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Some Remarks on a Result of Talenti

S. KESAVAN

1. - Introduction

Let 11 2, be a bounded open set. We denote the Lebesgue
measure of a subset E of Let be the ball centred at the origin
such that 111* I == 1111. be a given function and let u* : 11* ~ R
be its spherically symmetric decreasing rearrangement.

Amongst the useful results arising out of the symmetrization technique
is one due to Talenti [10] which states that if, for given f &#x3E; 0, f E 
u E solves

and if v E HJ (0*) solves

then

Infact a more general result is true but we shall restrict our attention to the one
mentioned above. At least two proofs of this result are available. The original
proof by Talenti [10] uses an isoperimetric inequality involving the De Giorgi
perimeter of 11. Another proof which does not use this inequality is due to Lions
[6]. The essential ingredient of this proof is a differential inequality between
the distribution functions of u and v.

The main result we prove here is that if u and v have the same distri-
bution function, then 11 is a ball and u is radial (i.e. spherically symmetric).
After a preliminary version of this paper was prepared the author leamt that
this result was also proved in Alvino et al [2]. However the proof we give here
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differs from theirs and we feel it is conceptually simpler. An application of this
result is that, if the first eigenvalue of the Laplacian on 11 (with homogeneous
Dirichlet boundary conditions) equals that on n*, then 11 is a ball. In particular
this proves that a ball in is isospectral only with balls of the same radius (a
result known if n = 2, but not proved, to the best of the author’s knowledge,
for higher dimensions).

Another problem we consider is the following. If u E satisfies
-Au = 1 (in the sense of distributions) in f1, we set

and look for domains Q of given measure such that J is maximized. An
immediate consequence of Talenti’s result is that the maximum is attained for
a ball. However using the differential inequality proved by Lions [6] we will
also show that it is attained only for the ball. (Again this is also contained in
Alvino et al [2] but the proof depends on their proof of the original result.
Our approach is different.) This result shows that of all the domains with given
measure having a particular point xo in their interior, the ball centred at xo is
the only one for which the mean exit time of the Wiener process starting at xo
is maximized.

In Section 2 we briefly recall results on the spherically symmetric
decreasing rearrangement which we shall use. In section 3 we present the
main result and applications follow in Sections 4 and 5.

2. - Preliminaries

Let n c be an open set. R be a non-negative measurable
function. The unidimensional decreasing rearrangement of 0 is a function

defined by

where 10 &#x3E; t~ I is the measure of the set {4&#x3E; &#x3E; t} def {x E &#x3E; t}. If

0 as it will be the case in our discussions to follow, is well-
defined and finite. The spherically symmetric, decreasing rearrangement of 0 is
defined on n*, the ball centred at the origin and such that In* I = and is
denoted by ~*. It is defined by

where wn is the measure of the unit ball 
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The important properties of 0* are listed below.

1. 0* is a radial (i.e. spherically symmetric) and radially decreasing
function such that

2. If 0 E for any 1  p  oo, then O * E and

3. then

In particular for any E c 11,

with equality if, and only if, (o I B) * = 0 * B*.
4. If 0 E and 0 &#x3E; 0, then ¢ * E and

These results are standard ones. The reader is referred to, for instance,
Hardy et al [4] or to Polya and Szego [8]. See also Mossino [7] for a more
readable version.

Another notion we will need is the perimeter of a set in the
sense of De Giorgi. If E c 11, S~ an open subset of then the De Giorgi
perimeter of E with respect to fl, denoted by Po (E), is given by

An important isoperimetric inequality involving this perimeter states that
(cf. De Giorgi [3]) if E is bounded then
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with equality if, and only if, E is a ball. If E were a smooth bounded open set,
the lflgn (E) is none other than the (n - 1 ) -dimensional measure of a E. Thus
when n = 2, (2.9) is the classical isoperimetric inequality linking the perimeter
L and the area A of a smooth bounded domain:

with equality only for a disc.
If 0 c IRn is a bounded open set and u E W 1 ~ 1 ~ S~ ) with u &#x3E; 0, it can be

shown that for t &#x3E; 0, (cf. Talenti [10])

whence we deduce that, for t &#x3E; 0,

If, in addition, u E we also have that

for t&#x3E;0.

3. - The Main Result

Let 11 be a bounded open and smooth set in and let f E L2(n), f &#x3E; 0.

Let u E and v E be the respective solutions of

We set

Notice that u &#x3E; 0 in n and v &#x3E; 0 in 0*. We can give an explicit representation
for v. In fact as v is radial, we can write,



457

where r = I x I and the prime denotes differentiation with respect to r, and
e

1111 == 10*1 = w,, R-. Setting F(e) = f we get (cf. Talenti [10])
o

It follows from (3.4) that for any t such that 0  t  vmax = max v (r), there- - 

exists a unique ro (t) such that 
- -

We can now prove our main result.

THEOREM 3.1. If u is smooth enough and /i (t) = v(t) for all t &#x3E; 0, then
11 is a ball and u is radial.

PROOF. Retracing the proof of Talenti [10] we get that

since u (t)=v(t).
Since f &#x3E; 0, the expression (3.4) obtained for v(r) shows that it is a

decreasing function. Hence

where ro (t) was defined in (3.5). If we differentiate the relation (3.5) on both
sides with respect to t, we get, in view of (3.7)

Thus (3.6) yields
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On the other hand, by the isoperimetric inequality (2.9), we have

Thus it follows from the above that

which gives

which is possible only if the set ju &#x3E; t} is a ball. Thus the level sets {u = t}
are all spheres and so which is precisely the set { u = 0 }, is also a sphere
and so 11 is a ball.

We complete the proof by showing that u is radial (infact then u = u*
and f = f * ). This will be done once we show that all the level sets { u = t},
which are now spheres, are concentric.

We set Qt = { u &#x3E; t } and let xt be its centre. We assume that u is at least
continuous. Then as both u* and v are radially decreasing and equimeasurable,
we have u* = v. Also since f &#x3E; 0 we have from (3.5) that ro (t) --; 0 as

t --&#x3E; Vmax = u * = umax. Thus forms a decreasing family of balls with
Int ] - 0 and son Ot is a single point where alone umax is attained. We show

t&#x3E;o

that Umax is attained at xt, t &#x3E; 0, so that all the balls will be concentric.

Observe, first of all, that it suffices to do this for t = 0. Indeed, since we
have u * - v, we see that

But then

and as f f :5 f f * always, we deduce that
ot 0:

But this is true if, and only if, = We can now consider for any
t &#x3E; 0 the problem 

I . 1 .1 I’ . -
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which is such that

and by a similar argument, ( u - t)max will be attained at xt ; i.e. Umax will be
attained at xt .

So we finally prove that Umax = tt(0). Let w cz be the solution of

and let Q E be the first eigenfunction of the Laplace operator with
Dirichlet boundary conditions, i.e. -Ao = and recall that 0 &#x3E; 0 in

Q(=Q*)
We remark that all concentric balls centred at 0 are level sets

of w and 0 and vice-versa.
Now,

and so

and as before we deduce that

Then by our preceding remark,

Hence

Now
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and it follows that

If u(0)  u* (0) = Umax, by choosing t close enough to Omax we will get a
contradiction of (3.12). Hence u(0) = Umax and the theorem is proved. -

REMARK 3.1. In the case f m 1, the solution v of (1.2) is given by
v (r) = (R2- r2) /2n and so, we have

Also f f = J.l(t) and so the right-hand side of (3.6) is nothing but
{u&#x3E;t}

which can be computed explicity as

and the result is proved as in Theorem 3.1. In this case since f = f * already
we automatically have u = u* without further proof.

4. - Hearing the shape of a sphere

In a celebrated paper, Kac [5] posed the following problem. Let 0 be a
bounded open set Consider the eigenvalue problem

It is known that there exists a sequence of eigenvalues

with ak(~2) -i oc as k -~ oc and a corresponding sequence of eigenfunctions
forming an orthonormal basis for Ll (11). The first eigenvalue is simple
with an eigenfunction of constant sign. The problem is to recover information
on 11 given the spectrum {ak(S~)~. In particular if two domains 111 and 112 have
the same spectrum, are they isometric?

It has since been shown that for n &#x3E; 4, isospectral domains (i.e. domains
with the same spectrum) need not be isometric. The problem remains open in
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dimensions n = 2 and n = 3. However it is known that when n = 2 isospectral
domains have the same area and the same perimeter. Thus by the isoperimetric
inequality (2.10) it follows that a disc is isospectral only with itself. For details
on this and other related problems, the reader is referred to a recent survey
article by Protter [9].

We will now show that in all dimensions n, a sphere is completely
characterized by its measure and its first eigenvalue of the Laplace operator (foi
homogeneous Dirichlet boundary conditions).

THEOREM 4.1. Let 11 be a smooth bounded domain in such thal
= Then 11 is also a ball.

PROOF. Let w 1 &#x3E; 0, w 1 E HJ ( ~ ) be such that

Let w &#x3E; 0, w E be such that

Then by Talenti’s result, w. Thus if we denote

we get

But by the Rayleigh-quotient characterization of the first eigenvalue,

Thus

and since a 1 is the first eigenvalue, i.e. the infimum of the Rayleigh quotient
over all of we get that w is an eigenfunction, i.e. = a 1 w .
Hence w = w1 and the result follows from Theorem 3.1..

REMARK 4.1. To deduce Theorem 4.1, it is indeed sufficient to have

proved the easier and more special case of Theorem 3.1 where f - 1. Indeed
Ai (Q) = A1, then as above, we saw that w = w i . Now = 1
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in 11 and - A v = 1 E Hol (0), v E we have by Talenti’s result
that u *  v. Hence by (2.4) and (2.5) we get

Thus equality holds everywhere and so

which gives that v = u* a.e. (since wi &#x3E; 0 in 0*) and thus v(t) = lu* =

I u &#x3E; t = p (t) for t &#x3E; 0, and the result follows.

REMARK 4.2. The essential ingredient in the above proof is that the extreme
case of the isoperimetric inequality (2.9) pertains to the ball alone. This is also
the fact used in the proof of the case when n = 2. There one uses the extension
of the Weyl formula of the form (cf. Kac [5])

The conclusion arises out of the fact that is the same as the sequence
for 11*. But we prove it using only À1 (0).

5. - On Maximal Mean Exit Times

We return to the problem

-Au = 1 in f]
(5.1) 1 u =1 in 9 fl.u=0 on an.

By the strong maximum principle, u &#x3E; 0 in O. Let

This quantity has an interpretation in probability theory, which we briefly outline.
Let {X(t)} be a Wiener process with X(0) = x E 11. Let r be the first

exit time, i.e. X(T) E all and X(t) E 0 for t  T. = f in n with



463

w = 0 on an, then it follows from Dynkin’s formula that

Since w(X(T)) = 0, we get that

when f - 1, where u is the solution of (5.1). Thus xo is that point in Q for
which the mean exit time of a Wiener process starting from it is maximal. We
wish to determine domains 0 of given measure containing a given point xo such
that the mean exit time is maximized. In other words we need to maximize the
functional

over domains n of constant measure, u being the solution of (5.1 ).
Using probabilistic arguments, Aizenman and Simon [ 1 ] have shown (in

fact for a more general case) that the maximum is attained for a ball. This can
be proved as an immediate consequence of Talenti’s result. Indeed

since v(r) = (R 2- r2)/2n is the solution of - A v = 1 in ~*, v E HJ (11). Thus I~2 / 2 n and it is attained for the ball ()*. We improve on this.

THEOREM 5.1. Let u E be the solution of (5.1 ). 
f max u )(x)= R 21 then 11 is a ball.If xEO 

PROOF. As before we use p (t) = I u &#x3E; t] I and v ( t ) = v &#x3E; t] I where

v ( r ) = (R2 - r2 ) / 2 n . Since both u* and v are radially decreasing and u *  v,

we have that

Now recall the proof of Theorem 3.1, where we saw that (cf. (3.6) with f - 1)

Thus
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since v(t)2/n = 2nt). Thus if we set we

get that

since /-z (R2/2n) = v(R2/2n) == 0. It follows from (5.4) that ~(t) _ 0 which
gives ,u ( t ) = v ( t ) for t &#x3E; 0 and the result follows from Theorem 3 .1..

REMARK 5.1. This result is contained in Alvino et al [1] but the proof is
different.

We can generalize the above result further. If L is a second-order elliptic
operator in divergence form then again, by Talenti’s result, u*  v in 0* where
u E solves Lu = f in 0 ( f E L2(11), f 2’: 0) and v E solves

in 0*. We thus have

where M is defined by

If p(t) = ju &#x3E; tl ] and v(t) = Iv &#x3E; tl, we have I-t(t)  v(t) as before and also (cf.
Lions [6]) , -1

where if is such that dd1 = H and H is given bydt

F as in Section 3. Now H is a strictly increasing function of A and so if we
set

, , AI ,, AI ,,

we again have (5.4) verified (with R2j2n replaced by M), provided that
max M(~) = M. Thus u is radial and 0 a ball.
xEn 

’’
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