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An expression for the number of different topologies (not considering homeo-
morphisms) on a finite set of # elements is not known. However, lower and
upper bounds for the same have been obtained. (See Evans et al. 1967
and Krishnamurthy 1966). Krishnamurthy has established a one-one
correspondence between (I, 0) matrices of order n with certain properties
and the topologies on a set of n elements. (These matrices turn out to be the
adjacency matrices of labelled transitive digraphs with n vertices). This
note examines these matrices and uses the observations to obtain a lower
bound for the number of topologies.

First, a few useful observations are made regarding the structure of these
matrices. It is noted that entries of 1's off the main diagonal play an impor-
tant part. Hence the matrices are grouped into classes S(n, k) viz., (n X n)
matrices as above with 1’s off the main diagonal in exactly k£ rows.

In the next section some of these classes are enumerated fully while estimates
are obtained for the rest. This leads to a lower bound of

24 g (1) @—v=s [ @ =1y + ket Grr 2o

k
n-r
+(2)2 ]..(n
for the number of topologies.

The next section suggests further refinements to this formula and shows how

sharper bounds can be obtained.

Evans et al. (1967) have enumerated the number of digraphs in which no
path is of length greater than 1. The concluding section obtains the same
result through a consideration of a subclass of the above matrices.

INTRODUCTION

Let E be a finite set of n elements. Let f{(r) be the number of topologies on E
(not taking homeomorphisms into account). No formula for f{») is known. However,
many bounds for f(n) have been obtained. In particular, lower and upper bounds
can be found in the papers of Evans et al. (1967) and Krishnamurthy (1966). Krishna-
murthy has established a one-one correspondence between certain (1, 0) matrices
and topologies on E. In this note, we classify these matrices and obtain lower bounds
for the number of members in each class. (Certain classes are enumerated fully).
We establish the bound,
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and also show how this bound can be improved to include many more such terms and
thus obtain as sharp a bound as possible by this process.

CLASSIFICATION OF (I, 0) MATRICES

We quote here the main theorem of Krishnamurthy (1966).

Theorem : *“‘On the finite set E of n elements there are as many topologies, (not
taking homeomorphisms into account) as there are n X n matrices (ai;) of zeroes and
ones with au = 1 for all i, and with the following property :

( *) For every ordered pair (RiRy)) (i,j = 1, ....,n) of rows of (ai)
and every index k, as = 1 = au implies, ag = 1.”

We will hereafter say that a matrix with all the properties listed in the theorem
has property**. Graph theorists will immediately recognize these as merely the
adjacency matrices of labelled transitive digraphs. (cf. Evans ez al. 1967).

It is convenient at this stage, to make a few observations on the structure or
matrices with property (**). First of all, if ais = 1 for all /, in checking for property (*),
we need only check for the nondiagonal elements. For, if i = j, j =k ori =k, (*)
is trivially satisfied.

Secondly, if a; = 1 for j %= i, then by virtue of (*) Ry must have 1’s wherever R;
has 1’s. Also if a5 = 0, then the distribution of 0's and 1's in Ry is independent of
that in R, since (*) does not apply to the pair (Rs, Ry).

With the above comments in mind, we proceed to classify the matrices with pro-
perty (**) as follows :

Let S (n, k) be the class of all n x n matrices with property (**) such that in
exactly k£ rows, we have 1’s off the main diagonal also. Let ¥ (n,k) be the number of
members in S (n, k). [Clearly N (n, 0) = 1]. We then have,

m:EMML L
k=0

ESTIMATES FOR N(n, k)

Let us choose the rows i, .., i, to be the k rows with 1’s off the main diagonal.
T n

This can be done in ways. The remaining n—k rows have 1 on the main
k

diagonal and 0’s elsewhere. As already mentioned we are interested in the nondiagonal

elements of the k& choosen rows. This again depends on the interrelation of these k
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rows given by the k (k—1) quantities a;s (! 5 m, [, m=1, ..., k). Our discussion
will be centred round the values that these quantities assume and so we will call them
‘pivots’.

Case (i) : All pivots take the value zero. In this case the k rows are all indepen-
dent of each other. Since (k—1) pivots and the diagonal element are fixed in each
row we have n—k free points in each row and these can be filled in 27%—1 ways in
each row (we subtract one so that no row has a 1 only on the main diagonal).

Thus we get (2** —1)* matrices with the property (**). This case has an interpre-
tation in diagraphs. (see conclusions.).

Case (if) : Only one pivot is non zero. Let ais 7 0. This can be chosen
in k (k—1) ways. Also R;, is dependent on Ry, and the remaining (k—2) rows
are independent of these as well as of each other and can be filled in (2n% —1)+-2

n—k
ways. R;_can have r 1's fixed in ways. This fixes r U's together with the

’
already fixed k points in Ri. Thus R, can now be filled in 2#-*-* ways. Since r can

range from | to n—k, we have that these two rows can together be filled in,
n—k "n—k
2n-k—r — 3n-k _. In—k .. (3)
r=1 r
ways. Thus this case yields, k(k—1) (2n*—1)*¥2 (3n-*—2n-%) matrices with
property (**).
Case (iii) : Two pivots are non-zero. This includes several subcases which
are classified below :

(@) @i, =ai i =1
b) Ay, = Xi i = I.
() age, = ai,, =1
@ a, = aii, = 1.

Subcase (q) is the simplest and it terminates the case (iii) when k = 2. Here

Ri, and R:_ are mutually dependent and hence are identical. This choice can thus

m
k
be made in ways and these two rows can together be filled in 27°* ways. Thus
}
k

(a) yields, (2n* —1)*2 2n-k matrices. For reasons of length of the formula,
2
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we stop here for the upper bound. We have

n
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Since these cases do not contribute anything to N(n, n) (for, then all non-diagonal ele-
ments are pivots and there is an upper limit of n(n—2) for the number of zeroes in the
matrix), we just consider the matrix with ail entries unity for the class S(n, n) and get
the bound given by (1). :

k

FURTHER REFINEMENTS

To continue with the enumeration for the other subcases, we note that (a), (b)
and (c) exhaust case (iil) when k& = 3 and (a) to (d) exhaust case (iii) for k¥ > 4. For
cases (b) and (¢) the choice of pivots is done in k(k—1) (k—2)/2 ways. The remaining
(k—3) rows are filled as usual in (2°* —1)*~% ways. In (b), Ri, dictates to R.

and to Ri. Thusfillingr I’sin Ry wefixr 1’sof R;, and Ri;, and in each, the

remaining (n—k) places can be independently filled in 2#—%* ways. Thus these three
rows are together filled in

n—k “n—k
z [ :l 4n-k-r — Sn-k _ fn—k .. (5)
r=1 r

ways. Thus (b) yields, M—j—)— (2n~% —1)%-3 [Sn—* —4n-}] matrices.

The subcase (c) is probably the most difficult of all. For, both Ry and R:
dictate toR;,. Solet usfixr 1’sin one of them, say R; . Let us choose to have ¢ over-
laps between the 1’s in R;_ and Ry, and let us have s more 1’s in R: . Thenitis readily

seen that these three rows are together filled in,

n-k n—k-r r n—k r n—k—r
r= §= =0
n—k
_[ ] 2n—k—r} = Sn-k —2.3ﬂ—k+ 2k . (6)

r

ways (since both s and # cannot be together zero). Thus (c¢) gives kik— 12)(k——2)
(2nk —1)-8 (5n—k —2 3n—k 4 2n-F) matrices.

Subcase (d) is case (ii) repeated for two sets of rows. The pivot choice is done in
k(k—1)(k—2)W(k—3) ways. We have (k—4) independent rows. Thus on the whole
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we have, k(k—1) (k—2) (k—3) 2n* —1)** (39 —D2n—#)2 matrices from (d). Thus
n

to the coefficient of in the bound for N(n, k) we may add the terms got from
X ;

subcases (iii) (b) through (d) also.

Upto now we have discussed the case when only two pivots are non-zero. Let us

now have r non-zero pivots in the form,
@5, = Q¢ = .. =, i =1 o
11112 112113 4 rl o1 ( )
and of course all pivots arising out of the transitivity relations due to (7) are also
equal to 1. Let all other pivots be zero. Then R, dictates to Ri, whenvever k> j

k L]

Starting with s,,; 1’sin Ry, , and then s, more 1'sin Ry, and so on we get the
r+1 r
following r—fold summation, denoting the number of ways to fill the rows

R:‘l, ....,Ril as,

1 r+1

n—k n—k—s, 4 n—K—Sppg—...—53
E . 2n*k—..4—52.
Sriqr +e- s Sy Sry1 Sy So

The range of s,,; is from 1 to n—k, while s, the number of 1's fixed arbitrarily in
R: , ranges from zero to n — k — §r.y — .. — 535 The above summation can be

)

evaluated step wise as (r + 2)»* — (r + 1)»%  The pivot choice is done in

k(k—1) .. (k—r) ways. We have k—r—1 independent rows. So such a choice
k ' —, e—r—1 n—k . n-—k :

leads to =T @27 % —1) X {(r+2) (r 4+ 1)"*] matrices.

Thus when p pivots are non-zero we can break it up into such chains and enu-
merate them. Also when we have circuits within such a chain we can use a similar

Fic. 1
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formula. Going to the corresponding graph, we see that transitivity helps us to
bypass the cycle and consider a chain of the above form but of reduced length (see
Fig. 1).

From Fig. 1, Ry, = Ri, = Ri, and we bypass the circuit (i1, iy, 7;) and
2 3 4

consider the shorter chain given by
=aii =1 e (8)

ai i
LI'LZ 2 L5
and apply the formula obtained above.
Thus when more than two pivots are zero, we can split it up into forms discussed
above and get a bound as sharp as we please.

CONCLUSIONS

Finally, we give an interpretation of case (i) in S(», k) and of the class S(n, 0).
Considering these contributions alone, we have,

n—1 Mp 7
fm> 4> (v —1):
k=1 L k]
n [ n 7]
= Z (2¢ —1)ns
s=1 L §
= 3&(n), say.

The expression 3(n) is precisely what is given in Evans ef al. (1967) as the number of
digraphs in which no path is of length greater than 1, (which are necessarily transitive).
This can be deduced from matrix considerations also. When there are no pivots
(as in the case of S (n,0) or when no pivot is unity, there is no path of length greater
than 1. Conversely, if one pivot is unity, then since at least one non-diagonal element
is unity in each of the k chosen rows, we have a path of length at least 2. Thus S (n, 0)
and case (i) of S (n, k) cover all digraphs in which no path is of length greater than 1.
Thus, the total number of such digraphs is,

n n

8 (n) = z @ —1)ns )

s=1 §
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