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Summary. Two-body tidal capture, as proposed by Fabian et al.,
is the favoured mechanism for the formation of X-ray binaries
in globular clusters. We consider here the tidal capture formation
and subsequent evolution of a system consisting of a neutron star
and a low mass main sequence star. We obtain the amount of
tidal energy deposited during the first and later close passages,
and the radial distribution of this energy. Going further, we ex-
amine the effects of the viscous dissipation of the tidal energy
on the structure of the low-mass star and on the binary system.
The tidal energy is thermalized on a timescale of 10*yr. The
consequent high tidal luminosity causes the star to expand and
overflow its Roche lobe, resulting in the formation of a common
envelope. This makes the stellar core and the neutron star spiral
towards each other because of the frictional drag. The state
reached by the system after the dissipation of the tidal energy
depends on the relative values of the various timescales relevant
to the system. Depending on these values the system may evolve
into any of the following configurations: an X-ray binary, a de-
tached binary, a neutron star surrounded by a massive accretion
disk and a cloud of matter, or a Thorne-Zytkow object.

Key words: stars: evolution of — stars: binaries: close — stars: dyna-
mics — clusters: globular — X-rays: binaries

1. Introduction

Globular clusters are known to be particularly fertile grounds
for the formation of X-ray sources: the 134 known clusters in
our galaxy contain at least 10 bright X-ray sources with L, >
103%ergs™! (see Grindlay, 1985; Hertz and Wood, 1985, for a
review). Approximately 10% of all known bright sources in the
Galaxy are thus associated with ~10~* of the mass, as was first
pointed out by Gursky (1973) and later by Katz (1975). The na-
ture of the X-ray sources in globular clusters has not been obser-
vationally established, but there are several independent lines of
evidence to suggest that these are close binary systems in which
mass flows from a Roche-lobe filling star onto a neutron star
companion (see Lightman and Grindlay 1982 for a discussion).

It was suggested by Clark (1975) that X-ray binaries in glob-
ular clusters are formed by the capture of a field star by a neutron
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star, rather than by the evolution of primordial binaries, because
of the great age of the clusters. However, the cross-sections for
the usual three-body processes which might lead to such capture
are too small to be of interest. A novel method for the formation
of X-ray binaries was suggested by Fabian et al. (1975). This
process involves a close encounter between a neutron star and
a non-collapsed (“normal”) star. The encounter is such that tidal
oscillations set up in the normal star take up sufficient energy to
make the orbital energy of the system negative, leading to the
formation of a bound system. The binary formed is necessarily
a very close one, for otherwise the energy lost to the tides would
not be sufficient to cause binding. Roche-lobe overflow by the
normal star on to the condensed star can then commence to
power an X-ray source. The number of such encounters expected
in the dense cores of globular clusters is sufficient to explain the
observed number of X-ray binaries found there.

The two-body tidal capture mechanism was investigated in
detail by Press and Teukolsky (1977, hereafter PT). These au-
thors have provided a formalism for calculating, in the linear
approximation, the amount of energy deposited into oscillatory
modes during a close periastron passage. The energy can be ob-
tained in terms of dimensionless functions, independent of the
mass or radius of the stars involved, but dependent on the enve-
lope structure of the star. The numerical results presented by PT
are applicable only to the case where the field star may be repre-
sented by a n = 3 polytrope.

We intend to investigate in this article the effect of the tidal
energy deposited in the first and subsequent encounters on the
structure of the normal star. The total amount of energy which
could be deposited in the tides is ~GM M /R,;, where M, is
the mass of the normal star and R, ~ 3R, is the periastron dis-
tance required for capture. We will show in the following sections
that, with the appropriate viscous dissipation timescale a “tidal
luminosity” as high as ~ 10 times the luminosity of the star in
the unperturbed state may be generated. This can have serious
consequences on the evolution of the binary system, possibly pre-
venting it from becoming an X-ray source, or even leading to the
complete disruption of the normal star.

In the present work (1) we will use the formalism of PT to
obtain tidal energy deposition and capture cross-section for a
first encounter between a neutron star and a main sequence star,
represented either by a n = 3 or a n = 1.5 polytrope. The typical
low mass star in a globular cluster would tend to be fully convec-
tive and is more appropriately represented by the latter. It will be
seen that the results for the two cases are significantly different.
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For the n = 3 case we will correct a numerical error in the re-
ported calculation of PT. We will also use the formalism to esti-
mate the energy deposited in the tides in successive periastron
passages after the capture. (2) We will obtain the distribution of
tidal energy as a function of stellar radius. This was not done by
PT, but is useful for our purposes. (3) We will estimate the viscous
dissipation timescale for the fully convective non-degenerate star
and thereby the tidal luminosity, and (4) examine the conse-
quences of the luminosity to the star and the binary system.

These latter processes have until recently not been considered
in the literature; it has only been assumed that at some time after
the formation, the system evolves into a low mass X-ray binary.
Preliminary results on the type of system we consider have been
reported by Antia, et al. (1986). McMillan et al. (1986) have con-
sidered the effects of tidal energy dissipation on a binary system
consisting of two normal stars. They however use radiative dis-
sipation in estimating damping timescales, which is appropriate
for the stellar masses in their system. These authors do not con-
sider the evolutionary scenarios for the binary in the way that we
do here for stellar pairs consisting of a degenerate and a low-
mass nondegenerate star.

The mathematical formalism we require will be described in
Sect. 2. In Sect. 3 we will obtain numerical values for the tidal
energy after the first passage, the capture cross section, and the
tidal energy deposited in subsequent passages. The distribution
of tidal energy inside the star will be obtained in Sect. 4. In
Sect. 5 we obtain the viscous dissipation timescale appropriate
to the problem, while in Sect. 6 we consider the response of the
star to thermal dissipation. Finally, in Sects. 7 and 8 the evolution
of the binary system and conclusions are presented.

2. The formalism

In the encounter between a neutron star and a normal star, the
rate at which tidal energy is deposited in the latter is (PT 1)*

dE
== fd%cpv- vu 1)

where p is the density and v is the velocity of a fluid element in
it: U is the gravitational potential of the neutron star, which is
imagined to be a point mass:

GM,

U(r,t) = m

@

Here M, is the mass of the neutron star and the vector R(t)
describes its orbit. At very large separations, the relative velocity
of the two stars may be taken to be the average dispersion veloc-
ity of stars in the globular cluster, which is ~10kms™*. This
is very small compared to their relative velocity at periastron,
which can be several hundreds of kms ™. The eccentricity of the
orbit will therefore be close to unity, and the orbit may very well
be approximated as parabolic. Parametric equations for a para-
bolic orbit are quoted in PT 19-211.

! Equations from Press and Teukolsky (1977) will be cited as
numbers following the letters PT.
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The velocity v of a fluid element can be expressed in terms
of its Lagrangian displacements & as

0¢

=2 3

b= )]
Assuming that the effect of VU on the static unperturbed star
can be described by linearized perturbation analysis, the Fourier
transform & of € may be analyzed into normal modes &,. These
satisfy a linear self-adjoint eigenvalue equation (Chandrasekhar,
1964), and are taken to be orthonormal with weight p;

jd3xpgn : Em = 5nm (4)

A given normal mode of a spherical star may be written as the
sum of radial and poloidal parts (PT 32; see Cox, 1980 for details):

&r) = Eunlr) = [ER0E, + SV ]%,(0, ). ©)

Here é, is a unit vector in the direction of r and Y,,(6, ¢) are
spherical harmonic functions as in Jackson (1975).

The total energy transferred to the tides during the encounter
can be expressed as

GMZ M,% © R 21+2
s * T(n) ()
R, M2Z/5\R

dE
Egoo = [ = di = =
where M, and R, are the mass and radius respectively of the
normal star, and the dimensionless variable # is defined by

M* 1z Rmin 32
=3 ™
« T M, R,

with R_;, the minimum distance of the approach. The quantity
n ~ ty/ty, Where t, ~ R,,;,/v, is the timescale for periastron pas-
sage with v, the velocity at periastron, and t, ~ R,/c;is the hydro-
dynamic timescale of the star, with ¢, the sound velocity. The
dimensionless function T(y) is defined as

1
Tin) = 22* L |Quf* % [Kunl® ®)

Here the dimensionless function Q,, involves only the radial de-
pendence of the eigenfunctions and the matter density:

O = i dr'r2p' (' [+ L+ DE] ©

where ' and p’ are the radial coordinate and density expressed
in units of R, and M,/R*? respectively. The functions K, in-
volve only the eigenfrequencies w, and the time development of
the trajectory. The expression for a parabolic trajectory is

W,
Koim = 5 2Pl (n0,) (10)
where
L(y) = T dx(1 + x?) " cos [212y(x + x?/3) + 2mtan~ ' x]
[\
(11)
and
4n 12 I—m\, (l+m
—(_\tmy2| " g ! | l__|__|
o g oemasm (5 (57) ]
(12)
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where the symbol (—)* is to be interpreted as zero when k is not
an integer. A numerical scheme for evaluating the function I,,,(y)
using rational function approximations has been given by PT.

The functions T)(1) can be obtained without reference to the
masses and radii of the stars involved, or the minimum distance
of approach. The energy transferred to the tides in specific cases
can then be obtained from Eq. (6), and the cross-section for the
formation of a binary determined, as explained in the next
section.

3. Results for n = 3 and n = 1.5 polytropes

We have computed the eigenmodes of oscillation for n = 3 and
n = 1.5polytropes by solving the equations of linear adiabatic
oscillations (cf. Unno et al., 1979, p. 134) using a finite difference
method (Antia, 1979). We have considered only the I = 2 (quad-
rupole) tides. The I = 0 term contributes only an additive con-
stant to the gravitational potential, while the I = 1 term makes
a vanishing contribution to the tidal energy. The octupole (I = 3)
term makes only a ~10% contribution, while the higher terms
contribute <1%,. We have neglected these higher moments since
they are not important for our considerations. Results for the
two cases are shown in Table 1, where we have tabulated eigen-
frequencies and values of the corresponding functions Q,,, for
I=2

For the n = 3 polytrope, we have tabulated 19 p, f and g
modes. Our frequencies which are in units of (GM/R3)!/* agree
well with those of PT (note that we list the value of w? for each
mode, while PT list 4w?2/3). Our values of Q,, are significantly
lower than those of PT for I = 2, as well as for the [ = 3 case,
which we have computed, but not included in the present pub-
lication. We trace this discrepancy to an erroneous inclusion of
an extra factor [, by PT in the second term on the right hand side

Table 1. Eigenfrequencies and the functions Q,, for I = 2

of their Eq. 36 in their computation (note that equation PT 36
itself is correct). We are able to reproduce the values of Q,, of
PT by including this extra (erroneous) factor in our code. Re-
cently Giersz (1986), Lee and Ostriker (1986), and McMillan et
al. (1986), have also independently obtained some of the results
reported in this section. These authors too have noticed the error
in the results of PT, but have not traced it to the source.

For the n = 1.5 polytrope, we have included five p modes and
the f mode. In this case, since the star is advectively neutral,
there are no g modes, and hence there is no eigenfrequency lower
than that of the f mode. The values of Q,, are negligibly small
for modes higher than ps. The |Q,,,| value for the f mode is
an order of magnitude or more than that for the other modes,
and the f mode makes the dominant contribution to the tidal
energy.

The function T(n) for the two polytropes is shown in Fig. 1.
We have obtained the tidal energy Eq. from the T)(y) for the
special case of parameter values: stellar mass M, = 0.6 M,
neutron star mass M, = 1.4 M, and dispersion velocity in the
globular cluster, v; = 10km/s ~ 1. We will always use these special
values for the purpose of illustration. The radius of the normal
star is assumed to be proportional to its mass, with the normal-
ization R, = 4.5 10'° cm for M, =0.6 M, (cf. Allen, 1973, p. 209).
E,q4 as a function of the periastron distance R,,;, is shown in
Fig. 2. The relative kinetic energy of the two stars for very large
separations is E,;, = 4.2 10** erg in the special case. This value is
marked on the tidal energy curves in Fig. 2. For values of R,;,
which are such that Eq, > E,, the relative orbital energy be-
comes negative after the encounter, and the system becomes grav-
itationally bound. The eccentricity immediately after the binding
is very close to unity, and the orbital period is relatively large.
A plot of the period after the first encounter against the closest
distance of approach is also shown in Fig. 2.

n=3 n=15

Mode w? Ianl Mode wy Iinl

Da 59.41 0.02115 Ds 89.89 0.0002500
D3 41.46 0.03503 Da 63.46 0.0005663
23 26.72 0.06168 D3 41.30 0.002525
D1 15.26 0.1227 2 23.51 0.01058
f 8.174 0.2372 P 10.29 0.05580
'R 4915 0.09948 f 2.119 0.4909
g, 2.828 0.04456

Js 1.822 0.02470

ga 1.270 0.01491

gs 0.9361 0.009439

de 0.7185 0.006173

g, 0.5690 0.004097

Js 0.4618 0.002792

de 0.3824 0.001889

Jdio 0.3218 0.001300

g1t 0.2746 0.0009009

di2 0.2371 0.0006199

di3 0.2068 0.0004286

Jdia 0.1819 0.0003029
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Fig. 1. The function T(n) for I = 2. The polytropic index corresponding

to each curve is indicated in the diagram
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The maximum periastron distance allowed, if capture is to
take place in an encounter, as a function of M, can be obtained
by solving the equation

Eorb = Ekin - Etide =0 (13)

for R,;,. For values of R, greater than such a value no capture
is possible since sufficient energy is not dissipated in the tides.
For a given capture radius, the capture cross-section is

o =nR3 (14)
where the impact parameter R, is given by
2GM, |'?
Ry=R,u|l1+——
0 mml: + Rmin Dg:l (15)

with My = M, + M, the total mass of the system. Since v2 «
GM/R;., in effect Ry oc RLZ; ie., because of the gravitational
focusing, o oc R;,.

We have shown in Fig. 3 the maximum periastron distance
for capture as a function of stellar mass. The values assumed for
the other parameters required in the calculation are the special
values mentioned above. However, the maximum periastron dis-
tances obtained from Eq. (13) are weakly dependent on the values
of the parameters; for instance, doubling the dispersion velocity
would decrease R,,;, by ~ 10%. Figure 3 can be used to directly
estimate the cross-section for binary formation for stars of a
given mass. For M, = 0.6 M, the capture cross-section for the
n = 1.5polytrope is larger than that for the n = 3 case by a factor
close to 1.5. It can be noticed from Fig. 2 that for a given R,
E4. for n = 1.5 can be more than an order of magnitude larger
than for n = 3. This allows capture at greater distance, propor-
tionally increasing the cross-section. The collision rate per star
I' = Novy can be expressed as

r=28710-2 (M) (Ruin)(_Re
Mgy /\ R, J\10%cm

10
= T T 7T T | 30
. n=1.5 / 3
L e n=3 // B
L | J
a8
10 glo9
AN 4
\ e —
8
T 40 o
—_— e \ - -~
o F \ 1 o
— \ 1 —
(3] - - — Q
~— L \\ / B —
>
o / ©
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(3] E = —-
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B | 4]
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o /
4
L/
/
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Fig. 2. Tidal energy and orbital period after the first periastron passage.
The arrows indicate relevant axes. The notches on the energy curves
indicate kinetic energy at infinite separation

Fig. 3. Maximum periastron permitted for the first encounter, if capture
is to be possible, as a function of the mass of the main sequence star.
The cross-section for capture is also indicated
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For the n = 1.5 polytrope it follows from Fig. 3 that the maxi-
mum periastron allowed for capture, for M, =0.6M, is
(Rmin/R,) = 3.84. The collision rate for the usual parameter
values is therefore I' = 9.91072%s™ !, For n = 3, the maximum
periastron is 2.72, and I’ = 7.01072°s~ 1. For the encounter of
two main sequence stars, which is the case considered by PT, the
collision rates are I' = 5.141072°s! for n = 1.5 and I' = 3.67
1072571 for n = 3. The last value is a factor ~2 lower than that
obtained from Eq. (59) of Press and Teukolsky.

Once a bound system is formed, energy is deposited in the
tides at every subsequent periastron passage until circularization
of the orbit is achieved. The orbits are now elliptical, and the for-
malism of PT cannot, in principle be applied, since it is tailored
to a parabolic orbit. But in the initial stages the orbits are highly
eccentric, and since the tidal potential falls off very rapidly with
increasing distance between the stars, Eq. (6) can still be used as
a first approximation. We have obtained the tidal energy trans-
ferred in successive passages in this approximation, assuming
that the orbital angular momentum remains constant (transfer of
angular momentum to the tides and various other complications
will be addressed in a future publication). For each orbit the
orbital energy E,, is obtained by subtracting the tidal energy
excited in that passage from E_, for the previous passage. The
orbital parameters are then determined from the orbital angular
momentum and energy. The maximum tidal energy which can be
extracted from the system is GM M,/2 R, where R, =2 x
(initial periastron distance R,;,) is the radius of the circular orbit.

Accumulation of tidal energy for n = 3 and 1.5 polytropes are
shown in Fig. 4. For n = 3 we have considered the evolution of
an orbit with R;, = 2.6 R, for the first passage. This is close to
the maximum periastron permitted for capture. For n = 1.5, two
cases are considered, one with R ;, = 3.7R,, again close to the

48
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Fig. 4. Energy accumulated in the tides as a function of orbit number.
Also shown is the corresponding luminosity for a viscous dissipation
timescale of 10* yr. Indicated along each curve is the periastron distance

R, for the first passage, and the time spent in arriving at various orbits.
The limiting luminosity L, for each value of R, is indicated

limit for capture, and another with initial R;, = 2.6 R,.. The
values of various stellar parameters are as given previously.
When the initial periastron is close to the maximum allowed, the
orbit evolves rather gently, so that the eccentricity reduces to just
~0.7 in as many as a thousand passages. It is seen from Fig. 4
that the time taken to reach this stage is 4.4 10°s for n = 1.5 and
5.210°s for n = 3. In either case about half the available energy
passes to the tides by this stage. When the initial periastron is
well within the limit for capture, the orbit evolves more rapidly.
For R, = 2.6 R, with n = 1.5, the eccentricity reduces to 0.77
in 10 passages and ~40% of the available energy passes to the
tides. The time taken for the 10 passages is 6 10°s. In 50 orbits,
which take 910%s, ~75% of the energy is extracted; but the
eccentricity now reduces to 0.5, and the calculations are no longer
sufficiently accurate. One can however safely state that in this
case ~210*7 erg accumulate in the quadrupole tides in ~107s.
The energy accumulated in the other two cases we have con-
sidered is of the same order of magnitude, though the time taken
is ~510%s.

4. Radial distribution of tidal energy

The distribution of tidal energy as a function of the stellar radius
can be obtained using the formalism outlined in Sect. 2. From
Egs. (1) and (3) it follows that

dEtide(r ) ag
=pv-VU=p—=-VU

acav. 7 P ot
where the expression on the left is the rate at which energy den-
sity accumulates at a given point in the star. The tidal energy

density after the encounter is given by

dEtlde(r )

a7

o(r) f % pud (18)
where we have neglected a higher order flux term. The expression
on the right can be simplified by introducing the Fourier trans-
forms & and U of & and U, respectively, analyzing these over
normal modes, and integrating over time and frequency. Ulti-
mately, the tidal energy density is expressed as

dE de
— gy =2 Z & A0 AY (o,) (19)
where
G Mﬁ 1/2 R* 1+1
An(wn) = Anlm(wn) = ( R* ) (Rmin> inKnlm (20)

We can now obtain the tidal energy density as a function of the
radial coordinate r by averaging over the spherical shell of radius
r, using the usual orthonormalization conditions on the spherical
harmonics (see Jackson, 1975). Thus
dEtide
av

dEtide
av

2042
P an in( > [CED? + 10+ DED* T Yoml K|

mm

R 21+2
3 an (R_*> Q}%l Zlenlmlz

1)
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where the tidal energy density averaged over the whole star,

dEtide — Elide
dv (4n/3)R3
has been introduced in order to make the right hand side dimen-
sionless, &, = &,ML?* and p’ = p(R2/M,). Here we have ne-
glected cross terms in the summation since these will cancel out

on integration over the whole volume. The tidal energy within
a sphere of radius r is given by

Ea(<1) _ J‘r/m 3 dE g \ "' dE;qlr) #2 gy
Egde r=0 av dv

22

23)

The distribution of energy density as a function of radius is
shown in Fig. 5. The ordinate here is the integrand in Eq. (23),
which is the energy density weighted by the area of a spherical
shell of radius r. The solid lines indicate the energy distribution
for the n = 3 polytrope for different values of the parameter 7. As
n increases, the peak of the distribution moves inwards, and the
bulk of the tidal energy is deposited closer to the center of the
star. The broken line indicates the energy distribution for the
n = 1.5 polytrope. In this case, since the overwhelming contribu-
tion is by the f mode, there is a near cancellation of the # depen-
dent terms in the numerator and denominator of Eq. (21), making
the distribution quite independent of #. The energy distribution
in the n = 1.5 case peaks away from the center, and the outer
309, of the mass of the star contains 60% of the tidal energy
deposited.

5. Viscous dissipation of tidal energy

The energy deposited in the star is initially in the form of the
mechanical energy of the tidal oscillations. In Sect. 4 it is shown
that for a n = 1.5polytrope this energy is concentrated in the
outer one third of the stellar radius, while for a n = 3 polytrope
it is concentrated towards the center.

In a star with a substantial convective zone the most efficient
damping mechanism would be due to the turbulent viscosity of
convective eddies. For modes which are restricted to the inner
radiative region, the damping will be due to radiative conduc-
tivity, which is less efficient. We will be concerned with stars of
low mass (our detailed calculations are M, = 0.6 M), which are
almost fully convective, where turbulent viscosity provides the
damping. We have assumed in our calculations that the various
oscillatory modes can be treated within the framework of linear
perturbation theory. In reality however, because of large ampli-
tudes of oscillation for captures which occurred in close collisions
various nonlinear effects might be present, which may in fact
reduce the damping time. Since there is no straightforward way
to incorporate the nonlinear effects, we will restrict ourselves to
the linear theory.

The timescale of viscous dissipation may be approximated by
lz
vise =~ (24)

Vet

T

where | is the mixing length and v is the effective turbulent
viscosity in the convection zone. Normally, the turbulent vis-
cosity v, is given by

25

v, = lv,
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Fig. 5. The distribution of tidal energy as a function of radius, for various
values of #. For the # = 1.5 polytrope the curves for the range of 5 values
considered merge into each other

where v, is the convective velocity which can be obtained from
the usual mixing length theory. Neglecting factors of order unity,
this is

v, = [L/Anr?p]'V3 (26)

where L is the stellar luminosity and p the density at radius r.
However, as Goldreich and Keeley (1977) have pointed out, vis-
cosity is less effective when the characteristic timescale of per-
turbation (here the oscillatory period) is shorter than the eddy
turnover time (I/v,). In that case v, = v,/B% where

GM,
Ry

w, |
T 2m o,

B 27
with w, the oscillation frequency in units of (GM/R3)'/2 for the
nth mode, M, the stellar mass, and R, the stellar radius.

Using the above equations and approximating p by the mean
density, we get the viscous timescale

3w} < ! >3 GM3
Tyvise = T2\
4n* \R,) R,L,

(28)

We will now specialize to the case of a n = 1.5 polytrope, which
is fully convective and therefore the relevant model, with mass
M, = 0.6 M. In this case the f mode, for whch w? = 2.1, is the
most dominant and an approximate expression for the viscous
timescale is

T

visc

=1.6107yri3 My V(R (L AT
R,) \06M, ) \4510%m/) \0172L,

29
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where we have normalized the radius and luminosity to values
adequate for the stellar mass. Using I/R, ~ 0.1 we get 7., ~ 10*
years. Of course this estimation is very rough and could be off
by an order of magnitude. But our results are not critically de-
pendent on the values of this timescale, and we shall use ~10*
years for it in subsequent calculations.

The viscous dissipation of tidal energy generates a luminosity
which may be approximated by

Etide

Lyige = (30)

visc

where E,,, is the accumulated tidal energy. L4, is shown as a
function of orbit number in Fig. 5, for polytropes with n = 1.5
and n = 3: the values of R,;,, the distance of closest approach
for the first encounter, are indicated alongside the curves. The
maximum energy which can be extracted from the orbit is
E; = GM M,/2R ., where R is radius of the orbit after cir-
cularization, assuming no mass is lost from the system. Values
Of Lyj; = E it/ Tyise fOT 1,5 = 10* yr, assuming constant mass and
orbital angular momentum, are shown in Fig. 4. The time taken
for circularization cannot be estimated within the present
treatment, since the formalism used is not valid for eccentricity
not close to unity, and there are several effects not taken into
account here that would become important at small eccentricity.
However, from the times of successive periastron passages (with
t = 0 for the first passage) indicated in Fig. 4, it is clear that
substantial luminosity is generated even for t « 1,;.. At such
times the eccentricity is sufficiently large and the approximations
used in the calculations are valid, unless the collision is much
closer than what is maximally allowed. It is clear that the tidal
luminosity roughly 1000 times the normal stellar luminosity may
be generated and maintained over the viscous dissipation time-
scale. It should be noted here that 7, is inversely proportional
to the luminosity, so that as the star adjusts to the new lumi-
nosity, ;. Will decrease significantly. This feedback control will
tend to increase the thermal luminosity, but this will operate on
the (long) thermal (Kelvin Helmholtz) timescale.

6. Response of main sequence star to tidal luminosity

We have seen in the previous section that viscous dissipation of
the accumulated tidal energy leads to a substantially enhanced
luminosity in the “normal” star, which we will assume is on the
main sequence. The star responds to this increased luminosity
by attempting to achieve a new equilibrium configuration, which
generally involves expansion of the star. We will now estimate
how much this will be, first assuming that the energy is artificially
deposited in an isolated star, and then consider the effect of the
presence of the neutron star in a binary orbit.

To quantitatively assess the response of the star to the tidal
luminosity, it would be necessary to numerically evolve a star
using a stellar evolution code. We will defer this to a future pub-
lication, and provide here only a qualitative estimate, using the
analytic treatment of Stein (1966, p. 23). It follows from the work
of Stein that for Population II stars of low mass,

L, R (1)

with L, and R, the luminosity and radius, respectively, of a
star. This relation, though approximate, is sufficient to provide a
rough estimate of the extent of the expansion. As will be seen

later on, our conclusions to an extent do not depend critically
on how far the star expands.

Since L4, >~ 1000 times the normal luminosity, we can expect
the star to expand to about 10 times its original radius. We can
expect this to happen over the Kelvin-Helmholtz timescale 7.
Since GM2/R,Ly4. ~ (4-6) in all cases, it follows that Ty ~ Ty,
Expansion of the star will therefore occur roughly over the vis-
cous dissipation timescale. At the end of this period, the tidal
energy would be spent, the tidal luminosity would decrease, and
the star would contract back to its original size if it were an
isolated object.

The simple picture of expansion and recontraction of the star
is no longer applicable when it is part of a close binary system.
In this case, expansion leads to loss of matter to the neutron star,
the possible formation of a common envelope, and perhaps loss
of matter from the system. We will consider these possibilities
assuming that the binary system can be described in terms of
simple Roche geometry. This is strictly true only when the orbit
is circularized, and the rotation of the stars is synchronized with
the orbital motion. We will nevertheless use the concept of Roche
lobes as a first approximation, relying on the fact that the eccen-
tricity rapidly decreases towards zero.

The radius R, of the Roche critical surface surrounding the
main sequence star is given by (Paczynski, 1971)

R M\
< =0462( =
Rorb MT

(32)

where M= M, + M, is the total mass and R, the orbital
separation. The above relation is valid when M /M, < 0.8, which
is true in our case. Under the assumption of constant orbital
angular momentum, the radius of the final circular orbit is 2 R,;,,.
For R, = 2.6 R,, which is the special case we will consider,
R, = 1.6 R,. The Roche lobe is therefore close to the surface of
the star, and well before the stellar radius expands to the value
derived from (31), it overruns the critical surface. Some of the
overflowing matter will be accreted onto the neutron star, while
the rest of it will form a common envelope inside which the main
sequence star as well as the neutron star move. Some of the
matter in the common envelope could be lost through the outer
Lagrangian points.

7. Evolution of the binary system with a common envelope

The effect of the frictional drag due to the common envelope on
the neutron star, or on dense stellar cores, has been discussed by
many authors in different contexts (e.g., Paczynski, 1976; Taam
et al., 1978; Meyer and Meyer-Hofmeister, 1979). Following the
treatment of Paczynski (1976), the rate of energy dissipation due
to the frictional drag on the neutron star can be estimated to be

E=nR:pv*, (33)

where p is the density of the common envelope at the orbit of
the neutron star, and v its velocity relative to the envelope; we
will approximate v by the orbital velocity (GM1/R,,;,)"/? and the
extent of the envelope roughly by that of the orbital dimensions
of the binary. In Eq. (33) R, is the accretion radius of the neutron
star,

GM,
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where ¢, is the sound speed. In general ¢, < v, and can be ne-
glected. A similar drag acts on the dense portion of the companion
star because of its motion in the common envelope. As a result
of this the stellar core and neutron star spiral towards each other.
The energy dissipated due to the friction comes from the orbital
energy, so that the spiralling-in timescale is given by

Ryy GM,M,

Tsp = = T
Rorb RorbE

The evolution of the binary system and its configuration after the
stars have spiralled in towards each other, depends on how this
timescale t,, compares with other relevant timescales. Firstly, the
main sequence star overfills the Roche-lobe in an expanded state
as long as the tidal oscillation energy is dissipated inside the star
which is also roughly the thermal relaxation time. If the spiraling-
in time 7, is very long due to low density in the common enve-
lope compared to the dissipation timescale (), then before any
significant spiraling-in takes place the main sequence star would
contract back inside the Roche-lobe and would no longer main-
tain a significant common envelope. In this case, a detached
binary would result. On the other hand, if 7., < 7,;,, the decay
of the orbit would continue and in this case the final configura-
tion depends on whether the dissipated energy is mostly radiated
away from the surface or is used to eject matter from the common
envelope. Following Taam et al. (1978) we will assume that if
frictional heating is strong enough to heat matter in the enve-
lope to escape velocity before the energy could be transmitted
through, then the envelope will be ejected. If 7,; is the time
required to impart energy to the envelope by frictional heating
equal to its binding energy, then,

GM
= T AM
Renv

On the other hand, the time to transport energy across the
envelope 7,, (if this happens through convection) is:

R
~ b 37

Uorb

orb __

(35

T

(36)

ej

Tie = ﬁx—
vCOI‘lV
where v,,,, = [L/4nr’p]'/3, L being the luminosity going through
the envelope. Thus, in the case 7, < 7y, three distinct sub-
classes of final configurations might result. When 7,; » 7,,,, the
envelope of the main sequence star (which by now is in a bloated
phase to fill the Roche-lobe) is not ejected and the neutron star
spirals-in all the way to the center of the expanded star. In the
final stage, the neutron star at the center of the other star gen-
erates an extremely high luminosity (limited only by the Edding-
ton limit) due to gas accretion onto its surface. The resulting
configuration of the system is similar to that investigated by
Thorne and Zytkow (1977) and is a large red supergiant star.

If, on the other hand, 7; < T .y (With 7y, < 7., as before),
again two subclasses of final configurations may occur. The
common envelope will be ejected entirely in these two different
final configurations. In one case, the common envelope would be
ejected faster than the rate at which the matter in it is replenished
by Roche-lobe overflow after a while. This will result in a contact
X-ray binary if the main sequence star just fills the Roche-lobe
after the rapid orbit contraction (due to frictional drag in the
common envelope) is over, due to decreased common envelope
density. Due to differences in efficiency of viscous dissipation, the
largest part of the tidally-induced thermal luminosity may come
from very near the original stellar surface rather than deep down.
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Also, since the temperature at a given point decreases sharply
with radius near the surface any extra heat deposition might
change the entropy structure of the star dramatically towards the
surface. This may shut off convection locally and might isolate
the interior from the surface at least on thermal relaxation time-
scales. In such a case, the layers near the surface would expand
and form the common envelope which in several episodes might
then be ejected by the orbiting neutron star. Eventually, the
interior which remained isolated from the surface due to entropy
barriers, may fill the Roche-lobe and a contact X-ray binary may
result, whose orbit will evolve only on mass-transfer timescales.

Alternatively (with 7. « Ty, and 7., < 7..), the circum-
binary envelope density may continue to remain high if much of
the stellar mass participates in initial Roche-lobe overflow and in
that case the neutron star spirals close to the center of the normal
star and continues to eject the matter in the star due to release
of orbital energy. In this case the final system could consist of a
rapidly spinning neutron star surrounded by some matter, possi-
bly in the form of a massive disk, with the rest of the matter
ejected to infinity.

8. Conclusion

Two-body tidal capture and the subsequent evolution of a binary
leads to the release of ~GM M, /4 R ;. ~ 10*¥erg to the tides
excited in the main sequence star. The part of this energy located
in the convection zone would be dissipated comparatively ra-
pidly by turbulent eddies, while the energy in modes which are
primarily restricted to the radiative region may not dissipate as
efficiently. The viscous dissipation timescale relevant in the pre-
sent context is t,;,, ~ 10 years. For the n = 1.5 polytrope which
approximates a fully convective star, this implies thermalization
of the tidal energy at the rate ~ 800 L. This energy is dissipated
closer to the surface compared to the n = 3case. For the n =3
polytrope, the tidal energy resides in the g modes as well as the
f and p modes. It is only the last two types of modes which
exist in the convection zone, and the corresponding energy is
thermalized on the viscous dissipation timescale. The fraction of
energy in the f and p modes is a function of the parameter #
(see Eq. (7)). For n values corresponding to R, =2.6R, to
Rin = 5.2 R, this fraction ranges from ~20% to less than 1%.
Assuming a rough average of ~10%, the thermalization of the
tidal energy takes place at a rate ~80 L. The energy in the g
modes would be thermalized on timescales longer than ., un-
less non-linear mode couplings and other complications hasten
the process.

The release of thermal energy at these rates can lead to the
expansion of the main sequence star, which can have serious
consequences for the binary. The main sequence star might ra-
pidly overflow its Roche-lobe, which results in a common enve-
lope around the binary system. The common envelope causes the
stellar cores to spiral towards each other because of the frictional
drag. The subsequent evolution depends on the ratio of spiral-in
timescale to the viscous dissipation timescale, and also the ratio
of the timescale for the ejection of the envelope to the timescale
for the transport of thermal energy across the envelope. Depen-
ding on the circumstances the following scenarios are possible:

(1) If 7y < 7p, the common envelope formed is never of
sufficient density to cause significant spiralling-in of the stars.
After the tidal energy is dissipated, the system will evolve to a
detached binary, consisting of a non-condensed star with mass
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smaller than the original, and a neutron star. This may later
evolve into an X-ray source over the nuclear evolution timescale
of the “normal” star or due to orbit contraction owing to loss
of angular momentum, e.g. through gravitational radiation.

(2) If 7,4, > 7p, there will be significant spiralling-in with a
succession of envelope ejections. If the ejection of matter is effi-
cient, after the exhaustion of the tidal energy which may be de-
posited close to the original surface of the star, a close binary
system in which the non-condensed star just fills the Roche-lobe
may be obtained. An X-ray source is thus immediately produced.
(3) If 7,4 > 7, but the ejection is not efficient, the neutron
star will spiral close to the center of the non-condensed star,
which will be completely disrupted through a series of ejections.
In this case we will be left with a neutron star surrounded by a
massive disk, with much of the matter in the star dispersed to
infinity. The neutron star could be spun up to very high rota-
tional velocity due to angular momentum transfer from the disk.

@ If 14 > 1, and 1,,, < T.;, the neutron star will fall into
the non-condensed star without ejecting much of the matter. In
this case a Thorne-Zytkow supergiant is produced. However, the
occurrence of the final configuration as a Thorne-Zytkow object
is probably relatively rare.

It is generally believed that the X-ray sources in the cores of
globular clusters are binaries formed by tidal capture. Our analy-
sis shows that not all binaries formed by tidal capture need have
evolved into X-ray sources within the time which has been avail-
able. It is not possible for us at the present to estimate the relative
frequency with which an alternative, like (2) above, which does
lead to an X-ray source, is realized in practice. If this does not
happen sufficiently frequently, then some formation mechanism,
other than two-body tidal capture, may be necessary to explain
at least some of the globular cluster X-ray sources.
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Note added in proof: A 3 ms pulsar has recently been discovered
in the Globular Cluster M28 by Middleditch et al (IAU Circular
No. 4401). This has a low upper limit of period derivative sug-
gesting that it is not likely to be in a binary system. One of the
possible ways to form such a system through tidal capture is out-
lined in Sections 7 and 8 (case (3)). In this case, the angular
momentum stored initially in the disk can be transferred to the
neutron star and eventually, a single fast pulsar will be left
behind.
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