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1. Introduction

Algebraic Riccati equations occur naturally when solving linear quadratic reg-
ulation problems in Hilbert spaces.

Let U , Y and Z be real Hilbert spaces. Let A : D(A) ⊂ Z → Z be the
infinitesimal generator of a c0-semigroup. Let B belong to L(U, Z) and C belong
to L(Z, Y ) (as usual, if X and Y are Hilbert spaces, L(X, Y ) denotes the space
of bounded linear operators from X into Y , and if X = Y , we set L(X, X) =
L(X)). Given z0 ∈ Z and u ∈ L2(0,∞; U), let z ∈ L2(0,∞; Z) be the solution
of the initial value problem

z′(t) = Az(t) + Bu(t), t > 0,
z(0) = z0.

}
(1.1)

Define

J(z, u) =
1

2

∫ ∞

0

‖Cz(t)‖2
Y dt +

1

2

∫ ∞

0

‖u(t)‖2
U dt.
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The linear regulation problem for equation (1.1) and the cost function J is

(Pz0
) inf

{
J(z, u) | u ∈ L2(0,∞; U) and (z, u) satisfies (1.1)

}
.

If the semigroup (etA)t≥0 is exponentially stable, then J(zz0,u, u) is finite
for all z0 ∈ Z and u ∈ L2(0,∞; U), where zz0,u is the solution to equation
(1.1). Otherwise, that is, if (etA)t≥0 is not exponentially stable, the functional
J(zz0,u, u) may not be necessarily finite valued. In the general case, we need to
make the following assumption for the problem (Pz0

) to be well posed.

Finite Cost Condition (FCC): for every z0 ∈ Z, there exists a control u ∈
L2(0,∞; U) such that J(zz0,u, u) < ∞.

If we assume that FCC is valid, then it is easy to see that problem (Pz0
)

admits a unique solution. In this case, it can also be shown (see Zabczyk, 2008;
Bensoussan et al., 1993; Lasiecka and Triggiani, 2000) that

inf(Pz0
) =

1

2
(P̃ z0, z0)Z for all z0 ∈ Z,

where P̃ is the so-called minimal solution to the algebraic Riccati equation

P ∈ L(Z), P = P ∗ ≥ 0,

A∗P + PA − PBB∗P + C∗C = 0.
(1.2)

The optimal control u ∈ L2(0,∞; U) of problem (Pz0
) is given in the feedback

form

u(t) = −B∗P̃ zz0,u(t) for all t > 0.

Thus, we can obtain the optimal state z̃ as the solution of the initial value
problem:

z′(t) = (A − BB∗P̃ )z(t), t > 0,
z(0) = z0.

}
(1.3)

At this point, let us clarify some notation. In equation (1.2), 0 denotes the
null operator of L(Z), P ∗, B∗ and C∗ denote the adjoint of P , B and C, and we
assume that Z and U are identified with their duals. Two self-adjoint operators
S and T in Z are related by the partial order relation S ≥ T if, for every vector
z ∈ Z, we have ((S − T )z, z)Z ≥ 0, where (·, ·)Z denotes the inner-product.

Let us recall that the pair (A, C) is exponentially detectable if there exists
L ∈ L(Y, Z) such that A + LC, with domain D(A), is the generator of an
exponentially stable semigroup on Z.

If, in addition to the FCC, the pair (A, C) is exponentially detectable, then
the solution to equation (1.2) is unique.
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Let us assume that equation (1.2) admits a unique solution. When Z is of
infinite dimension, for example, if equation (1.1) is a partial differential equa-
tion, the solution to equation (1.2) can be only approximated by a numerical
algorithm. An approximation Ah, Bh and Ch of the operators A, B and C is
obtained by discretizing equation (1.1) by some numerical scheme (a finite ele-
ment method, or a finite difference method, or a finite volume method...) and
equation (1.2) is replaced by an equation of the form

Ph ∈ L(RN ), Ph = P ∗
h ≥ 0,

A∗
hPh + PhAh − PhBhB∗

hPh + C∗
hCh = 0.

(1.4)

For control of fluid flows or control of thermal processes the dimension N can
be very large and in that case classical algorithms are not efficient in solving
equation (1.4). This is why new algorithms are still developed nowadays to solve
equation (1.4) (see Benner and Baur, 2008). The Kleinman-Newton algorithm
(see Kleinman, 1968) is still efficient in solving equation (1.4) for large scale
equation (see Benner and Baur, 2008; Burns et al., 2008). The inconvenience
of that method is that, in order to guarantee the convergence of the Newton
method, the initial guess P0 must be chosen so that Ah − BhB∗

hP0 is exponen-
tially stable. Finding such an initialization can be nearly as complicated as
solving equation (1.4) itself.

Very recently, Benner et al. (2008) proposed to choose P0 as the solution to
the degenerate Riccati equation:

P ∈ L(Z), P = P ∗ ≥ 0,

A∗P + PA − PBB∗P = 0,

A − BB∗P generates an exponentially stable semigroup.

(1.5)

(In Benner and Baur, 2008, the authors consider the case where dim(Z) <
∞.) Indeed, there are specific algorithms to solve equation (1.5) even when
the dimension of Z is relatively high (Amodei and Buchot, 2008; Benner and
Baur, 2008). (Equation (1.5) corresponds to the algebraic Riccati equation (1.2)
when C = 0.) It is well known that there exists a unique solution to equation
(1.2) such that A − BB∗P generates an exponentially stable semigroup (see
Bensoussan et al., 1993, Part III, Chapter 1, Corollary 4.1). The same proof
can be applied to equation (1.5). Thus, the condition A − BB∗P generates
an exponentially stable semigroup that guarantees the uniqueness of solution to
problem (1.5).

In this paper, we are interested in solutions to equation (1.5) when Z is of
finite or of infinite dimension.

The paper is organized as follows. In Section 2, we recall a comparison
principle for solutions of the algebraic Riccati equation (1.2). This will be
helpful in Section 5 to characterize the solution to problem (1.5). An immediate
consequence of this comparison principle is that, if A is itself exponentially
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stable, then the only solution of (1.5) is the trivial one. In Section 3, we will
consider the other extreme, i.e. when −A is exponentially stable. In particular,
we will show that this, together with the condition that (−A, B) is exactly
controllable, is sufficient for the degenerate equation (1.5) to have a nontrivial
solution P which is, on the one hand, invertible and, on the other hand, such
that A − BB∗P is exponentially stable. Actually, P−1 will turn out to be the
solution of an associated Lyapunov equation and so we can explicitly write down
the solution.

In Section 4, we will generalize this to cover certain cases which includes
the finite dimensional case where A has no eigenvalues on the imaginary axis
and the parabolic case (see Bensoussan et al., 2007). In particular, we will
show that, when A has no eigenvalues on the imaginary axis, the eigenvalues
of A − BB∗P are related to the eigenvalues of A in the following manner. Let
the spectrum of A, denoted σ(A), be the disjoint union of σs(A) of eigenvalues
with strictly negative real part and σu(A) of eigenvalues with strictly positive

real part. If λ = µ + iν ∈ C, denote its reflection on the imaginary axis by λ̃,
i.e. λ̃ = −µ + iν. Then

σ(A − BB∗P ) = σs(A) ∪ {λ̃ | λ ∈ σu(A)}.

To see why we can expect such a result, it is illuminating to consider the
(albeit trivial) one-dimensional case. If a and b ∈ R, we seek p ≥ 0 such that
2ap − b2p2 = 0. This has two solutions, namely p = 0 and p = 2a/b2 when
b 6= 0. Now consider the perturbed equation

2apε − b2p2
ε + ε2 = 0.

The positive solution to this quadratic equation is given by

pε =
a +

√
a2 + ε2b2

b2
.

When a < 0, pε → p = 0; when a > 0, pε → p = 2a
b2 . Thus

a − b2p =

{
a when a < 0
−a when a > 0.

In Section 5, we will show that the solution P is the limit of the family of
operators Pε, as ε → 0, where Pε = P ∗

ε ≥ 0 and

A∗Pε + PεA − PεBB∗Pε + ε2I = 0,

where I is the identity operator on Z. Our analysis in Section 5 relies on the
notion of maximal solutions to algebraic Riccati equations introduced by A.
Bensoussan (1987) (see also Bensoussan et al., 1993, Part III, or Bensoussan et
al., 2007, Part V, pp. 497–500). As in Bensoussan et al. (1993) Part III, we will
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give a variational characterization for the control given by the usual feedback law
u = −B∗Pz, where z is the solution of (1.3) and P is the (maximal) solution to
(1.5). Some of the results in Bensoussan et al. (1993), Part III, may be applied
to the degenerate case (that is, when C = 0) and not some other ones. Thus,
for clarity we shall write all the proofs.

Let us finally mention that the results established in Sections 4 and 5 are
well known for finite dimensional systems (see Amin, 1985; Ibbini and Amin,
1993; Zhou et al., 2008).

In Section 6, we end the paper by giving a concrete example where results
of Section 4 apply.

2. A comparison principle

In this section, we recall a comparison principle for solutions of the algebraic
Riccati equation.

Lemma 1 Let U , Y and Z be real Hilbert spaces and let A : D(A) ⊂ Z →
Z be the infinitesimal generator of a c0-semigroup. Let B ∈ L(U, Z) and let
Ci ∈ L(Z, Y ), for i = 1, 2. Assume that C∗

1C1 ≥ C∗
2C2. Let Pi ∈ L(Z), where

Pi = P ∗
i ≥ 0, be a solution to the algebraic Riccati equation:

PiA + A∗Pi − PiBB∗Pi + C∗
i Ci = 0

for i = 1, 2. Finally, assume that A − BB∗P1 is exponentially stable. Then
P1 ≥ P2.

Proof. Substracting the equation for P2 from that for P1, we get

(P1 − P2)(A − BB∗P1) + (A − BB∗P1)
∗(P1 − P2)+

+(P1 − P2)BB∗(P1 − P2) = C∗
2C2 − C∗

1C1.

Thus, if ζ ∈ D(A),

d

dt

(
(P1 − P2)e

t(A−BB∗P1)ζ , et(A−BB∗P1)ζ
)

=

= −
∥∥∥B∗(P1 − P2)e

t(A−BB∗P1)ζ
∥∥∥

2

U
+

+
(
(C∗

2C2 − C∗
1C1)e

t(A−BB∗P1ζ, et(A−BB∗P1)ζ
)

Z
.

Integrating this from 0 to T and using the fact that C∗
1C1 ≥ C∗

2C2, we get

(
(P1 − P2)e

T (A−BB∗P1)ζ, eT (A−BB∗P1)ζ
)

Z
− ((P1 − P2)ζ, ζ)Z ≤ 0.

Since A − BB∗P1 is assumed to be exponentially stable, the above relation
implies, on letting T tend to infinity, that ((P1 − P2)ζ, ζ)Z ≥ 0. By density of
D(A) in Z, this is true for all ζ ∈ Z, which completes the proof.
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As an immediate consequence of this lemma, we deduce the following results.

Corollary 1 The algebraic Riccati equation (1.2) and the degenerate algebraic
Riccati equation (1.5) each admit at most one solution P such that A − BB∗P
is exponentially stable. In particular, if A is itself exponentially stable, then the
degenerate algebraic Riccati equation (1.5) has no non-trivial solution P such
that A − BB∗P is exponentially stable.

Recall that (see Zabczyk, 2008) if the pair (A, C) is exponentially detectable,
then any solution P of the algebraic Riccati equation (1.2) is such that A−BB∗P
is exponentially stable. Thus, if (A, C) is exponentially detectable, then (1.2)
admits a unique solution.

3. A special case

In the previous section, we saw that if A was itself exponentially stable, then the
trivial solution was the only one possible for the degenerate Riccati equation.
In this section, we consider the other extreme, when −A is exponentially stable.
Thus, we are in the case when A is the infinitesimal generator of a group. (Some
generalization corresponding to the case when A is the infinitesimal generator
of a semigroup is studied in the next section.) We will see that we can expect
not only a nontrivial solution, but one that is invertible as well. More precisely,
we prove the following result.

Theorem 1 Let U and Z be Hilbert spaces. Let A : D(A) ⊂ Z → Z be the
infinitesimal generator of a c0-group. Let B ∈ L(U, Z). Then, the following are
equivalent:
(i) −A is exponentially stable and there exists α > 0 such that for all z ∈ Z,

∫ ∞

0

∥∥∥B∗e−tA∗

z
∥∥∥

2

U
dt ≥ α‖z‖2

Z . (3.1)

(ii) The degenerate algebraic Riccati equation (1.5) admits a solution P ∈ L(Z)
and P is invertible.

Proof. Step 1. Assume that −A is exponentially stable and that (3.1) holds.
Then, the operator

Q =

∫ ∞

0

e−tABB∗e−tA∗

dt

is well-defined and, clearly, Q = Q∗. Let z ∈ Z. Then

(Qz, z)Z =

∫ ∞

0

∥∥∥B∗e−tA∗

z
∥∥∥

2

U
dt ≥ α‖z‖2

Z ≥ 0

by (3.1). It then follows, from the Lax-Milgram lemma, that Q is invertible.
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Step 2. Set Q(t) = e−tABB∗e−tA∗

. Then,

d

dt
Q(t) = (−A)e−tABB∗e−tA∗

+ e−tABB∗e−tA∗

(−A∗).

Thus,

−
∫ ∞

0

d

dt
Q(t) dt = Q(0) = BB∗.

Thus, we deduce that

AQ + QA∗ = BB∗ with Q =

∫ ∞

0

e−tABB∗e−tA∗

dt. (3.2)

Setting P = Q−1 and multiplying the above equation on both sides by P , we
deduce that P satisfies the degenerate algebraic Riccati equation (1.5). Further,
it is clear that P = P ∗ ≥ 0.

Step 3. Since P is invertible and satisfies (1.5), we see immediately that

P (A − BB∗P )P−1 = −A∗. (3.3)

Thus, A−BB∗P is similar to −A∗ which is exponentially stable, by hypothesis,
and so the exponential stability of A − BB∗P is established. Thus, P satisfies
all the conditions laid down in statement (ii) of the theorem.

Step 4. Conversely, let us now assume the validity of statement (ii) of the
theorem. Once again, since P is an invertible operator, which solves (1.5), we
deduce that (3.3) is valid. Thus, if A−BB∗P is exponentially stable, the same
is true for −A∗ and so for −A as well. Also we deduce from (1.5) and the
invertibility of P , that

AP−1 + P−1A∗ = BB∗ (3.4)

which is just (3.2) with P−1 replacing Q. Thus we easily see that

d

dt

(
e−tAP−1e−tA∗

)
= −e−tABB∗e−tA∗

,

whence we deduce that

P−1 =

∫ ∞

0

e−tABB∗e−tA∗

dt.

Thus, if z ∈ Z, then

∫ ∞

0

∥∥∥B∗e−tA∗

z
∥∥∥

2

U
dt =

∫ ∞

0

(
e−tABB∗e−tA∗

z, z
)

Z
dt = (P−1z, z)Z.



1400 S. KESAVAN, J.-P. RAYMOND

Since P−1 is self-adjoint and non-negative, it admits a square root, i.e. there
exists S ∈ L(Z) such that P−1 = S2. Clearly, S is also invertible and, further,
‖Sz‖Z ≥ β‖z‖Z, where

β =
1

‖S−1‖L(Z)
.

It then follows that
∫ ∞

0

∥∥∥B∗e−tA∗

z
∥∥∥

2

U
dt ≥ β2‖z‖2

Z,

which establishes (3.1) with α = β2. This completes the proof.

Remark 3.1 Notice that the operator Q, defined in Step 1 of the proof, is
nothing else than the Gramian corresponding to (−A, B) and that (3.2) is just
the Lyapunov equation associated to the pair (A, B).

Remark 3.2 If the pair (−A, B) is exactly controllable in some time T > 0,
then there exists α > 0 such that, for every z ∈ Z,

∫ T

0

∥∥∥B∗e−tA∗

z
∥∥∥

2

U
dt ≥ α‖z‖2

Z.

Thus, in this case, (3.1) holds and the above result is applicable.

Remark 3.3 The idea of using the dual Riccati equation (3.4) when P is in-
vertible is classical in control theory. It has been used in connection with exact
controllability in Flandoli et al. (1988), Theorem 2.6. See also Lasiecka and
Triggiani (2000b).

4. Generalizations

We assume, henceforth, that the Hilbert space Z and the operator A : D(A) ⊂
Z → Z, which is assumed to be the infinitesimal generator of a c0-semigroup,
satisfy the following hypothesis:

(H) There exist closed subspaces Zs and Zu of Z such that:
(i) Z = Zs ⊕ Zu.
(ii) Zu ∩ D(A) and Zs ∩ D(A) are invariant under A.
(iii) The operator A|Zs , the restriction of A to Zs, is exponentially stable.
(iv) The operator −A|Zu is exponentially stable.

Example 4.1 If Z is of finite dimension and if A : Z → Z is linear and has no
eigenvalues on the imaginary axis, then using the Jordan form of the matrix,
we can find Zs and Zu invariant under A such that all the eigenvalues of the
restriction of A to Zs have negative real part and those of the restriction of A
to Zu have positive real part. Further, Z = Zs ⊕ Zu.
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Example 4.2 If (A, D(A)) is the infinitesimal generator of an analytic semi-
group on Z and if the resolvent of A is a compact operator in Z, then the
spectrum of A is discrete (see Kato, 1995). Let us assume that A has no eigen-
value on the imaginary axis. From Kato (1995), pp. 178–182, it follows that the
space Z can be decomposed in the form Z = Zs ⊕ Zu, where Zu ∩ D(A) = Zu

and Zs ∩D(A) are invariant under A, Zs is the stable space of A and Zu is the
unstable subspace. Moreover, Zu is of finite dimension. Thus, hypothesis (H)
is satisfied. Further, let us notice that, since Z is a real Hilbert space and the
operator A takes values in Z, then λ ∈ C and its conjugate λ ∈ C either both
are or both are not eigenvalues of A. The same observation holds true for A∗,
and A and A∗ have obviously the same eigenvalues.

Let πs : Z → Zs and πu : Z → Zu be the canonical projections with respect
to this decomposition of Z. Notice that

πuA = Aπu = πuAπu. (4.1)

A similar relation holds with πs as well. The restriction of A to Zu (respectively
Zs) is, in fact, equal to πuA (respectively πsA). Observe that πuB maps U into
Zu.

Assume that (3.1) holds for the pair (πuA, πuB) in place of (A, B), i.e. there
exists α > 0 such that

∫ ∞

0

∥∥∥(πuB)∗e−t(πuA)∗z
∥∥∥

2

U
dt ≥ α‖z‖2

Z (4.2)

for every z ∈ Zu. Then, by Theorem 3.1, there exists a self-adjoint, non-negative
and invertible operator Pu ∈ L(Zu) satisfying the relation

Pu(πuA) + (πuA)∗Pu − Pu(πuB)(πuB)∗Pu = 0. (4.3)

Further, πuA − (πuB)(πuB)∗Pu will be exponentially stable.

Theorem 2 Assume that the hypothesis (H) and condition (4.2) hold. Let Pu ∈
L(Zu) be as detailed above. Define

P = π∗
uPuπu. (4.4)

Then P ∈ L(Z) is such that P = P ∗ ≥ 0 and solves the degenerate algebraic
Riccati equation (1.5). Further, A − BB∗P is exponentially stable.

Proof. Step 1. Clearly P = P ∗ ≥ 0, since this follows immediately from the
corresponding properties of Pu. Multiplying (4.3) on the left by π∗

u and on the
right by πu, we get

π∗
uPuπuAπu + π∗

uA∗π∗
uPuπu − π∗

uPuπuBB∗π∗
uPuπu = 0. (4.5)
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It follows from (4.1) that A∗π∗
u = π∗

uA∗ = π∗
uA∗π∗

u. Further, since πu is a pro-
jection, we have π2

u = πu and (π∗
u)2 = π∗

u. Using these relations in (4.5) and the
definition of P as in (4.4), we see immediately that P satisfies the degenerate
algebraic Riccati equation (1.5).

Step 2. Since πu + πs = I, the identity operator on Z, we have

A − BB∗P = A − BB∗π∗
uPuπu

= (πu + πs)A − (πu + πs)BB∗π∗
uPuπu.

If z ∈ Z, we have z = πuz + πsz and, since πuπs = πsπu = 0, and since A
commutes with πu and with πs, we get

(A − BB∗P )z = (πu + πs)A(πuz + πsz) − (πu + πs)BB∗π∗
uPuπuz

= πuAπuz + πsAπsz − (πu + πs)BB∗π∗
uPuπuz.

Thus,

πu((A − BB∗P )z) = (πuA − πuBB∗π∗
uPu)(πuz)

and

πs((A − BB∗P )z) = πsAπsz − (πsBB∗π∗
uPu)(πuz).

We can combine the above two relations in the following form using matrix
notation:

[
πs((A − BB∗P )z)
πu((A − BB∗P )z)

]
=

[
πsA −πsBB∗π∗

uPu

0 πuA − πuBB∗π∗
uPu

] [
πsz
πuz

]
.

We know that

‖et(πuA−πuBB∗π∗

uPu)πuz‖Z ≤ Ce−ωt‖πuz‖Z,

for some ω > 0, C > 0, and that

‖etπsAπsz‖Z ≤ Ce−δt‖πsz‖Z,

with δ > 0, C > 0. Combining these two stability results, it can be easily shown
that A − BB∗P is also exponentially stable (see e.g. Triggiani, 1975). This
completes the proof.

Assume now that either Z is finite dimensional and that A ∈ L(Z), or that
the unbounded operator (A, D(A)) is the infinitesimal generator of an analytic
semigroup on Z with a compact resolvent. Then, as already seen in Examples
4.1 and 4.2, the hypothesis (H) is true as long as A has no eigenvalues on
the imaginary axis of the complex plane. If the pair (−πuA, πuB) is exactly
controllable in Zu (see Remark 3.2), then the result of the above theorem is valid.
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In particular, the eigenvalues of A−BB∗P are those of πsA, which are precisely
those eigenvalues of A with negative real part, and those of πuA−πuBB∗π∗

uPu,
which are precisely those of −(πuA)∗ (due to (3.3)), and hence the reflections
on the imaginary axis of those eigenvalues of A with positive real part.

A sufficient condition for (−πuA, πuB) to be exactly controllable in Zu in
time T > 0 is that the pair (−A, B) be exactly controllable in time T > 0. To
see this, let z0, z1 ∈ Zu. Then, there exists u ∈ L2(0, T ; U) and z ∈ L2(0, T ; Z)
such that

z′(t) = −Az(t) + Bu(t), t > 0,
z(0) = z0, z(T ) = z1.

Notice that πuz0 = z0 and πuz1 = z1. Since πuA = πuAπu, we get that

(πuz)′(t) = −(πuA)(πuz)(t) + (πuB)u(t).

Thus, for the control u, the pair (−πuA, πuB) drives the initial state z0 ∈ Zu

to the state z1 ∈ Zu in time T via the solution πuz(t). Thus (−πuA, πuB) is
controllable in time T .

We can thus summarize these arguments in the following result.

Theorem 3 Assume now that either Z is finite dimensional and that A ∈ L(Z),
or that the unbounded operator (A, D(A)) is the infinitesimal generator of an
analytic semigroup on Z with a compact resolvent, and that A has no eigenvalues
on the imaginary axis of the complex plane. Let U be a Hilbert space and let
B ∈ L(U, Z). Assume that the pair (−πuA, πuB) is exactly controllable. Then
the degenerate algebraic Riccati equation (1.5) admits a solution P which is self-
adjoint, non-negative and such that A − BB∗P is exponentially stable. If σ(.)
denotes the spectrum of a matrix, then

σ(A − BB∗P ) = σs(A) ∪ {λ̃ | λ ∈ σu(A)}

where

σs(A) = {λ ∈ σ(A) | Reλ < 0},

σu(A) = {λ ∈ σ(A) | Reλ > 0},

and, if λ = µ + iν, then λ̃ = −µ + iν, is the reflection of λ on the imaginary
axis.

Remark 4.1 If Z is of finite dimension, the assumption “(−A, B) is exactly
controllable in time T > 0” may be easily verified, while when Z is of infinite
dimension, there is generally no hope to show that (−A, B) is exactly controllable
in time T > 0 (or even stabilizable). But in many applications, if Zu is of finite
dimension, it is easy to check whether (−πuA, πuB) is exactly controllable.



1404 S. KESAVAN, J.-P. RAYMOND

Remark 4.2 It is proved in Priola and Zabczyk (2003), Theorem 1.3, that if
the control system (1.1) is null controllable then the algebraic Riccati equation

P ∈ L(Z), P = P ∗ ≥ 0, A∗P + PA − PBB∗P = 0,

admits the unique solution P = 0 if and only if the system (1.1) is null con-
trollable with vanishing energy. Our result stated in Theorem 2 is different
and complementary. Indeed it may provide the existence of a solution to the
algebraic Riccati equation (1.5) which is non zero.

5. A variational characterization

In this section, we assume that assumption (H) of Section 4 and condition (4.2)
are satisfied. According to Theorem 2, P = π∗

uPuπu, where Pu ∈ L(Zu)
is the solution to (4.3), is the unique solution of (1.5). We will characterize
this solution in a different manner, using variational arguments. As mentioned
in the introduction, our approach is linked to the notion of maximal solution
introduced in Bensoussan et al. (1993), Part III, or Bensoussan et al. (2007),
Part V, pp. 497–500.

To begin with, we prove a technical lemma from functional analysis. While
we feel that this result should be well known, we nevertheless include a proof of
the same for want of a suitable reference (see Remark 5.1).

Lemma 2 Let H be a real Hilbert space. Let {Pn} be a sequence in L(H) such
that, for every n, we have Pn = P ∗

n ≥ 0. Assume, further, that for every v ∈ H,
the sequence {(Pnv, v)H} is decreasing. Then, there exists P ∈ L(H) such that
P = P ∗ ≥ 0 and, for every v ∈ H, Pnv → Pv in H.

Proof. Step 1. Since {(Pnv, v)H} is decreasing and is bounded below by zero,
we have that {(Pnv, v)H} is convergent for every v ∈ H . Since Pn = P ∗

n , and
since

(Pnv, w)H =
1

4
[Pn(v + w), v + w)H − (Pn(v − w), v − w)H ],

we deduce that the sequence {(Pnv, w)H} is convergent for every v and w ∈ H .
Thus, by the Banach-Steinhaus theorem, {Pnv} is a bounded sequence in H for
every v ∈ H and, again, by the same theorem, it follows that {Pn} is bounded
in L(H).

Step 2. Set

a(v, w) = lim
n→∞

(Pnv, w)H .

Since {Pn} is bounded, it follows that a(·, ·) is a continuous bilinear form. Con-
sequently, by the Riesz representation theorem, there exists Pv ∈ H such that
(Pv, w)H = a(v, w) for every w ∈ H . Since a(·, ·) is bilinear, continuous and



On a degenerate Riccati equation 1405

symmetric, it follows that P is linear, continuous and such that P = P ∗. Finally,
since

(Pv, v)H = lim
n→∞

(Pnv, v)H ≥ 0,

it follows that P ≥ 0 as well.

Step 3. We now show that, for every v ∈ H , we have that Pnv → Pv in H .
Since {(Pnv, v)H} is a decreasing sequence with (Pv, v)H as its limit, we see
that

((Pn − P )v, v)H ≥ 0.

Thus, Pn − P ≥ 0 and so it admits a square root, say, Sn ∈ L(H), i.e. S2
n =

Pn − P . Since

‖Snv‖2
H = ((Pn − P )v, v)H → 0,

a fresh application of the Banach-Steinhaus theorem implies that ‖Sn‖ ≤ C.
Thus

‖Pnv − Pv‖H = ‖S2
nv‖H ≤ C‖Snv‖H → 0

and the proof is complete.

Remark 5.1 Steps 1 and 2 of the above proof may be found in Zabczyk (2008),
but the arguments in Step 3 are not given there.

Let us now recall that assumption (H) of Section 4 and condition (4.2)
are satisfied, and that P = π∗

uPuπu is the unique solution of (1.5) (Pu ∈
L(Zu) is the solution to (4.3). In particular, since A − BB∗P is exponentially
stable, it follows that the pair (A, I), where I is the identity operator on Z, is
exponentially detectable. Thus, for all ε ∈ R, the pair (A, εI) is exponentially
detectable. Therefore, for every ε > 0, there exists a unique Pε ∈ L(Z) such
that Pε = P ∗

ε ≥ 0 and

PεA + A∗Pε − PεBB∗Pε + ε2I = 0. (5.1)

Further, A − BB∗Pε will be exponentially stable. By the comparison principle
(see Lemma 1), it follows that {(Pεv, v)Z} is decreasing as ε decreases to zero.
Hence, by Lemma 2, it follows that there exists P0 ∈ L(Z) such that P0 = P ∗

0 ≥
0 and such that, for every z ∈ Z, Pεz → P0z as ε → 0. It is now immediate to
see that

P0A + A∗P0 − P0BB∗P0 = 0.

(The convergence of Pεz to P0z was needed to pass to the limit in the quadratic
term PεBB∗Pε.)
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Proposition 1 We have that P0 = P , where P = π∗
uPuπu.

Proof. Since A − BB∗P is exponentially stable, the comparison principle (see
Lemma 1) implies that P ≥ P0. On the other hand, by the same comparison
principle, since A−BB∗Pε is exponentially stable, we have that Pε ≥ P for all
ε > 0 and so P0 ≥ P as well.

For all ζ ∈ Z, ζ 6= 0, let us set

Eζ =

{
u ∈ L2(0,∞; U) |

∫ ∞

0

‖zζ,u(t)‖2
Z dt < ∞, limT→∞‖zζ,u(T )‖Z = 0

}
,

where zζ,u(t) is the solution of the initial value problem

z′(t) = Az(t) + Bu(t), t > 0,

z(0) = ζ.
(5.2)

Let us notice that Eζ is non-empty. Indeed the function u(t) =
−B∗Pet(A−BB∗P )ζ belongs to Eζ . Let us consider the problem

(Qζ) inf
u∈Eζ

∫ ∞

0

‖u(t)‖2
U dt.

Proposition 2 Assume that assumption (H) of Section 4 and condition (4.2)
are satisfied. Then, for all ζ ∈ Z, ζ 6= 0, problem (Qζ) admits a unique solution
u defined by

u(t) = −B∗Pet(A−BB∗P )ζ,

where P = π∗
uPuπu is the unique solution of (1.5). Moreover, we have

(Pζ, ζ)Z = min
u∈Eζ

∫ ∞

0

‖u(t)‖2
U dt. (5.3)

Proof. Let ζ 6= 0 belong to Z and let u belong to Eζ . If we multiply equation
(5.2) by Pzζ,u, after integration, we obtain

∫ ∞

0

(
z′ζ,u, P zζ,u

)
Z

dt =

∫ ∞

0

(
Azζ,u, P zζ,u

)
Z

dt +

∫ ∞

0

(
Bu, Pzζ,u

)
Z

dt.

Using the equation satisfied by P , we can write

−1

2

(
ζ, P ζ

)
Z

=
1

2

∫ ∞

0

‖B∗Pzζ,u‖2
U dt +

∫ ∞

0

(
u, B∗Pzζ,u

)
U

dt.

Thus we have
∫ ∞

0

‖u‖2
U dt =

(
ζ, P ζ

)
Z

+

∫ ∞

0

‖B∗Pzζ,u + u‖2
U dt.



On a degenerate Riccati equation 1407

Let us notice that if

u(t) = −B∗Pet(A−BB∗P )ζ,

then B∗Pzζ,u + u = 0. Thus u(t) = −B∗Pet(A−BB∗P )ζ is the unique solution
to (Qζ) and the proof is complete.

Remark 5.2 Since −πuA is exponentially stable, πuA is not and so 0 6∈ Eζ .

Remark 5.3 It is not known whether Eζ is weakly closed. If that were the case,
then the solution to (Qζ) could be characterized as the orthogonal projection
of 0 onto Eζ .

Remark 5.4 Let us notice that a characterization of maximal solution to the
algebraic Riccati equation

P ∈ L(Z), P = P ∗ ≥ 0, A∗P + PA − PBB∗P + R = 0,

where R = R∗ ≥ 0, is given in Priola and Zabczyk (2003), Theorem 1.4, for
null controllable systems. Formula (5.3) is different from the one in Priola and
Zabczyk (2003), Theorem 1.4, formula (1.6), even in the case when R = 0.

6. An application

Let us give a direct and surprising application to the results stated in Section 4.
We are going to show how we can apply these results to a two dimensional
viscous Burgers type equation. Let Ω be a two dimensional regular domain
with boundary Γ. Let w be a given stationary solution to equation

−ν∆w + w∂1w + w∂2w = f, w = g on Γ. (6.1)

The symbols ∂1 and ∂2 denote the partial derivatives with respect to x1 and
x2 respectively, ν > 0 is the viscosity coefficient. Now, let us consider the
non-stationary Burgers equation

∂tz − ν∆z + z∂1z + z∂2z = f + χωu in Ω × (0,∞) = Q∞,

z = g on Γ × (0,∞) = Σ∞,

z(0) = w + y0 in Ω.





(6.2)

Here χω is the characteristic function of ω, an open and nonempty subset of Ω.
The function u is a control variable. We assume that the solution w to equation
(6.1) belongs to H3(Ω). If z is the solution to equation (6.2), then y = z − w
obeys

∂ty − ν∆y + y(∂1w + ∂2w) + (w + y)(∂1y + ∂2y) = χωu in Q∞,

y = 0 on Σ∞,

y(0) = y0 in Ω.





(6.3)
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We denote by (A, D(A)) and (A∗, D(A∗)) the unbounded operators in L2(Ω)
defined by

D(A) = H2(Ω) ∩ H1
0 (Ω), D(A∗) = H2(Ω) ∩ H1

0 (Ω),

Ay = ν∆y − y(∂1w + ∂2w) − w(∂1y + ∂2y), A∗y = ν∆y + w(∂1y + ∂2y).

Since w ∈ H3(Ω), we can easily verify that there exists λ0 > 0 in the resolvent
set of A satisfying

(
(λ0I − A)y, y

)
L2(Ω)

≥ ν

2
‖y‖2

H1(Ω) for all y ∈ D(A),

and(
(λ0I − A∗)y, y

)
L2(Ω)

≥ ν

2
‖y‖2

H1(Ω) for all y ∈ D(A∗).

(6.4)

Equation (6.3) may be rewritten in the form

y′ = Ay + Bu + F (y) in (0,∞), y(0) = y0. (6.5)

The nonlinear term −y(∂1y + ∂2y), which is equal to −∂1(y
2/2) − ∂2(y

2/2), is
rewritten as an element F (y) in (D(A∗))′ as follows

〈F (y), Φ〉(D(A∗))′,D(A∗) =
1

2

∫

Ω

y2(∂1Φ + ∂2Φ),

for all Φ ∈ D(A∗). The operator B ∈ L(L2(Ω)) is defined by Bu = χωu.
Observe that B = B∗. The linearized system associated to (6.5) is

y′ = Ay + Bu in (0,∞), y(0) = y0, (6.6)

Let us recall that (A, D(A)) is the infinitesimal generator of an analytic semi-
group (see Thevenet et al., 2009) and that the resolvent of (A, D(A)) is compact.
Thus, the spectrum of A is discrete and the eigenvalues have finite multiplic-
ity. The number of eigenvalues having a real part greater or equal than −α
is finite, for any α > 0. Moreover, system (6.6) is exponentially stabilizable
with any prescribed decay rate, because it is null controllable (see Fursikov and
Imanuvilov, 1996). Without loss of generality we can choose α > 0 so that the
pair (A + αI, B) satisfies the assumptions of Theorem 2. Next, by making the
change of variable ŷ = eαty, û = eαtu, for some α > 0, we can easily verify that
(ŷ, û) obeys the system

ŷ′ = (A + αI)ŷ + Bŷ in (0,∞), ŷ(0) = y0. (6.7)

In that case, the Riccati equation is

P ∈ L(Z), P = P ∗ ≥ 0,

(A∗ + αI)P + P (A + αI) − PBB∗P = 0,

A + αI − BB∗P generates an exponentially stable semigroup.

(6.8)
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From Theorem 2, it follows that the algebraic Riccati equation (6.8) has a unique
solution Pα. As in Thevenet et al. (2009), it can be shown that the solution Pα

inherits from the following regularizing property Pα ∈ L(L2(Ω), H2(Ω)∩H1
0 (Ω)).

Next we apply the linear feedback law to the nonlinear system satisfied by (ŷ, û).
Thus, we consider the system

ŷ′ = (A + αI)ŷ − BB∗Pαŷ + e−αtF (ŷ), ŷ(0) = y0. (6.9)

Let us notice that if (ŷ, û) is the solution of system (6.9) then the pair (y, u) =
(e−αtŷ, e−αtû) obeys the system

y′ = Ay − BB∗Pαy + F (y), y(0) = y0. (6.10)

As in Thevenet et al. (2009), using a fixed point argument, the following local
stabilization result can be proved.

Theorem 4 There exist µ0 > 0 and a nondecreasing function η from R+ into
itself, such that if µ ∈ (0, µ0) and ‖y0‖L2(Ω) ≤ η(µ), then equation (6.9) admits
a unique solution in the set

Dα,µ =
{
y ∈ L2(0,∞; H1

0 (Ω)) ∩ H1/2(0,∞; L2(Ω))

| ‖eαty‖L2(0,∞;H1

0
(Ω))∩H1/2(0,∞;L2(Ω)) ≤ µ

}
.

Thus, the linear feedback law applied to the nonlinear system (6.5) provides an
exponential decay rate of the solution (the decay rate α can be chosen arbitrar-
ily large). Following Raymond (2006), similar results can be obtained for the
internal stabilization of the 2D Navier-Stokes equations. What is really surpris-
ing is that we can find a feedback law stabilizing locally a nonlinear system,
with an observation operator which is identically zero.
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