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Abstract

The cell envelope of Mycobacterium tuberculosis (M.tuberculosis) is composed of a variety of lipids including mycolic acids,
sulpholipids, lipoarabinomannans, etc., which impart rigidity crucial for its survival and pathogenesis. Acyl CoA carboxylase
(ACC) provides malonyl-CoA and methylmalonyl-CoA, committed precursors for fatty acid and essential for mycolic acid
synthesis respectively. Biotin Protein Ligase (BPL/BirA) activates apo-biotin carboxyl carrier protein (BCCP) by biotinylating it
to an active holo-BCCP. A minimal peptide (Schatz), an efficient substrate for Escherichia coli BirA, failed to serve as substrate
for M. tuberculosis Biotin Protein Ligase (MtBPL). MtBPL specifically biotinylates homologous BCCP domain, MtBCCPg;, but
not EcBCCPg,. This is a unique feature of MtBPL as EcBirA lacks such a stringent substrate specificity. This feature is also
reflected in the lack of self/promiscuous biotinylation by MtBPL. The N-terminus/HTH domain of EcBirA has the self-
biotinable lysine residue that is inhibited in the presence of Schatz peptide, a peptide designed to act as a universal
acceptor for EcBirA. This suggests that when biotin is limiting, EcBirA preferentially catalyzes, biotinylation of BCCP over self-
biotinylation. R118G mutant of EcBirA showed enhanced self and promiscuous biotinylation but its homologue, R69A MtBPL
did not exhibit these properties. The catalytic domain of MtBPL was characterized further by limited proteolysis. Holo-MtBPL
is protected from proteolysis by biotinyl-5" AMP, an intermediate of MtBPL catalyzed reaction. In contrast, apo-MtBPL is
completely digested by trypsin within 20 min of co-incubation. Substrate selectivity and inability to promote self
biotinylation are exquisite features of MtBPL and are a consequence of the unique molecular mechanism of an enzyme

adapted for the high turnover of fatty acid biosynthesis.
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Introduction

Mycobacterium tuberculosis has become resistant to most drugs. The
cell wall, composed of almost 60% lipids that are long chain,
branched fatty acids, is highly hydrophobic and hence refractory
to several components of human defense system. It also provides
an effective permeability barrier against several anti-mycobacterial
agents [1-3]. The rich diversity of lipids present in M. tuberculosts is
reflected at the genomic level by a large repertoire of genes for
lipid biosynthesis. M. tuberculosis, for example, has ~300 enzymes
involved in lipid synthesis while E. coli has only about 50 [4-7].

Biotin-dependent enzymes are involved in carboxylation and
decarboxylation reactions. Acyl CoA carboxylases (ACC) catalyze
biotin-dependent carboxylation of nascent molecules such as
acetyl-CoA, propionyl-CoA etc. These carboxylases are multi-
subunit, multi-domain proteins consisting of o and P subunits. M.
tuberculosis has three copies of a-subunits which are composed of a
N-terminus biotin carboxylase (BC) and a C-terminus biotin
carboxyl carrier protein (BCCP). All biotinyl domains so far
reported have a target lysine at —35" residue from C-terminus for
biotinylation [8]. Hence, a protein composed of C-terminus 87
amino acids of acc is an efficient substrate for Biotin Protein ligase
[8]. The PB-subunit has carboxyl transferase (CT) activity [8].
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Biotinylation of BCCP is catalyzed by Biotin Protein Ligase (BPL)
which promotes an amide linkage between the carboxyl group of
biotin and the €-amino group of a specific lysine residue nestled
within a conserved ‘AMKM’ sequence of BCCP. Biotinylation
converts inactive apo-BCCP to functional holo-BCCP that
participates in the transcarboxylation reaction [9,10]. Thus,
BCCP has two functions - mechanistic by serving as carboxyl
carrier in overall carboxylation reaction and structural, by
swinging carboxybiotin to the carboxyl transferase component of
ACC. BC carboxylates the ureido nitrogen atom of biotin
covalently bound to BCCP which moves {COg}-biotin to the
active site of carboxyl transferase (CT), for the transfer of a
carboxyl group to acetyl or propionyl CoA [11,12]. The entire
sequence of carboxylation reaction and the key role played by
BCCP is schematically represented in Figure 1.

In spite of a highly conserved function, BCCPs display unique
features for their respective biotinylating enzymes. In solution,
apo-BCCP (E. coli, Pyrococcus hortkoshii) is a flattened B- barrel
structure comprising of two four-stranded P sheets [12,13]. In
most BCCPs, the biotinable lysine is nestled within the conserved
tetrapeptide ‘AMKM’ sequence in an exposed B-turn of BCCP
domain. However, in Sulfolobus tokodai, the canonical lysine residue
within the sequence ‘AMKS’ was not biotinylated by EcBirA
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Figure 1. Schematic outline of the functional cycle of the BCCP subunit of acetyl CoA carboxylase. The BCCP is involved in three
homologous protein-protein interactions with the Biotin Protein Ligase (BPL), Biotin carboxylase (BC) and Carboxyl transferase (CT).

doi:10.1371/journal.pone.0016850.g001

[14,15]. In Aquifex aeolicus (AaBPL), the target lysine is within the
‘ALKYV’ sequence [16]. BCCP of M. tuberculosis (MBCCP) is part
of a multi-domain enzyme, biotin carboxylase and this probably
alters its dynamics with the cognate enzyme, M{BPL.

MBPL belongs to class I BPLs which lack a DNA binding
domain at their N-termini unlike the class II BPLs (e.g. Ec¢BirA)
hence are devoid of repressor function exhibited by class II BPLs
[17-19]. Our previous study showed that the two enzymes differ in
several ways from structural organization to ligand interactions
[20]. EcBirA can biotinylate BCCPs of other species. MBPL as
shown in this study, in contrast, to FEcBirA exhibits exquisite
substrate specificity. The differences in their activities are
correlated here with their intrinsic metabolic functions.

Results

Protein purification

It has been reported that the C-terminus domain of BCCP (apo-
BCCPg;), does not self-associate and was a good substrate for
biotinylation reaction [11,12]. Hence EBCCPgs; and MBCCPg;
expressed in pET28a were used for avidin blot assays. The BCCP
was purified by Ni-NTA column chromatography. The apo form
was separated from the holo form using a Mono Q) column pre-
equilibrated with 10 mM Tris-HCI buffer (pH- 8.0) prior to the
elution of the protein with a salt gradient (0-100% 10 mM Tis-
HCI pH-8.0, 1 M NaCl). Fractions containing apo-BCCP were
checked on avidin blot, pooled and dialyzed against 10 mM Tris-
HCI pH 8.0, 50 mM KCl, 2.5 mM MgCl, (standard buffer). Thus
~95% of the purified MBCCPg;/ EcBCCPg;was found to be in
their apo form. The biotinylation reaction was found to be
dependent on Mg2+, ATP and biotin. BCCP and BPL were
dialyzed against the standard buffer prior to use.

For self-biotinylation assays, BL21 containing F¢BirA construct
was grown in M9 media supplemented with 2% glucose for 5 h
and induced for 3 h to prevent endogenous self-biotinylation. The
eluted protein was dialyzed, concentrated and dialyzed against
standard buffer.
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Domain architecture of Biotin protein ligase

The domain structure of Mi{BPL and EcBirA was obtained from
pfam (Figure 2) [21]. The different domains of BPL are:

HTH. The helix-turn helix domain.

BPL_LipA_ LipB. This family includes biotin protein ligase,
lipoate-protein ligase A and B.

BPL C. The C-terminus domain has a SH3-like barrel fold,
the function of which is unknown. BPL family is a member of clan
TRB (Transcriptional repressor beta-barrel domain). This beta-
barrel domain is found at the C-terminus of a variety of
transcriptional repressor proteins. As shown in the Figure 2,
Biotin Protein Ligase of M.tuberculosis lacks the N-terminus HTH
domain and hence does not function as a repressor.

Substrate specificity of MtBPL

The molecular behavior of M{BPL and E¢BirA are different due
to the presence of an additional repressor function in E¢BirA. It
has been documented that E¢BirA biotinylates BCCPs from other
species except the one from . tokadiz [15]. In fact, EcBirA
efficiently biotinylated the synthetic biotinable minimal peptide of
sequence ‘GLNDIFEAQKIEWH’ (Schatz peptide) which is
known to be a good substrate for BPLs (Figure 3b). In contrast,
MBPL failed to biotinylate Schatz peptide (Figure 3a). Subse-
quently, we investigated the ability of M/BPL and EcBirA to cross
biotinylate FEcBCCPg; and MBCCPg;. BCCPs (5 uM) were
incubated with 500 pM biotin, 3 mM ATP, 100 nM EcBirA or
MBPL for 30 min at 37°C. EcBirA efliciently biotinylated both
the BCCPs but MBPL selectively biotinylated its cognate substrate
(MBCCPg;) alone and failed to biotinylate EcBCCPg; (Figure 3c).

Self-biotinylation of EcBirA

When substrate specificity of BPLs was explored, at higher
enzyme concentration, a protein with molecular weight corre-
sponding to FEcBirA was detected on avidin blot indicating that
EcBirA undergoes self-biotinylation. This is consistent with the
report of Choi-Rhee et al [22]. Therefore, we investigated if
MBPL was capable of self-biotinylation like its counterpart in F.
coli. MMBPL or EBirA (250-2000 nM) were subjected to
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Figure 2. Domain architecture of Class | and Il BPLs. The domains were designed from pfam results. MtBPL belongs to Class | and EcBirA

belongs to Class Il family of BPLs.
doi:10.1371/journal.pone.0016850.g002

biotinylation reaction for 1 h in the absence of BCCP. The
biotinylation mixture was resolved on 12% SDS-PAGE, trans-
ferred onto nitrocellulose membrane and detected by streptavidin
HRP. The control, EcBirA was self-biotinylated at concentration
as low as 500 nM (Fig S1). In contrast, MBPL did not undergo
self-biotinylation even at 2000 nM (Lane 2-6, Fig S1). Hence, our
focus was to study the implications of the lack of self- biotinylation
in M{BPL.

EcBirA has an additional N-terminus HTH domain which
contributes to the repressor function of the protein (Figure 2).
Earlier reports suggested that truncated EcBirA (A1-34) was
enzymatically active but did not undergo self-biotinylation [22].
This suggested that the N-terminus probably carries the biotinable
residues. So, the N-terminus domain (1-65 amino acids) was
independently cloned in pGEX4T-1. The fused GST-HTH
domain of EcBirA (pGENI) was subjected to biotinylation using
enzymatic concentration of 100 nM M{BPL/EcBirA. The fused
protein was biotinylated by full length E¢BirA (Figure 4). The
control GST protein was not biotinylated by EcBirA. This
confirms that the self-biotinable lysine is within the N-terminus/
HTH domain of EcBirA. It also suggests that the catalytic and self
biotinable domain require no physical contiguity for the covalent
modification. Hence, this construct was used to investigate if the
lack of self biotinylation in M{BPL was because (i) M{BPL lacks the
N-terminus domain or (i) the enzyme was deficient in promoting
self-biotinylation. M/BPL failed to biotinylate HTH-GST fusion
protein (pGENI1) but EcBirA efficiently biotinylated the fusion
protein. This suggests that the mere presence of self - biotinable
residue does not confer M{BPL an ability to self biotinylate.
Furthermore, non-specific proteins such as BSA was biotinylated
by EcBirA but not by M/BPL (Fig S2). This clearly reinstates that
MIBPL does not catalyze indiscriminate biotinylation. Thus, the
mability of M{BPL to undergo self-biotinylation could be
attributed to two factors: absence of an HTH domain and a stringent
catalytic specificity of the enzyme. (Figure 4).
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Competitive inhibition of self - biotinylation by Schatz
peptide

The intermediate molecule, bio-3’AMP, appears to play a
central role in several processes. We investigated if bio-5' AMP was
preferentially used for self-biotinylation of HTH domain or
biotinylation of biotin acceptor molecule. For this, self-biotinyla-
tion of FE¢BirA was performed in the presence of saturated
concentration of Schatz peptide or BCCPg; (5 uM). EcBirA failed
to undergo self-biotinylation or promote biotinylation of heterol-
ogous HTH (pGEN1) domain in the presence of excess biotin
acceptor molecule such as Schatz peptide (Figure 5). Indeed, the
bio-5'AMP synthesized was used for biotinylation of biotin
acceptor molecules, Schatz peptide and BCCP, rather than for
self-biotinylation. Also to confirm that the covalently modified self-
biotinylated EcBirA was dialyzed to remove unbound biotin and
ATP and then incubated with Schatz peptide. The covalently
modified self-biotinylated FEcBirA failed to endogenously biotiny-
late Schatz peptide. However, the addition of biotin and ATP to
previously self-biotinylated FEcBirA led to the conversion of apo-
Schatz peptide to biotinylated form (Fig S3).

Mutation analysis

Choi-Rhee ¢t al have shown that the affinity of R118G mutant of
FE¢BirA for biotin decreased by ~100 fold and the self-biotinylation
increased several fold [22]. However, for the homologous R69A
mutant of M/BPL the binding constant for biotin was nearly the
same as that observed for the wild type protein (data not shown) .
Also, the R69A mutant of M{BPL did not undergo self-botinylation
(Lane 12, Figure S1). This highlights the differences in the structural
and functional organization of EcBirA and M/BPL.

Limited proteolysis

Purified M/BPL was subjected to proteolytic digestion with
protease trypsin for 20 min and the products were analyzed on

March 2011 | Volume 6 | Issue 3 | e16850



T

Class | and Il BPLs

P

%y

Figure 3. Biotinylation by MBPL or EcBirA. (a) Mass spectrum of Schatz peptide incubated with 500 uM biotin, 3 mM ATP and 100 nM MtBPL or
EcBirA in standard buffer. (b) Mass spectrum of Schatz peptide incubated with 500 uM biotin, 3 mM ATP and 100 nM EcBirA in standard buffer. (c) Avidin
blot of biotinylation of BCCP catalyzed by BPL. The reaction was carried in standard buffer (10 mM Tris-HCl pH-8.0, 50 mM KCl, 2.5 mM MgCl,) containing
3 mM ATP, 500 uM biotin, 2.5 mM MgCl,, 0.1 mM dithiothreitol, and 100 nM BPL and 5 uM BCCPg; for 30 min at 37°C. The reaction mixture was then
resolved on a 10% SDS PAGE and transferred to nitrocellulose membrane. The membrane was then incubated with streptavidin HRP for 1 h at room
temperature and developed with AEC/H,02 (1) marker; (2) EcBCCP87+MtBPL; (3) MtBCCP87+MtBPL; (4) ECBCCPg+ECBirA; (5) MtBCCPg+ECBirA.

doi:10.1371/journal.pone.0016850.g003

12% SDS PAGE in order to define the domain boundaries
within the enzyme. The enzyme was subjected to limited
proteolysis in the presence and absence of biotin and MgATP.
Trypsin generated two fragments, one of about ~8.2 kDa and
the other of ~21 kDa as determined by N-terminus sequencing
and SDS-PAGE (Figure 6a, b). The ~8.2 kDa has an N
terminus His-tag which was identified by its reactivity with the
anti-His antibody. Also, the ~8.2 kDa fragment was susceptible
to further proteolysis. The N-terminus sequencing of these
products revealed the cleavage occurred between Arg-72 and
Gly-73 for trypsin. Since these cleavage points are located
around the conserved biotin binding site (GRGRHGR), M/BPL
was subjected to proteolytic digestion in the presence of
saturating amounts of the substrates, biotin and ATP as well
as both of them together. Incubation with ATP did not alter the
cleavage by trypsin with 83% of the protein being digested.
Incubation with biotin did reduce the proteolysis with nearly
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40% of the protein intact. However, incubation of M{BPL with
both biotin and ATP completely protected nearly all the protein
from proteolytic digestion by trypsin. This was also observed
when the protein was pre-incubated with chemically synthesized
bio-5’AMP. In fact the intermediate molecule, biotinyl-5' AMP
protected the protein from proteolytic digestion for over 24 h.
Thus, when biotin and ATP were pre-incubated with the
enzyme, biotinyl-5’AMP was synthesized and this intermediate
molecule protected the protein from proteolysis by binding to
the active site of the enzyme. M!BPL was incubated with
saturating amounts of biotin and non-hydrolyzable ATP
analogue AMPpNpp and then treated with trypsin. The protein
showed reduced protection against the protease as the non-
hydrolyzable ATP analog failed to synthesize biotinyl-5’AMP.
Taken together, these results suggest that the binding of the
substrates and/or the formation of the intermediate, biotinyl-
5"AMP, protects BPL from protease cleavage.
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Figure 4. Biotinylation of GST-HTH domain by £cBirA or MBPL. 5 uM fusion protein was incubated with 500 uM biotin, 3 mM ATP, 100 nM
EcBirA in standard buffer for 1 h. The sample was then resolved on 10% SDS-PAGE and transferred to nitrocellulose membrane and the biotinylated
protein was detected by streptavidin HRP and H,0,. (1) marker ; (2) GST-HTH fusion protein (pGEN1)+100 nM EcBirA; (3) GST-HTH fusion protein
(pGEN1)+50 nM EcBirA (4) GST — HTH fusion protein+100 nM MtBPL.

doi:10.1371/journal.pone.0016850.g004

Discussion heavier o (aced) subunit interacts with three distinct heterologous

proteins; BCCP-BC, BCCP-CT and BCCP-BPL. Considering the

Acetyl CoA carboxylase of M. tuberculosis belongs to the class of complexity of the cell wall of M. tuberculosis, it is not surprising that the
heteromeric ACCases which are multi-domain, multi-subunit enzyme. pathogen has so many of these enzymes with biotinyl domains.

The subunit assembly of aceA3 and accD6 complex in association with BCCP is a key player in carboxylation and transcarboxylation

€ subunits has been studied in detail [8]. The BCCP domain of reactions which shuttles carboxyl group from BC to CT of ACC to

118KDa—> el

B

Figure 5. Competitive inhibition of GST-HTH protein and EcBirA in the presence of excess amount of Schatz peptide. GST-HTH (5 uM)
was incubated with biotin, ATP and 100 nM EcBirA or EcBirA (2 uM) was incubated with biotin, ATP in the presence/absence of Schatz peptide for 1 h
at 37°C. The biotinylated proteins were detected by streptavidin HRP. (1) Protein marker; (2) GST-HTH protein; (3) GST-HTH+Schatz peptide; (4) EcBirA;
(5) EcBirA+Schatz peptide.

doi:10.1371/journal.pone.0016850.9g005
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Figure 6. Limited proteolysis of MBPL by trypsin. MtBPL (10 uM) was incubated with trypsin at 1;100 concentration for 30 min . The digested
samples were resolved on a 10% SDS PAGE and the pattern observed by Coomassie blue stain.. The enzyme was pre-incubated with the substrates
for 30 min prior to proteolysis by trypsin. Molecular weight marker (2) BPL, no trypsin (3) BPL (4) BPL+ATP (5) BPL+biotin (6) BPL+biotin+ATP (7)
BPL+biotin+non-hydrolyzable AMP pNPP (8) BPL+bio-5'AMP. (b) The percentage of digestion during a period of 2 h. MtBPL was pre-incubated with
substrates 500 uM biotin, 3 mM ATP, biotin+ATP, 10 uM bio-5’AMP for 30 min and then subjected to proteolysis by incubating with trypsin for

20 min.
doi:10.1371/journal.pone.0016850.g006

initiate fatty acid elongation. As a prelude to carboxylation of
biotin to transcarboxylation of acyl-CoA, BPLs must selectively
interact with BCCP. Relating structure to function of a protein
that participates in multiple interactions is fraught with difficulties
[23,24]. From the crystal structures of PABCCP and EBCCP, it
was evident that target lysine is located at the type 1 B- turn
[11,25]. In most post-translational modifications, the primary
structure surrounding target residue is critical. But from the
biotinylation results of this study it is apparent that while the motif
is necessary it is not enough for biotinylation. Indeed failure of
MiBPL to biotinylate £cBCCPg; is consistent with this argument.
Hence, specific conformational feature(s) around the motif are
necessary for biotinylation of the acceptor domain.

We reported earlier that BCCP domain of accd! was efficiently
biotinylated and hence probably participates in the acetyl CoA
carboxylase activity [20]. M. tuberculosis has three BCCP domains
each one belonging to a biotin carboxylase paralog. Our interest
was to study the specificity of M{BPL for the reactive biotinable
lysine residue(s). This was of interest especially considering that
EcBirA could biotinlate BCCP from S. cerevisiae. Our study clearly
defines the substrate specificity of M{BPL. The gram positive
protein ligase could not biotinylate Schatz peptide or £EcBCCP at
all the conditions tested. In contrast, £cBirA could biotinylate
Schatz peptide and also MBCCP showing broad substrate
specificity. Association of BirA —BCCP is complex and in . colz,
a cysteine residue in the conserved hydrophobic patch (LCIV) of
B4-B5 turn promotes dimerization of apo-£cBCCP. On biotinyla-
tion, the cysteine residue is buried contributing to monomerization
of holo-EBCCP [12]. However, PRBCCP and MBCCP lack this
crucial cysteine residue. The C-terminus of BPL undergoes
relatively large conformational changes to accommodate BCCP
[13]. The BCCP domains from different species have varied
structural organization to interact with their homolgous enzyme(s)
[26,27]. Display of a stringent specificity for its substrate is

@ PLoS ONE | www.plosone.org

probably very critical for M{BPL due to the presence of different
paralogs of BCCPs (accAdl, accA2, accA3) in its genome.

While Choi Rhee et al showed that R118G mutant of EcBirA
promotes self- biotinylation and also biotinylates BSA, we show
that wild type E¢BirA itself at higher concentration of ATP and
biotin exhibited self-biotinylation. It also promoted promiscuous
biotinylation of BSA. In contrast, M{BPL did not undergo self-
biotinylation nor promote appreciable promiscuous biotinylation
of BSA ( Fig S1, S2, and S3).

Certain BPLs have a flexible active site domain that
accommodates different substrates. Though EcBirA and M{BPL
share considerable sequence homology they differ in their activities
in a fundamental manner. A profound difference between EcBirA
and MBPL is self-biotinylation exhibited by the former enzyme.
The N-terminus domain (HTH domain) of E¢BirA is the site of
self- biotinylation. A1-34 E¢BirA failed to undergo self-biotinyla-
tion [22]. Also, biotinylation of heterologus pGENI (1-65 amino
acid N-terminus domain of EcBirA) confirmed that HT'H domain
had the self- biotinable lysine residue. As mentioned earlier,
MBPL failed to undergo self-biotinylation probably because it
lacks the HTH (repressor) domain. Sequence analysis showed that
EcBirA, PiBPL and A4aBPL have 18, 25 and 16 lysine residues
compared to just 2 residues in M/BPL. The two lysine residues of
MiBPL are within the conserved ‘KWPND’ and ‘KIAGLEV’mo-
tifs and are probably part of the active site. The invariant lysine
within the KIAGLEV plays an essential catalytic role during
synthesis of bio-5'AMP and the KWPND shares the motif with
streptavidin. Thus, the lack of self-biotinylation in M/BPL is due to
the absence of a biotinable lysine residues. The specific lysine
residues involved in the self-biotinylation of the HTH domain are
currently under investigation in our laboratory. In biotinylation of
BCCP, an eclectrostatic interaction between negative phosphate
group of bio-5’AMP and positively charged lysine of BCCP are
key elements. The uncharged lysine in BCCP is deprotonated by
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aspartate residues of £¢BirA which promotes a nucleophilic attack
on the electrophilic carbonyl group of bio-5’AMP leading to
covalent modification [27]. It is possible that a similar mechanism
promotes self-biotinylation of HT'H domain of EcBirA. However,
the self-biotinable residues in BPLs may not have sufficient
accessibility and reactivity for accepting biotin and hence require
longer incubation which perhaps accounts for a lag period of 1 h.
Intermolecular interaction of BPL and BCCP probably allows for a
snug fit which in turn promotes a fast and efficient covalent
modification of the acceptor target lysine in BCCPs. On the other
hand intramolecular folding of BPL initiated by bio-5'AMP may
impart steric hindrance which probably restrains orientation of the
adenylate towards the self-biotinable lysine.

Intramolecular folding in £¢BirA enables deprotonation of self-
biotinable/promiscuous biotinable lysine residue leading to its
covalent modification. However, the transition state of M{BPL
probably selects the specific acceptor molecule which in turn
explains its stringent specificity for its cognate BCCP. Studies
reported show that M/BPL differs from E¢BirA and probably other
BPLs in many additional ways; (a) MBPL is a monomer in both its
apo and holo forms and has relatively lower affinity for biotin and
bio-5'AMP (b) In EcBirA, self-biotinylation was enhanced in
R118G mutant which releases bio-5'AMP leading to increased
self-biotinylation of the mutant protein. The R69A mutant of
MBPL failed to undergo self- biotinylation suggesting that the
proclivity of the enzyme for biotinylation was different from that of
EcBirA. The R69A MiBPL has similar affinity for biotin as that of
wild type in contrast to R118G EcBirA which exhibited reduced
affinity for biotin. Self-biotinylation of E¢BirA occurs only in the
absence of a biotin acceptor molecule. This is of relevance to the
repressor function of E¢BirA which occurs only in the absence of
biotin acceptor molecule. Limited proteolysis study further reveals
that the folding of the ligases are different. Our studies show that
MiBPL is cleaved at the N-terminus (72—73 amino acids) whereas
E¢BirA is known to be cleaved at the C-terminus (217-218 amino
acids) [28]. M{BPL exhibit restricted cleavage in the presence of
substrate suggesting that scissile site interacts with the substrate.

Class | and Il BPLs

While the biotin binding site is constituted by the conserved
‘GRGRHGR’ in both the BPLs but binding of biotin/bio-5' AMP
promotes conformational change in EcBirA [28,29].

Self-biotinylation is intrinsic to the catalytic function of the
given BPL as availability of the self biotinable domain of EcBirA
(pGENI) does not promote promiscuous biotinylation by M{BPL.
In support, 4aBPL which lacks the HTH domain undergoes self-
biotinylation at higher enzyme concentration (>500 nM) as
observed with FEcBirA [30,31]. In MBPL, the lack of self-
biotinylation is due to both substrate stringency of the enzyme
and also due to the lack of a target lysine residue. The absence of
self-biotinylation in M{BPL is probably a desirable feature to
facilitate the high demands of fatty acid biosynthesis in AL
tuberculosis. However, in other biotin protein ligases with or without
the HI'H domain, self-biotinylation is seen to take place.

Proposed rationale for the diverse functional
organization of BPLs

MBPL. We reported earlier that M{BPL in spite of lower
affinity for biotin had £, similar to that of E¢cBirA [20]. Deletion of
N-terminus domain of FEcBirA decreases binding affinity of the
enzyme by ~100 fold [29]. This suggests that higher binding
constant of E¢BirA for biotin may be directed towards covalent
modification of HTH domain. In M/BPL, fatty acid synthesis plays
central role for its cell wall synthesis. As this is a rate limiting step,
the enzyme avoids self/promiscuous biotinylation to conserve
biotin, a scarce co-factor whose biosynthesis itself is an extremely
slow process. This is due to the low turn over of BioB and its
degradation under low iron concentration [32,33]. Additionally,
uncoupling biotinylation and repressor functions would favor fatty
acid biosynthesis [34]. Hence, the mycobacterium cell probably
reserves all the biotin at its disposal for biotinylation of acc to meet
the demands of cell wall biosynthesis (Figure 7a).

E. coli. The intermediate molecule, bio-5’AMP can be
utilized for any of the three function: biotinylation of BCCP,
self-biotinylation or as a co-repressor depending on the cellular
demands (Figure 7b).

Figure 7. A schematic illustration proposing the mechanism of biotin utilization and their physiological significance. (a) Intrinsic
metabolic functions of MtBPL (b) Intrinsic metabolic functions of EcBirA and their physiologic significance.

doi:10.1371/journal.pone.0016850.g007
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1) At high BCCP concentration, low bio-5'AMP [+] mediates
biotinylation of biotin acceptor molecule.

2)  Atlow BCCP concentration and moderate bio-5'AMP [+4] ,
when the cell does not require biotin for biotinylation
reaction, bio-5'AMP [++] probably needs to functions as a
co-repressor of biotin biosynthetic pathway and repress
synthesis of biotin. However, this would be favored only if
E.coli does not require immediate fatty acid biosynthesis to
operate. But the bacterium during the transition, probably
requires additional time to decide whether it wants to block
the biotin biosynthetic pathway. Under such a situation, in
the absence of BCCP, the bio-5’AMP is directed towards self-
biotinylation. This prevents the bio-5"AMP to be utilized as a
co-repressor of biotin biosynthetic pathway. The self-
biotinylated EcBird is enzymatically active to participate in
the biotinylation of BCCP. This is primarily because
transcription activation or repression has to be modulated
according to the cellular requirements [34]

3) However, when the concentration of bio-5’AMP [+++] is
abundant it functions as a co-repressor and shuts the biotin
biosynthetic pathway.

Our results support the proposed hypothesis as self- biotinyla-
tion is competitively inhibited by biotin acceptor molecule which is
1s increased in the presence of operator sequence of biotin
biosynthetic pathway [18].

The preferred order of bio-5'AMP utilization by EcBirA is:

Biotinylation > Self- biotinylation > Co-repression

Thus the evolutionary process has devised different mechanism in
EcBirA and MBPL commensurate with the functional require-
ment of the organism. The biotin repressor function is separated
from enzyme function in M/BPL as lipid biosynthesis is very
critical in M. tuberculosis. As the repressor function is not coupled to
the enzyme function the enzyme does not promote self-biotinyla-
tion. However, in E. coli during the evolutionary process, the
enzyme has probably compromised its substrate specificity and has
also acquired self as well as promiscuous biotinylation.

Yao et al [35,36] suggested that though functionality and overall
folding of biotinyl domains are conserved through evolution, the
detailed structures of BPL-BCCP binding interface may vary
among different species. The substrate stringency of M/BPL may
add to its ability to regulate the acyl CoA carboxylases in M.
tuberculosts.

In conclusion, our studies with MBPL show that biotinylation
process is not dependent merely on recognition of a target residue
but involves an intricate play between the biotinyl acceptor
(BCCP) and its cognate ligase. M{BPL plays an active role in
substrate selection which occurs by an integration of an intricate
series of events involved in BPL-BCCP interaction and biotin
demands of the cell. The stringency exhibited by M/BPL makes it a
suitable target for the development of anti-mycobacterials and
vaccine.

Materials and Methods

Protein methods

M. tuberculosis BPL ( Rv3279c) was cloned into pE'T28a at Ndel/
HindIII sites and the protein purified as described by Purushotha-
man et al [20]. Mutant R69A was generated by site- directed
mutagenesis and cloned into Ndel/HindIII sites and sequence
analyzed. The procedure used for the purification of the mutant
protein was identical to that of its wild type counter-part wild type
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[20]. EcBirA and (A1-65) EcBirA. M. tuberculosis has three acetyl-/-
propionyl coenzymeA carboxylase o subunit accdl (Rv2501¢),
accA2 (Rv0973¢), accA3 (Rv3285¢), and a putative acetyl CoA
carboxylase subunit BCCP 7B7.5 (Rv3221c) and six B subunit,
aceD genes [7,8]. All biotinyl domains so far reported have target
lysine at —35" residue from C-terminus for biotinylation. Hence,
we cloned the C-terminus 87 amino acid residues of accAl as the
substrate for Mi{BPL. MiBCCPg,and EcBCCPg; were cloned into
pET28a. The PCR primers used for amplification reaction are
listed in Table 1.

For self-biotinylation studies, BL21 expressing FEcBirA was
grown in M9 minimal media supplemented with 2% glucose for
4 h and then induced with 100 uM IPTG for 3 h. This was
carried out to prevent autologous self-biotinylation.

Schatz minimal peptide

A minimal peptide, Schatz peptide, which is efficiently
biotinylated by EcBirA GLNDIFEAQKIEWH (Genscript, USA)
[37], was used for some of the experiments (37). The peptide
(5 uM) was incubated with 100 nM of EcBirA/MBPL, biotin
(500 uM), ATP (3 mM) for 1 h at 37°C in standard buffer and the
biotinylation was detected by MALDI-TOF.

Matrix-assisted laser desorption time of flight mass
spectrometry

The molecular weight of Schatz and holo-Schatz peptides were
determined by MALDI-TOF MS using a Ultraflex TOF/TOF ,
(Bruker Daltonics Germany) equipped with a N2 Laser, 337 nm,
50 Hz operating in the 25 KvA reflector mode. Samples were
dialyzed against water and 1 pl of sample was mixed with equal
volume of matrix solution on a stainless steel plate and air-dried
prior to analysis. The matrix solution used was o-cyano-4-
hydroxycinnamic acid in 50% acetonitrile, 0.1% (v/v) trifluor-
oacetic acid. Mixture of appropriate standards was used for
calibration and Schatz and holo-Schatz peptide analytes were
analyzed as described above and calibration was performed using
the known protonated molecular ion (MH1).

Fast Protein Liquid Chromatography

A reaction mixture of M/MBPL (20 uM), biotin (500 uM), ATP
(3 mM) , MgCl, (2.5 mM), and MBCCP,55 (20 uM) were
incubated for 30 min at 37°C and then 200 pl of the reaction
mixture was loaded onto Superdex S200 (GE, Healthcare) and

Table 1. List of primers used.

Name Sequence

MtBCCPg; fwd  5'- GGAATTCCATATGCACCTGCGCGAGGCCGAGGA-3'
MtBCCPg; rev  5'- CCCAAGCTTCTAGTCCTTGATCCTCGCCAGTACC-3'

EcBCCPg,fwd  5'-GGAATCCATGATGGAAGCGCCAGCAGCAGCGGAAATC-3’
EcBCCPgrrev 5'-CGCCTCGAGCTCGATGACGACCAGCGGCTCGTCAAATTC-3'
EcBirA fwd 5'- GGAATTCCATATGATGAAGGATAACACCGTGCCACTGAAA-3’

EcBirA rev 5'- CCAAGC A CTGCACTACGCAGGGATATTTCACC-3’
TrEcBirA fwd 5’ -GGAATTCCATATGCAGTTACTTAATGCTAAACAG-3’
TrEcBirA rev 5'- CCCAAGC A CTGCACTACGC -3’

R69A MtBPL 5" — ATCGCCGAGCATCAGACCGCTGGGCGGGGGCCCATGGC -3’
fwd

R69A MtBPL
rev

5'- TCGGGCAGTGGCCGCCCAGCCGCGGCCATGGGCCCCCCG -3/

doi:10.1371/journal.pone.0016850.t001
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eluted at a flow rate of 0.2 ml/min and the eluted samples were
monitored at 280 nm. The gel filtration column was calibrated
with alcohol dehydrogenase, BSA, ovalbumin, carbonic anhydrase
and chymotrypsin and lysozyme. Also, purified MBCCP,56 was
loaded on to the column to determine the oligomeric status of apo-

MBCCP 56.

Biotinylation assay

Biotin acceptor molecule (BCCP or Schatz peptide) were
incubated with 500 uM biotin, 3 mM ATP, 2.5 mM MgCl, and
100 nM M{BPL or EcBirA in standard buffer for 1 h at 37°C. The
biotinylated proteins were detected by avidin blot and mass
spectrometry..

Self-biotinylation reaction

To determine self-biotinylation, different concentration of
EcBirA/MBPL  were incubated with 3 mM (ATP), biotin
(500 pM) in standard buffer for 1 h at 37°C. The biotinylated
protein was then detected by streptavidin blot.

Avidin blot

Biotinylated proteins were resolved on 10% SDS-PAGE and
transferred to nitrocellulose membranes. The non-specific sites
were blocked with 5% skim milk in Phosphate buffered saline
+0.1% Tween20, pH-7.4, (PBS-T) and incubated with streptavi-
din-HRP (Sigma) at 1:2000 dilution for 1 h at room temperature.
The membrane was washed 5 x with PBS-T and 2 x with PBS and
detected by 3-amino-9- ethylcarbazole (AEC)/HO,.

Limited proteolysis

MBPL (5 pM) was incubated with trypsin (1:200) dilution and
incubated at 37°C for 20 min. The enzyme was pre-incubated
with biotin (500 pM) and ATP (3 mM) at 37°C for 30 min prior to
trypsin digestion. After protease treatment, the sample solubilizing
dye was added to the protein , boiled and loaded on to a 10%
SDS-PAGE. The resolved proteins were scanned and percentage
of proteolysis determined. The digested product was sequenced
from the N-terminus on an Applied Biosystems Precise 491 CLC
Protein Sequencer.
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membrane. The membrane was then incubated with streptavidin
HRP for 1 h at room temperature and developed with AEC/
HyO,, (1) marker; (2-6) 250-2000 nM of MBPL; (7-11) 250
2000 nM of EcBird; (12) 2000 nM of R69A MBPL. See also
Figure S2.

(TIF)
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incubated with streptavidin HRP for 1 h at room temperature and
developed with AEC/H502. (1) marker (2) BSA+400 nM MBPL;
(3-5) BSA+200, 300, 400 nM of EcBirA.

(TTEF)

Figure 83 Catalytic activity of self-biotinylated FEcBirA . Self-
biotinylated EcBirA was dialyzed to remove free biotin/ATP. The
enzyme was then used to transfer biotin to Schatz peptide in the
absence or presence of endogenous biotin and ATP. (a) Mass
spectrum of Schatz peptide incubated with self-biotinylated
EcBirA in standard buffer. (b) Mass spectrum of Schatz peptide
incubated with self-bitoinylated FcBirA incubated with endoge-
nous 500 uM biotin, 3 mM ATP and in standard buffer.

(TIF)
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