-values as a function of logarithm of pressure for
a solar envelope model with C =1, D = 1, L = min (z + 459,22000 — z) km.
The curve labeled 12 refers to C2-mode, while other curves pertain to Cl1-
modes. The continuous curve shows the superposed convective luminsity
profile, while the dot-dashed curve represents the model convective luminosity.
The upper figure shows a blow-up of the overshoot region.

Here z is the depth from the T = 1 layer close to the top of the
convection zone.

The extent of overshoot in Models I, I1, and III turns out to
be approximately 0.30H,, 0.15H, and 0.07H ,, respectively. We
have displayed in Figures 3 and 4 the results for Models I and
IIT with a value of 1/3 for the Prandtl number g,. Note in the
first two cases, the fitted convective mode profile has much
smaller magnitude for the negative convective flux in the pen-
etration zone as compared to the model flux. The fitted flux
profile is nearly the same in both cases and this suggests that
the extent of overshooting is probably smaller, say, about 10%
of the pressure scale height. This appears to be justified from
Figure 4 which shows that for Model III the fitted profile has a
slightly larger magnitude for the negative flux as compared to
the model flux. We have tried various values for the mixing
length parameters to find that in no case is it possible to match
the model convective flux profile when the extent of overshoot
is larger than about 0.20H ..

At the top of the convective envelope, around 7 = 1 we get
substantial overshoot into the atmosphere. In this region, most
of the convective flux is contributed by convective eigenmodes
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F1G. 3—Dotted curves show the convective luminosity due to individual
convective modes for various l-values as a funcion of logarithm of pressure for
a solar envelope model with C = 0.01, D = 0.1, L = min (z + 459,230000 — z)
km. The curves labeled 12 and 228 refer to C2-modes, while other curves
pertain to C1-modes. The continuous curve shows the superposed convective
luminosity profile, while the dot dashed curve represents the model convective
luminosity. The upper figure shows a blow-up of the overshoot region.

of high degree (I > 1000). It is clear from Figure 3 that the
convective flux does indeed become negative in the overshoot
region and furthermore the superposed flux smoothly tends to
zero. The penetration length comes out to be of the order of
2-3H,. We may stress here that our approach of matching the
superposed flux profile with the modal convective flux enables
us to handle the convective penetration into a strongly non-
adiabatic region without any explicit assumption about the
degree of adiabaticity in the neighboring stably stratified layer.
It should be stressed that we are not attempting to provide a
numerical proof for the completeness of linear eigenfunctions
constructed using the background temperature-density stratifi-
cation in mixing-length model. Note that we have only a finite
number of unstable modes and evidently, no finite set of func-
tions can be mathematically complete. Furthermore, it is well-
known (cf. Hart 1973) that in the absence of turbulent
dissipation it is not possible to generate such a combination of
suitably normalized eigenmodes. The main thrust of the
present computation is the demonstration that even in the
presence of dissipative effects, we are not able to construct such
a linear superposition for arbitrary extent of overshoot.

F1G. 4—Dotted curves show the convective luminosity due to individual
convective modes for various l-values as a function of logarithm of pressure for
a solar envelope model with C = 0.01, D = 0.1, L = min (z + 459,215000 — 2)
km. The curves labeled 12 and 228 refer to C2-modes, while other curves
pertain to C1-modes. The continuous curve shows the superposed convective
luminosity profile, while the dot-dashed curve represents the model convective
luminosity. The upper figure shows a blow-up of the overshoot region.

Clearly, the consistency argument adopted by us is not a mere
proof of completeness. Equally, the small overshoot resulting
from our computations is by no means a consequence of the
use of linear eigenmodes, since adopting the same formulation
we do get significant overshoot into the layers above the solar
photosphere, which is of course, consistent with observations.
As we have illustrated in Figures 2 and 3, even below the
convection zone the linear eigenfunctions can indeed penetrate
to a significant extent beyond the unstable region. However,
we have rejected such models with substantial overshoot
simply on the ground that no combination of the convective
eigenmodes in these cases can yield the required profile of
negative convective flux in the overshoot region.

4. DISCUSSION AND CONCLUSIONS

We have attempted to combine the model computation and
the modal analysis approach to estimate the extent of convec-
tive overshoot from the convection zone into the adjoining
stable region. We find that inside stars there is penetration
from the convective envelopes beyond the layers defined as the
convection zone boundary determined by the condition V=V,
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We realize that the very definition of the extent of over-
shooting is somewhat ambiguous. Roughly, we might think in
terms of the motion of individual convective elements and fix
the edge of the overshoot region as the furthermost place
reached by the elements. It is natural to define the penetration
length as the distance beyond the V =V, layer where the
convective velocity becomes negligible. But, in practice, this
transition layer (where V = V,,) gets shifted in most nonlocal
models. Thus even though the model may exhibit substantial
overshooting, the overshoot region itself may not extend much
beyond the layer at which the standard local mixing length
theory will predict the convection zone boundary to be
located. In practice, we will only be interested in this difference
to estimate the penetration length. For simplicity, in this paper,
we have defined the extent of overshooting as the distance
between the layer where V = V,4 and the layer where the con-
vective velocity approaches zero.

The problem is further complicated by constraints; for
example, the model constructed with a nonlocal version of
mixing length theory that includes overshoot below the base of
the solar convection zone may yield values of the radius or
luminosity that are at variance with the present Sun for a given
prescription of mixing length. We may then have to adjust the
mixing length or some other parameter in the theory to get the
correct luminosity, radius and other properties. As a result of
these constraints, there may not be any significant difference
between local and nonlocal models, although the nonlocal
model may internally show a sizable overshoot layer.

We have another constraint provided by helioseismology. If
the solar model is fitted to the observed frequencies of solar
oscillations, then the depth of convection zone including any
overshoot region has to be about 200,000 km, irrespective of
the extent of overshooting. This can actually be used to put
limits on the extent of overshooting, since a model with sub-
stantial penetration may not be able to match all the observed
frequencies. To estimate the effect of overshooting at the base
of convection zone, on the frequencies of solar oscillations we
have constructed four solar models with different extent of
penetration as follows:

Model A: No overshoot, convection zone depth 193,000
km.

Model B: Overshoot of ~0.12H, with overshoot region
extending to 200,000 km.

Model C: Overshoot of ~0.3H, with overshoot region
extending to 210,000 km.

Model D: Overshoot of ~0.5H, with overshoot region
extending to 220,000 km.

Figure 5 shows the difference in frequencies v, — v, for
models D and A, as a function of the frequency for different
values of L. For large I, the modes are completely trapped inside
the convection zone and there is no appreciable difference in
the frequencies. The difference is maximum for intermediate |
(= 50), while for low I, again the difference is small. For each
value of | the difference becomes significant at frequencies
which penetrate beyond the normal convection zone. The
maximum difference in this case is approximately 10 pHz
which should be easily detectable. The behavior is similar for
other models although the difference is smaller. Thus, for
Model C the maximum difference is ~ 5 uHz, while for Model
Bitis ~1 uHz (Fig. 6). It seems that a substantial overshoot at
the base of the convection zone is perhaps not consistent with
the observed eigenfrequencies. The difference in frequencies
can be traced to difference in the sound speed as a function of

Vol. 413
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Fig. 5—Difference in the frequencies between Models D and A (vp, — v,) is
plotted as a function of the frequency for different values of L.

depth. In particular, for models without overshooting the first
derivative of the sound speed c, is continuous at the base of
convection zone, while the second derivative is discontinuous.
On the other hand, in models with overshoot the first deriv-
ative of sound speed is discontinuous at the edge of the over-
shoot layer. To illustrate this point we have shown in Figure 7
a plot of sound speed versus log P for Models A and D, in the
neighborhood of the overshoot layer. On the basis of a more
detailed study of solar eigenfrequencies Monteiro et al. (1992)
find no evidence for the existence of an overshoot region below
the solar convection zone.

We have applied the arguments to demonstrate the consis-
tency of the mixing length theory for the solar envelope model
and tried to show that it is possible to combine the model
approach with the modal analysis and get an estimate of the
overshooting depth. For the most part, we find the overshoot
distance to be about 10 percent of the local pressure scale
height. Of course, our numerical results are derived by making
several simplifying assumptions. To begin with, we have used a

1.0 T T T T
0.8
0.6
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(KHz)
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0.2
0.0

v (mHz)

FiG. 6—Difference in the frequencies between Models B and A (vg — v4) is
plotted as a function of the frequency for different values of L

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/abs/1993ApJ...413..778A

No. 2, 1993
250 T T
240 | L7
230 | e :
C
s %
(km/s) S
220 % 4
.
.
W
///
210 | 4
w
/”
200 . : .
13.5 13.6 13.7 138 13.9 14.0

Log(P) (dynes cmiz)

FiG. 7—Sound speed ¢, is plotted as a function of log P for Model A
(dashed curve: no overshoot) and Model D (solid curve: with overshoot).

nonlocal mixing-length model which is highly idealized, but it
is supposed to incorporate the basic physical feature of a non-
local velocity field. Further, we have employed a local expres-
sion for the convective flux, F¢ and have neglected the
contribution from the kinetic energy flux to F€, which may be
justifiable (cf. Zahn 1991). The role of turbulent stresses as
manifested by the turbulent pressure (embodied by the param-
eter C) may be negligible in the present problem, but we cer-
tainly need a nonzero aerodynamic drag in the equation of
motion of convective elements.

Roxburgh (1978) has included turbulent kinetic energy in the
expression for convective flux and derived an integral con-
straint which requires the convective elements to penetrate into
the surrounding stable layers. Using arguments based on the
mean total energy equation for a static, inviscid fluid, Rox-
burgh concludes that it is impossible to satisfy the integral-
constraint over the entire stellar convection zone, unless there
is a negative entropy flow in part of the region. This can
happen only in a stably stratified layer and hence there must
occur overshooting into the neighboring stable zone. Rox-
burgh’s criterion may be adequate for calculating penetration
from the almost adiabatic convective cores which would
increase the mass of the core and hence lengthen the main-
sequence lifetime. But, it is probably not applicable to stellar
convective envelopes because of the appreciable nonadiabatic
effects arising from efficient thermal diffusion at the top of
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outer convection zones like the one in the Sun. Apart from this
because of the neglect of viscous dissipation, Roxburgh’s cri-
terion only gives an upper limit on the extent of overshoot.

The present work has addressed the question of convective
overshoot at the base of the solar convection zone. We hope
that the diagnostic of the solar interior by the tools provided
by helioseismology will shed light on the physics of the over-
shoot region by checking the profile of the temperature and
sound speed at the base of the solar convection zone, which is
liable to be influenced by the effects of penetration. The impli-
cation of overshoot for solar dynamo theories which store the
magnetic field at the base of the convection zone are clearly
profound.

We have not dealt with overshooting from convective cores
in the present work, but evidently convective penetration in the
stellar interior will have significant influence on the evolution-
ary characteristics of stars, particularly the time scales for
hydrogen burning,.

A distinguishing feature of our approach is that it is not
based on any specific assumption about the degree of adia-
baticity of stratification in the overshoot region. This enables
us to estimate the penetration into the atmosphere overlying
the solar photosphere, where damping due to radiative
exchange is very strong for significant nonadiabatic effects to
occur. From Figure 3 we can see that the superposed flux
profile also penetrates above the photospheric level, where we
get the negative convective flux which is less than 5% of the
total flux, but the overshoot distance is a few scale heights.

We conclude that in the convective envelopes of stars there
would certainly be penetration from the regions with super-
adiabatic temperature gradients into the bounding stable
zones. By demanding the consistency of the mixing length
theory as applied to the convection zone model and using the
information available about the penetration of individual
linear modes, we demonstrate that the penetration depth
below the base of the solar convection zone is <20% of the
local pressure scale height. In the atmosphere overlying the
solar photosphere, however, the overshoot distance could be
several scale heights. It is hoped that accurate helio-
seismological data could enable us to estimate the extent of
overshooting at the base of the convection zone.

It is a pleasure to thank Mike Thompson and Vittorio
Canuto for stimulating comments and valuable discussions.
One of us (S. M. C.) is grateful to Professor I. W. Roxburgh for
hospitality at Queen Mary and Westfield College, London.
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