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Some Remarks on a Result of Talenti

S. KESAVAN

1. - Introduction

Let Q@ c R™, n > 2, be a bounded open set. We denote the Lebesgue
measure of a subset E of R™ by |E|. Let Q* be the ball centred at the origin
such that |Q*| = |Q2|. Let u: Q — R be a given function and let u* : Q* — R
be its spherically symmetric decreasing rearrangement.

Amongst the useful results arising out of the symmetrization technique
is one due to Talenti [10] which states that if, for given f > 0, f € L%(Q),
u € H}(Q) solves

a {—Au =f inQ

u =0 on 91}

and if v € H}(Q*) solves

___A — f* : Q*
(12) { v f in
v =0 on JQ*,
then
(1.3) u* < v ae. in Q.

Infact a more general result is true but we shall restrict our attention to the one
mentioned above. At least two proofs of this result are available. The original
proof by Talenti [10] uses an isoperimetric inequality involving the De Giorgi
perimeter of Q. Another proof which does not use this inequality is due to Lions
[6]. The essential ingredient of this proof is a differential inequality between
the distribution functions of » and wv.

The main result we prove here is that if v and v have the same distri-
bution function, then {2 is a ball and « is radial (i.e. spherically symmetric).
After a preliminary version of this paper was prepared the author learnt that
this result was also proved in Alvino er al [2]. However the proof we give here
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differs from theirs and we feel it is conceptually simpler. An application of this
result is that, if the first eigenvalue of the Laplacian on  (with homogeneous
Dirichlet boundary conditions) equals that on Q*, then 2 is a ball. In particular
this proves that a ball in R™ is isospectral only with balls of the same radius (a
result known if n = 2, but not proved, to the best of the author’s knowledge,
for higher dimensions).

Another problem we consider is the following. If u € H}(Q) satisfies
—Au =1 (in the sense of distributions) in 2, we set

(1.4) J(Q) = max u(z)

and look for domains Q of given measure such that J is maximized. An
immediate consequence of Talenti’s result is that the maximum is attained for
a ball. However using the differential inequality proved by Lions [6] we will
also show that it is attained only for the ball. (Again this is also contained in
Alvino et al [2] but the proof depends on their proof of the original result.
Our approach is different.) This result shows that of all the domains with given
measure having a particular point z, in their interior, the ball centred at zq is
the only one for which the mean exit time of the Wiener process starting at zg
is maximized.

In Section 2 we briefly recall results on the spherically symmetric
decreasing rearrangement which we shall use. In section 3 we present the
main result and applications follow in Sections 4 and 5.

2. - Preliminaries

Let 2 c R™ be an open set. Let ¢ : {1 —» R be a non-negative measurable
function. The unidimensional decreasing rearrangement of ¢ is a function
¢* :[0,]|Q|] — R defined by
@.1) ¢*(s) =inf{t: |¢>¢t|<s}, s>0
' ¢*(0) = ess.sup u (< +o0),

where |¢ > t| is the measure of the set {¢ > ¢} def {z € Q)¢(z) > t}. If

¢ € L}(Q), as it will be the case in our discussions to follow, ¢# is well-
defined and finite. The spherically symmetric, decreasing rearrangement of ¢ is
defined on Q*, the ball centred at the origin and such that |Q*| = ||, and is
denoted by ¢*. It is defined by

2.2) ¢*(z) = ¢*(|z]) = ¢* (wnlz|")

where w,, is the measure of the unit ball in R".
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The important properties of ¢* are listed below.

1. ¢* is a radial (i.e. spherically symmetric) and radially decreasing
function such that

(2.3) |¢* > t| = |¢ > t| for all ¢.
2. If ¢ € LP(Q) for any 1 < p < oo, then ¢* € LP(Q*) and
2.4) I¢llzra) = 62> (as)-

3. If ¢, € L?(0), then

9]
2.5) n/dnﬁ SO/¢#¢# =(][¢*¢*-

In particular for any E C Q,

|E|
#
2.6) !¢s!¢

with equality if, and only if, (¢|g)* = ¢*|E~.
4. 1If ¢ € H}(Q) and ¢ > 0, then ¢* € H}(Q*) and

@.7) n/ Ve < ﬂ/ V4P,

These results are standard ones. The reader is referred to, for instance,
Hardy et al [4] or to Polya and Szego [8]. See also Mossino [7] for a more
readable version.

Another notion we will need is the perimeter of a set E c R™ in the
sense of De Giorgi. If £ C 2, 1 an open subset of R”, then the De Giorgi
perimeter of E with respect to 1, denoted by Pq(E), is given by

| [ div ¢
(2.8) Po(E)= su . A—
a(E)= 3R e

$E€(L(Q))

An important isoperimetric inequality involving this perimeter states that
(cf. De Giorgi [3]) if E is bounded then

(2.9 Pen (E) > nwl/™ |E[1~Yn,
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with equality if, and only if, E is a ball. If £ were a smooth bounded open set,
the Pr~(E) is none other than the (n — 1)-dimensional measure of dE. Thus
when n = 2, (2.9) is the classical isoperimetric inequality linking the perimeter
L and the area A of a smooth bounded domain:

(2.10) L? > 47 A,

with equality only for a disc.
If Q cR™ is a bounded open set and u € W1(Q) with u > 0, it can be
shown that for ¢ > 0, (cf. Talenti [10])

@.11) / V| = /Pn({u> })dr,
(u>t) ¢
whence we deduce that, for ¢ > 0,
2.12) _% / Vu| = Po({u > 8)).
{u>t}

If, in addition, v € H}(Q), we also have that

(2.13) Pqa({u>t}) = Frn ({u>t})

for ¢ > 0.

3. - The Main Result

Let Q be a bounded open and smooth set in R™ and let f € L?(Q), f > 0.
Let u € H}(Q) and v € H}(Q*) be the respective solutions of

3.1) —Au=fin Q, —-Av=f*in Q.
We set

ult)=lu>tl=|u* >t
32) (t) =lu>t|=| |

v(t) =|v >t

Notice that » > 0 in Q and v > 0 in {2*. We can give an explicit representation
for v. In fact as v is radial, we can write,

n—1

(3.3) —o' — v = f*, v'(0) = v(R) =0,
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where r = |z| and the prime denotes differentiation with respect to r, and

é
Q] = |0*| = w, R". Setting F(¢) = [ f#(n)dn, we get (cf. Talenti [10])
0

[l

(3.4) u(r):ﬁ; / £2/m=2(¢)de.

War™

It follows from (3.4) that for any ¢ such that 0 < ¢ < vpax = Jmax_ v(r), there
_r_.
exists a unique rq(t) such that

el
(3.5) b= [ € de
n2wn
Wn('O(t))n
We can now prove our main result.

THEOREM 3.1. If u is smooth enough and u(t) = v(t) for all ¢t > 0O, then
Q is a ball and v is radial.

PROOF. Retracing the proof of Talenti [10] we get that

1]
(3.6) i) [ rs-we [ r* e o)

(t)
{u>t} 0
= W ()P (u(t))
=—V'()F(v(t)
since u(t) = v(t).
Since f > 0, the expression (3.4) obtained for v(r) shows that it is a
decreasing function. Hence

(3.7 v(t) = wn(ro(t))"
where ro(t) was defined in (3.5). If we differentiate the relation (3.5) on both
sides with respect to ¢, we get, in view of (3.7)

1= — 3 w25 ()22 F (1)) (V' (1)).

2/n
n2w,,

Thus (3.6) yields

—u'(t) / f< (nwrlt/ﬂ(u(t))l—l/n)z _ (nw,ll/"(,u(t))l_l/")z,

{u>t}
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On the other hand, by the isoperimetric inequality (2.9), we have
Per ({u> £}) > nul/™(u(8)) = 2/".
Thus it follows from the above that
B8) (k™ (u(t) )2 < (Ben(fu > 8)))? < (nad/™ (u(t)) P22,

which gives
Pen({u > £}) = o/ (u(t)) =1/,

which is possible only if the set {u > t} is a ball. Thus the level sets {u = ¢}
are all spheres and so 811, which is precisely the set {u = 0}, is also a sphere
and so 2 is a ball.

We complete the proof by showing that u is radial (infact then u = u*
and f = f*). This will be done once we show that all the level sets {u = t},
which are now spheres, are concentric.

We set Q; = {u >t} and let z; be its centre. We assume that u is at least
continuous. Then as both u* and v are radially decreasing and equimeasurable,
we have u* = v. Also since f > 0 we have from (3.5) that ro(t) — O as
t — Umax = Upax = Ymax. Thus {Q;} forms a decreasing family of balls with
|| — 0 and so [ € is a single point where alone umax is attained. We show

>0

that umax is attained at z;, ¢t > 0, so that all the balls will be concentric.
Observe, first of all, that it suffices to do this for ¢ = 0. Indeed, since we
have u* = v, we see that

vBa<luta= [rus [ = [ o=l

Q a* a*
But then . .
[ro= [ [1=] [1=[1
Q 0 Q 0o a a*

and as [ f < [ f* always, we deduce that
a,  a;

(3.9) nf f= n/ 7.

But this is true if, and only if, (f|q,)* = f*|a,. We can now consider for any

t > 0 the problem )
{—A(u -t) =f infy
u—t =0 on aﬂt,
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which is such that

{—A(u*—t) =f  inQ
w'—t =0  on oM}

and by a similar argument, (u — t)max Will be attained at z;; i.e. umax Will be
attained at z;.
So we finally prove that umax = u(0). Let w € H§(2) be the solution of

—Aw=11in Q

and let ¢ € H}(Q) be the first eigenfunction of the Laplace operator with
Dirichlet boundary conditions, i.e. —A¢ = X;¢, and recall that ¢ > 0 in
Q(= a%).

We remark that all concentric balls centred at 0 in Q(= Q*) are level sets
of w and ¢ and vice-versa.

Now,
/fwz/v'wVw:/u:/u*=/v=/Vv-Vw=/f*w
Q Q Q Q Q Q Q
and so Wi wimax
[ =] [r
0 {w>t} 0 {w>t}

and as before we deduce that
(3.10) / f= / fr.
{w>t} {w>t}

Then by our preceding remark,

(3.11) / f= / f*, for all 0 <t < Pmax-
{¢>t} {¢>t}
Hence
fé=1 14
[#]
Now
Al/u¢= vu-9p= [ 14
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and it follows that

(3.12) / u= / u*, for all t.
{¢>t} {¢>1}

If 4(0) < u*(0) = umax, by choosing ¢ close enough to ¢gmax we will get a
contradiction of (3.12). Hence u(0) = umax and the theorem is proved. =

REMARK 3.1. In the case f = 1, the solution v of (1.2) is given by
v(r) = (R? — r?)/2n and so, for 0 < ¢ < R?/2n, we have
v(t) = wn(R? — 2nt)"/2.

Also [ f=p(t) and so the right-hand side of (3.6) is nothing but
{u>t}

() = —3 S (ule))) = —1 S (0)?

which can be computed explicity as
n2w2(R? — 2nt)"1 = (nwd/™ (u(t)) /)

and the result is proved as in Theorem 3.1. In this case since f = f* already
we automatically have u = u* without further proof.

4. - Hearing the shape of a sphere

In a celebrated paper, Kac [5] posed the following problem. Let Q be a
bounded open set in R™. Consider the eigenvalue problem

{—Au = du in Q

4.1
@ u =0 on 911.

It is known that there exists a sequence of eigenvalues
0<A1() < 22(Q) < A3()) < -+

with Ag(2) — oo as k — oo and a corresponding sequence of eigenfunctions
forming an orthonormal basis for L?(f1). The first eigenvalue A;({2) is simple
with an eigenfunction of constant sign. The problem is to recover information
on (2 given the spectrum {);(£2)}. In particular if two domains (2; and (2, have
the same spectrum, are they isometric?

It has since been shown that for n > 4, isospectral domains (i.e. domains
with the same spectrum) need not be isometric. The problem remains open in
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dimensions n = 2 and n = 3. However it is known that when n = 2 isospectral
domains have the same area and the same perimeter. Thus by the isoperimetric
inequality (2.10) it follows that a disc is isospectral only with itself. For details
on this and other related problems, the reader is referred to a recent survey
article by Protter [9].

We will now show that in all dimensions n, a sphere is completely
characterized by its measure and its first eigenvalue of the Laplace operator (for
homogeneous Dirichlet boundary conditions).

THEOREM 4.1. Let Q be a smooth bounded domain in R™ such that
A1(Q) = A (Q*) = Ay, Then Q is also a ball.

PROOF. Let wy > 0, wy € Hg () be such that

-—Aw1 = )\111)1 in Q, /wf = 1.
Q

Let w >0, we H}(Q*) be such that
—Aw = A\w] in Q.

Then by Talenti’s result, w; < w. Thus if we denote

Ba = [ 190
n*

lw|? g, = /\1/w;w < Al/wZ.

n* n*

we get

But by the Rayleigh-quotient characterization of the first eigenvalue,

11.0'%0* Z A1/w2.

0*

lw|? qe = )\I/wz
n‘
and since ); is the first eigenvalue, i.e. the infimum of the Rayleigh quotient

over all of H}(Q*)\{0}, we get that w is an eigenfunction, i.e. —Aw = A w.
Hence w = w} and the result follows from Theorem 3.1. »

REMARK 4.1. To deduce Theorem 4.1, it is indeed sufficient to have
proved the easier and more special case of Theorem 3.1 where f = 1. Indeed
A1(Q) = A(02*) = Ay, then as above, we saw that w = w}. Now if —Au =1
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in 2 and —Av =11in Q*, u € H}(Q), ve H}(Q*), we have by Talenti’s result
that »* < v. Hence by (2.4) and (2.5) we get

/wi‘z/wl=/Vqu1=/\1/uw1§/\1/u*wI
Q-+ Q Q

Q Qa*
§A1/vwi‘=/VvaI=/wI.
o o a

Thus equality holds everywhere and so

/(v —u)wi =0,
0*

which gives that v = u* a.e. (since wj > 0 in Q*) and thus v(t) = |u* > ¢| =
|lu > t| = u(t) for ¢ > 0, and the result follows.

REMARK 4.2. The essential ingredient in the above proof is that the extreme
case of the isoperimetric inequality (2.9) pertains to the ball alone. This is also
the fact used in the proof of the case when n = 2. There one uses the extension
of the Weyl formula of the form (cf. Kac [5])

ie-ka)t UL
k1 4rt 4 \/27rt.

The conclusion arises out of the fact that {\,(Q2)} is the same as the sequence
for 2*. But we prove it using only ().

5. - On Maximal Mean Exit Times

We return to the problem

5.1
u=0 on 9l

{ —Au=1 inQ
By the strong maximum principle, » > 0 in 2. Let

u(zo) = max u(z).
z€0

This quantity has an interpretation in probability theory, which we briefly outline.
Let {X(t)} be a Wiener process with X(0) = Z € Q. Let 7 be the first
exit time, ie. X(r) € 80 and X(t) € Q for t < 7. If —~1Aw = f in Q with
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w = 0 on 91}, then it follows from Dynkin’s formula that
B(w(X(0)) - E(w(X()) = B( [ £(X(s))ds)
0

Since w(X(7)) = 0, we get that
5.2) 2u(z) = E(7)

when f = 1, where u is the solution of (5.1). Thus z¢ is that point in  for
which the mean exit time of a Wiener process starting from it is maximal. We
wish to determine domains {) of given measure containing a given point z, such
that the mean exit time is maximized. In other words we need to maximize the
functional

(5.3) J(Q) = max u(z)
z€Q

over domains ) of constant measure, u being the solution of (5.1).

Using probabilistic arguments, Aizenman and Simon [1] have shown (in
fact for a more general case) that the maximum is attained for a ball. This can
be proved as an immediate consequence of Talenti’s result. Indeed

2

R
= * =u* < * = — = n
max u(z) max u (y) = u*(0) < v*(0) o 1| = w, R,

since v(r) = (R? — r2)/2n is the solution of —Av =1 in Q*, v € H}(€). Thus
J(Q) < R?%/2n and it is attained for the ball 2*. We improve on this.
THEOREM 5.21. Let u € H}(Q) be the solution of (5.1). Let Q| = w, R™.
- R ;
Ifrwneaé( u(z) = 5, then Q is a ball.
PROOF. As before we use u(t) = |u > t| and v(t) = |v > t| where
v(r) = (R? — r?)/2n. Since both u* and v are radially decreasing and u* < v,

we have that
p(t) = |[u* > t| < v(t).

Now recall the proof of Theorem 3.1, where we saw that (cf. (3.6) with f = 1)
—H (B)u(t) 2 (Ben({u > 8))? 2 n2wl/™ (u(t)>~ 5.

Thus 9
Z WO/ < —2nw?in
n

i.e.

S ()?) < 23l = S0)),
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since v(t)2/" = w2/™(R? — 2nt). Thus if we set ¢(¢) = (v(t))2/™ — (u(t))?/", we
get that

(5.4) ¢(t) >0, ¢'(t) >0, ¢(0) =¢(R?/2n) =0

since u(R2%/2n) = v(R?/2n) = 0. It follows from (5.4) that ¢(t) = 0 which
gives u(t) = v(¢t) for ¢ > 0 and the result follows from Theorem 3.1. =

REMARK 5.1. This result is contained in Alvino ez al [1] but the proof is
different.

We can generalize the above result further. If L is a second-order elliptic
operator in divergence form then again, by Talenti’s result, «* < v in Q* where
u € H}(Q) solves Lu = f in Q (f € L?(Q), f > 0) and v € H}(Q*) solves
—Av = f* in Q*. We thus have

max u(z) = u*(0) < v(0) = M,

where M is defined by
1]

(5.5 M= ﬁ; / ¢l2/m=2 p(¢)de.
"0

If p(t) = |u>t| and v(t) = |v > t|, we have u(t) < v(t) as before and also (cf.
Lions [6]) d d

= (A < = (f

= (A0) < 5 (@),
where H is such that %—? = H and H is given by

H(X) = F(3) (nw/™ A7Hm)72,

F as in Section 3. Now H is a strictly increasing function of A and so if we
set

¢(t) = H(v(t) - H(u(t),

we again have (5.4) verified (with R2?/2n replaced by M), provided that
max u(z) = M. Thus wu is radial and Q a ball.
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