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Abstract

String theory with ¢ < 1 matter is described in the path-integral, conformal-gauge
approach. It is shown how to obtain the gravitational scaling dimensions and string sus-
ceptibility in this framework. This is followed by a discussion of the operator quantization
of the theory, the nature of Liouville theory Fock space, the spectrum of physical states in
the BRS framework, and the existence of extra physical states of nontrivial ghost number.
Finally, I return to the path-integral to discuss the partition function on the torus and the

tree-level correlation functions.

1. 1. Introduction

In 1981, Polyakov([1] wrote down a path integral formalism for bosonic string theory,
in which the action depends on a two-dimensional metric in addition to the coordinates
of the string, and both sets of fields are quantized independently. He observed that the
symmetries of the action (reparametrization invariance on the world sheet, and invariance
under Weyl rescalings) are such as to permit the elimination of all the local degrees of
freedom contained in the two-dimensional metric, so long as these symmetries can be

maintained upon quantization.

* Based on a series of lectures given at the Summer Workshop in High Energy Physics and
Cosmology, ICTP, Trieste, in July 1991.



Unfortunately, the Weyl symmetry is generically anomalous in quantization schemes
which preserve reparametrization invariance. This means that in general, one of the three
modes of the metric, which by convention can be chosen to be the scale factor, cannot
be gauged away and needs to be quantized. Polyakov observed that the action for this
mode of the metric takes the form of a two-dimensional field theory of a single scalar field
with an exponential (Liouville) interaction. The coefficient of this term is proportional
to D — 26, so that it drops out when the number of spacetime dimensions is 26. In this
critical dimension, the anomaly in the Weyl symmetry cancels and the Liouville-like mode
decouples, leading to a straightforward quantization of the theory. In dimensions D < 26,
for which the string theory is said to be non-critical, the anomaly forces us to quantize
the Liouville theory along with the matter conformal field theory of D free bosonic fields.
This simple observation lies at the heart of the continuum approach to non-critical string
theory.

The difficulty in quantizing the Liouville mode led to somewhat limited progress in this
field over the next few years. Indeed, in a certain sense this difficulty persists to the present
day. In what follows I will discuss the simplest, although possibly least rigorous, approach
to the quantization of the noncritical Polyakov string. This discussion, like much of the
work that followed it, is based on a sort of self-consistent approach, in which numerical
values of critical exponents, and ultimately even correlation functions, are determined
from such things as scaling arguments and free-field representations, rather than explicit
resolution of the Liouville theory. Since the intent of this article is primarily pedagogical,
I will refrain from discussing alternate approaches where a single one suffices to display
the main results.

A powerful approach to non-critical string theory, in terms of random-matrix models|2]
has been very successful in providing results to all orders in string perturbation theory. In
what follows, we will occasionally note the correspondence between the continuum results
and those coming from matrix models.

The first part of this article will deal with the functional integral approach (in con-
formal gauge), in which critical exponents may be derived. The second part deals with
the operator quantization a la BRS, which is the most logical and complete framework in
which to obtain the spectrum of physical states. Finally, I discuss the partition function on
the torus, and the efforts that have been made to extract at least the tree-level correlation
functions in this approach, for which the path-integral will again prove to be a convenient

starting point.



2. 2. The Polyakov Path Integral

Consider a string propagating in a flat, Euclideanized D-dimensional spacetime. The
coordinates of the string are parametrized by maps X*(£1,&) from a two-dimensional
surface to spacetime. Let the surface be compact and of genus A, and denote the metric
on this surface by gq5(£1,&2). The basic object of relevance in the first-quantized approach
to string theory is the path integral[1]
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The first term is the “matter” action, describing D free scalar fields coupled to two-

Sy = S / d?€,/gg™° 0, X O X
(2)

dimensional gravity, while the second is a cosmological term in the two-dimensional sense,
whose coefficient is an arbitrary parameter, the bare cosmological constant. The rationale
for this action is that the first term alone, on elimination of the metric via its equations
of motion, gives rise (classically) to the famous “area law” action of Nambu and Goto,
analogous to the classical action for a free relativistic scalar particle, which is proportional
to the invariant length of its trajectory. The second term is included to accommodate
possible renormalization effects. The measures are formally divided by the volume of the
diffeomorphism group, which should cancel out after gauge fixing.

On a surface with two discs removed, Zj; represents the amplitude, in order h, for
a free string to propagate from one of the boundaries to the other. We will, however,
generally choose the surface to be compact and without boundary. Scattering amplitudes
of string states will then arise as correlation functions of physical operators, which can be
studied in this formalism once the spectrum has been understood.

To examine Eq.(1) in more detail, it is necessary to give a meaning to the path
integration measures. This done by first defining a reparametrization-invariant norm on
infinitesimal variations of the fields appearing in the path integral, and then defining the

functional integration over the squared norm. The norms are given by
16X]2 = /dzg\/g SXHIXH
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They carry the subscript g because they are metric-dependent. The functional measure is

now defined implicitly via

/Dg(5X) e~ 19Xy = 1
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Because of the manifest diffeomorphism invariance of the measures, we can be sure

(4)

that they will descend to measures on the space of metrics and coordinates modulo diffeo-
morphisms, so that the volume factor in the denominator will indeed cancel out.

Now let us examine the behaviour under the Weyl rescalings

Jan(§) — eo(g)gab(g) (5)

Clearly the matter action Sy, is invariant, although the cosmological term S, is not. As
for the measure, it is not invariant either, as is clear from the definitions Eqs.(3),(4)above.
The choices for the norms above were dictated by reparametrization invariance, which is
evidently incompatible with Weyl invariance.

The Weyl transformation of the bosonic coordinate measure is computable by a variety

of methods (see for example Ref.[3]). One finds
Devy X = eP/48MSL(9)D ¥ (6)

where the prefactor appearing is the exponential of a local action for the scale mode o(§)

coupled to the two-dimensional metric:

1
S0, g9) = /dzg\/g <§g“b8aa<9ba + Ro + ,ue") (7)

Here, 1 is an arbitrary constant, which has the effect of renormalising the bare cosmological
constant . The relative coefficients of the first two terms are, however, not arbitrary.

Although we will not derive Eqgs.
; (8)
h (9)

ere, it is instructive to check the relative coefficient of the first two terms in the above
expression. Performing two successive Weyl transformations on the metric, with factors

o(£) and o/(§), we have on the one hand

D,oior X = eion SLO+0"9)D X (10)



and on the other hand

Dea+0,gX - C(D/48W)S%(U’ealg) Dedng (].].)
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This gives the linear relation
Sy(o+0',9) = Si(o,¢” g) + S2(0",9)
Supposing that p = 0, the above relation is equivalent to

/d25\/§ (gabaaa B0’ + R(g)o — 6"'R(6"'g)0) =0

which is true because of the Weyl-transformation law for the Ricci scalar:
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This shows that the relative coefficient of the first two terms is not arbitrary, and also that
the form of S? (except the cosmological term, which is arbitrary anyway) is consistent
with the required property.

It is appropriate to make one more comment about the Weyl anomaly here. It has
been argued[4] that for any classically Weyl-invariant, reparametrization invariant theory
in two-dimensions, one can compute the Weyl anomaly as follows. At the classical level,
the stress-energy tensor T,; will be conserved, by virtue of reparametrization invariance,
and traceless, because of Weyl invariance. This implies that the component 7., in a
system of complex coordinates is analytic, from which the deep and elegant structure of
two-dimensional conformal field theory can be worked out. In particular, conformal field
theories are characterized by the value of the “central charge” in the commutation relations
of two stress-energy tensors. Now in a curved background metric, tracelessness is violated
at the quantum level by a term proportional to the scalar curvature R({) (which is one
way of seeing the Weyl anomaly), which implies that analyticity of T, is also violated by
a similar term. One can then show that the coefficient of the Weyl anomaly is proportional
to the central charge of the corresponding flat-space conformal field theory.

Since we will not go into the details here, it is sufficient to write down the result: any
conformal field theory of central charge ¢, when coupled to gravity, has a Weyl anomaly
given by

e(c/487)57 (0,9) (12)



where SY is the Liouville action written in Eq.(9). This provides the most practical way
to determine Weyl anomalies in functional integrals. In the case of D free bosons, for
example, one obtains Eq.(8)by noting that each free boson has a central charge ¢ = 1.
Armed with the above results, we now proceed to study the full theory of D two-
dimensional bosons coupled to gravity. We have seen that the entire theory (action as well

as measure) is invariant under reparametrizations, which vary the metric as follows:
5gab — gacvcvb +gbcvcva . gabvcvc (13)

where V() is the infinitesimal vector field which defines the reparametrization §§* = V¢
of the coordinates.

We now pick a gauge in order to fix these degrees of freedom. A convenient choice
is the conformal gauge, which amounts to fixing the metric to be conformal to some fixed

reference metric:
(0) (¢ ~
gab(é.) - €¢ (E)gab(T)

The reference metric is labelled by a set of complex parameters described for the sake
of brevity by 7 in the above. These parameters describe the moduli space of the chosen
Riemann surface, which is the space of conformally inequivalent metrics on this surface.

Next we must replace the integration measure over all metrics by the measure over
the scale factor ¢(%) (¢), the measure over reparametrizations (the infinitesimal vector fields
V®) and the measure on moduli space. The replacement will involve the Jacobian of the
transformation in Eq.(13)above. We will assume that the reference metric is just the
identity d4p in the neighbourhood of some chosen point, in which situation it is convenient
to go to a system of complex coordinates z = £ + €2, z = £ — i€2. near that point. In
these coordinates, the components of the reference metric, and hence the full metric (from
the above equation), satisfy g., = gzz = 0.

Making an infinitesimal change of coordinates near the chosen point, one easily finds
that the Jacobian J between variations of the components g*#, g°% and the vector field V*
is

J = det (V*V?)
where the differential operators inside the determinant are just the covariant derivatives
on vector fields. Then we can cancel out the formal expression “vol(Diff)” and exponen-
tiate the Jacobian determinant in the standard Faddeev-Popov procedure. Because the

operators inside the determinant act on vector fields (which can be thought of as having



conformal spin —1, by virtue of their single holomorphic upper index), we must introduce
anticommuting ghost fields ¢* of spin j = —1, and conjugate antighost fields b,, of spin
1 —j = 2, as well as their antiholomorphic counterparts. The action for these fields in

conformal gauge will be

Sgn ~ /d2z (b,.V*c® + c.c)
One can now rewrite this in a general coordinate system and general metric background:

1
Sgh(ba G g) = E /d2§\/§ (bab ( chgac + vccagbc - gabvccc)) (14)

Evidently the ghost is a vector field ¢*, while the antighost is a traceless symmetric tensor
bab-

Now one can check that the ghost action is also Weyl invariant:
Sgn(b,c,e7g) = Sgn(b, ¢, g)

but the measures defined through the norm

||(5b||3 — /dsz (gacgbd+gadgbc _gab cd) 5bab5bcd
16¢||% = / d?€\/qgap 0c*6c”
are not. In fact, one finds that
Deogb Deoge = e~ (26/48M)52(539) D D ¢ (15)

The simplest way to derive this is to note that the system of ghosts desribed above, when
studied as a conformal field theory in a flat metric, has central charge -26, so that the
above result follows from Eq.(12).

Thus after gauge fixing and the introduction of ghosts, the Polyakov path integral

becomes

Z = /[dT] Dy¢'% Dyb Dye DX exp [—Su(X;9)

— Sgn(b,c;9) — /\/_d2

The integration over metrics has been replaced by an integral over moduli and over the

scale or Liouville mode ¢(®), the factor “vol(Diff)” has been cancelled and the ghost



terms have appeared to take care of the change of variables between metric variations
and reparametrizations.

Now the only measure that has not yet been studied is that for the Liouville mode
#©). At this point the distinction between critical and noncritical string theory appears.
We should first check whether the ghost and matter sectors contain a dependence on ¢(©)
or not. We have noted that both the actions are Weyl invariant. The measures are not
invariant, as we have seen, so the passage from a general metric to the reference metric
will produce the Liouville action S?(¢(®), g) defined in Eq.(9), with coefficient (D—26)

481
one can see by combining the anomalous transformation laws given in Egs.(8) and (15).

as

Therefore if we choose D = 26, corresponding to a string propagating in a 26-dimensional
flat spacetime, the Weyl anomaly cancels between ghosts and matter coordinates. In this
situation we can also set the cosmological constant to zero, and the entire theory becomes
independent of the Liouville mode ¢(®). Then we must drop the integration over the
Liouville mode, and what remains is the critical string theory.

If on the other hand D is not 26, then the integrand depends on the Liouville field
through the local action S%(qb(o), g)- The coefficient will have the correct sign for a scalar
field action if D < 26, and we confine ourselves to this case. Now we must indeed address
the question of the measure for ¢(®). This should be induced from the norm that we had

defined in Eq.(3) for variations of the full metric. It follows that

156012 = [ e g (560
- / 2€y/g e (66)?

This displays the crucial problem which made it difficult to study the noncritical string in
the path integral formalism for several years. The measure for the Liouville field depends
in a highly nonlinear way on the Liouville field itself, because of the exponential factor in
the integrand. This makes it impossible to explicitly perform this part of the functional
integration.

What we would like to do would be to transform the entire functional measure for
matter, ghosts and the Liouville mode in the background of a general metric (which has
the nonlinearity described above) into a measure for some set of fields in the background
of the reference metric, in which case no such nonlinearity can be present. Accordingly, we

make the ansatz[5] that there is such a transformation, and try to determine everything by



self-consistency of the resulting theory. It is quite remarkable that such a bold and simple
ansatz will lead to unambiguous and useful results.
We postulate that the Liouville field ¢(©) can be replaced by another scalar field ¢, in

terms of which the following equivalence holds:
D,¢) Dyb Dyc Dy X = e 5L DD, Db Dye Dy X
where ¢ has the simple norm (free of the exponential factor) given by

166]12 = / 26\/7 (56)°.

and the prefactor e=52($:9) is some local, renormalizable action for the new field ¢(¢). It
is clear that if this ansatz is correct, we will be able to treat the new Liouville field ¢ on
essentially the same footing as the string coordinates and the ghosts.

We now assume that the local action Sp,(¢,g) has the same general form as the
Liouville action S9 (¢, g) introduced in Eq.(9), but with arbitrary coefficients. These

coefficients will then be fixed by self-consistency. Thus we have

S100) = g [ eV (3 30u000 + L R0+ et

and it remains to fix the parameters () and . The third coefficient u; multiplies the cos-
mological term, hence it remains arbitrary like the cosmological constants which appeared
earlier, and will be a free parameter of the theory.

It is useful to first change the normalization of the Liouville field by the transformation

¢ — ag

so that the kinetic term takes the canonical form:

1
- 87

Spié,4] / P67 (70,000 + Q R(G) + p1e™?) (16)

Before proceeding further, it is worth commenting that by our ansatz we have replaced
the original Liouville field ¢(®) and action S9(¢(?), g) by a new field ¢ and a new action
SL(¢,§), so it will be convenient in what follows to refer to this new field as the Liouville
field, and the new action as the Liouville action. The process of going from ¢(°) to ¢ can
be thought of as a kind of renormalization of the Liouville field, so that from the point of

view of physical interpretation, it is the new field that should be thought of as the scale



factor of the metric in the quantum theory. Since a rescaling of ¢ was also performed at
the end, this means that

Gab = €a¢§ab (17)

although admittedly this equation has a rather heuristic meaning.

Now we obtain the conditions coming from the self-consistency assumption. The
first observation is that the reference metric g,, was arbitrary. Since all the degrees of
freedom inherent in the original metric have either been divided out or accommodated in
the Liouville mode, the final path integral cannot depend on the choice of g,;,. The way
to see this is that a Weyl transformation on the reference metric can be compensated by

a shift in the Liouville field, since the transformations

leave the original metric unchanged, from Eq.(17). But since the Liouville field is an

integration variable in the path integral, it can be shifted back without changing anything,

so the theory as a whole is invariant under Weyl transformations of the reference metric.

Of course, since the cosmological constant p; is an arbitrary parameter, we should only

require invariance upto changes in p;, which is most simply examined by setting pu; = 0.
Thus, defining

Stotal(¢7 b7 C, ng) - SL(¢7 g) + Sgh(b7 ¢, g) + SM(X7 g)
and setting the total cosmological term to zero, we have the requirement
Do 5® Deo b Deo g Dorg X e Stotal($,b,¢,X,e7§) _ D;¢Dyb Dyc Dy X e Stotal ($,0,¢,X,9) (18)

This equation has a simple and beautiful meaning: the combined system of matter coordi-
nates, ghosts and the Liouville field, has complete Weyl invariance even including measure
factors. One may imagine that coupling the system to two-dimensional gravity has re-
stored the Weyl invariance which was broken by the anomalies in the matter and ghost
sectors. This has to happen, since after integrating over metrics there is nothing left to
which the Weyl anomaly could be proportional!

This is enough to determine the arbitrary parameter (), as follows. In absence of

the cosmological term, the Liouville action Eq.(16)describes a conformal field theory. The



Weyl anomaly coming from this sector will be proportional to the central charge cy, of this
theory, and Eq.(18)above merely implies that the total Weyl anomaly cancels out between

string coordinates, ghosts and the Liouville mode, i.e.
D—26+c, =0 (19)

Now to find cp, we compute the analytic stress-energy tensor by varying Eq.(16)(with
p1 = 0), to get
1
T = —5 (0:00.¢ + Q0%9) (20)

By explicitly computing the operator-product expansion for two stress-energy tensors,

using Wick contraction for the free bosonic field, one gets
e, =1+ 3Q?

and solving Eq.(19)above we end up with

Q= (21)

where we choose the positive sign of the square root by convention.

Next we determine a. The cosmological term, which is the only term that depends
on «, is

1 / d*¢\/g e*?

Now the vertex operator being integrated should, in the quantum theory, be a conformal
primary field of dimension (1,1) since only in that case does its integral over the surface
have an invariant meaning. In the Liouville field theory at zero cosmological constant,
defined by the stress-energy tensor in Eq.(20), we can compute conformal dimensions of

vertex operators using Wick contractions, and one easily finds that the dimension A is

given in general by
A(e*?) = —5k(k - Q)

Thus choosing k = « and setting the dimension equal to 1, we find a(a— Q)+ 1 = 0, from
which

:%i% Q2% -8 .
. 29
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Later we will show that requiring the correct semi-classical limit fixes the sign in the above
expression to be negative.

At this point we may note that « is real for D < 1, imaginary for D > 25 and complex
in between. Of course, the way we have defined string theory, the number D is an integer
describing the number of dimensions of the flat spacetime in which the string propagates.
But we can generalize the notion of string propagation by replacing the matter action
Sy for D spacetime coordinates, in Eq.(2), by an arbitrary conformal field theory with
some central charge cp;. In that case, although the physical interpretation of a string
propagating in spacetime is lost, the manipulations above go through with D replaced
everywhere by cps. Now it makes sense to consider any value of cjs, in particular values
less than 1.

We conclude that the region 1 < cp; < 25 is problematic as it leads to complex values
for the exponent « in the cosmological term. Actually, we will see shortly that several
other quantities, which have some kind of physical interpretation, will also be complex in
the same region of cp;. As a result, the present quantization of the Polyakov string may
be thought of as inconsistent for these values of cy;.

In what follows we will therefore confine ourselves to the region cj; < 1. We could also
consider cp; = 1, which is on the boundary of the forbidden region, but will not do so here
for reasons of space. Many interesting phenomena occur only at the specific value cp; = 1,
and the interested reader is urged to consult the relevant literature on this subject, or the

excellent review by Klebanov|6].

3. 3. Scaling and Critical Exponents

In this section, we show that a good deal of information can be extracted from the
Polyakov path integral at cp; < 1 just by scaling arguments[5]. It is impressive that
this information agrees, in the domain of overlap, with a number of scattered results
obtained from numerical simulations on the discretized theory of random surfaces, which
is believed to become string theory in the continuum limit[7], and also with a continuum
approach to two-dimensional gravity in which a certain SL(2, R) current-algebra symmetry
is exploited[8].

We start by recalling the expression for the Polyakov path integral that we will be
studying:

Zn(p) = / [d7]n Dy Dgb Dy DyX ¢~ Storat(@:b:e:%:9)



where
Stotal(¢a b7 c, Xag) - SL(¢7 g) + Sgh(b7 ¢, g) + SM(X,Q)

and
1
Y

Here, the ghost action is the same as in Eq.(14), and we will assume in what follows that

S106.9) = 5= [ 6V/3 (50u000 + QR(@)6 + e

ghost zero-modes have been absorbed by appropriate insertions. For the matter sector we
will not postulate any specific action, but will simply assume that it describes a conformal
field theory of central charge cp; < 1. The symbol X above is therefore just a generic name
for the fields that may appear in such an action. The parameters Q and « are fixed (the
latter upto a sign) by Eqgs.(21) and (22), while p is arbitrary and the dependence of the
path integral Z on it is displayed explicitly. The subscript h on Z displays the fact that
it is to be computed each time for a fixed genus h of the two-dimensional surface. [dr]p
denotes the integration measure over the moduli space of this surface.

We now start by examining the physical role played by g and computing the pu-
dependence of Z. Suppose first that the Liouville field ¢ takes a positive constant value

¢o. Then, examining only the second term in the Liouville action, we find
1 S 1 O
@ [ 6/ R0 - Q0 (o= [ Pevanm)
= Qdo(1 —h)

where h is the genus of the surface. The second step involves the standard relation which
states that the scalar curvature integrated over a compact two-dimensional manifold is
proportional to its Euler characteristic x = 2 — 2h. Now when ¢y — oo, this term
tends to —oo if the genus is greater than 1, and eS¢ diverges exponentially. However,
the presence of a cosmological term saves us from disaster, since « is always positive
and exp(—pue®® [d*¢\/§) tends to zero even more rapidly. Thus a (positive) cosmological
constant is needed to stabilize the action, and we can expect singular behaviour when
i — 0. On the other hand, if the genus is 0, then the )-term causes the integrand to
diverge as ¢g — —o0o, and in this case the cosmological term does not help to stabilize the
theory. So we should be particularly careful about the genus-0 contribution, which might
turn out to give unphysical results in formal manipulations.

We can easily extract the p-dependence of Zp(u). Let us shift the Liouville field by a

constant:

1
¢—¢—— Inp
[0



Then,

pe®® — e

so that this shift has the effect of setting u = 1. The measure is of course invariant under
this shift, and so is the kinetic term, but the Q-term changes, so the total action changes

as follows:

Q [ 2c /7 pra 1
Stotal — Stotal + . /d §\/§ R(g) o ln,U/

:S—%lnu(l—h)

So in the path integral the change is

e_stotal — e_stotal'i_% (1n [.L)(l—h)

— M(%)(l_h) efstotal

and we conclude that for any nonzero p,
Zn(p) = (&) Z4(u = 1) (23)

This exhibits the fact that for genus A > 1, the path integral blows up for © — 0, as we
predicted above, but it also shows that the behaviour near p = 0 is singular in the sense
that there is a branch cut, even in genus 0.

Recall that the cosmological term [ d%¢+/gexp(ag) is actually the area of the surface,
i d2§\/§ in the original metric. Thus the cosmological constant p, which multiplies it, is
“dual” to the area, in the same sense as the chemical potential to the number of particles

in a statistical system. Thus the expectation value of the area in a given genus is

(4) = ! /Dg¢ D;(X,b,c) </ d2§\/§ea¢> e~ Stotal

Zn(p)
— 5 10 Z(n)
=)z

This is singular near . = 0 just like the partition function itself. But note that for positive
i, the average area is positive only for h > 1, while on the sphere (h = 0) it is negative.
This is a consequence of the singular behaviour of the action for large negative ¢, which

was noted earlier.



A more physically sensible quantity is the partition function at fixed area. We define

this by inserting a delta-function in the path integral:

20(A) = [ D30 Dy(,0,06 ([ e/t — ) emSemexben=n (o)

where now we have set ;= 0, since it effectively multiplies a constant and hence factors
out of the path integral. One can also think of the fixed-area partition function as the
Laplace transform in p of the original partition function.

We can extract the area-dependence again by a scaling argument on the partition func-
tion. Even simpler is to extract the dependence from Eq.(23)by dimensional arguments,

noting that a formal Laplace transform will produce the result

Zn(A) ~ K A& (=11

(25)
~ K AT(r)-3

where K is some constant, and I'(h), called the string susceptibility, is given by

rh) = Lh—1) 42

(0%

1

= 5 (h=1) (25 — e FV(25 —enr) (1 — cM)) +2

Here we have used the expressions for () and « derived earlier.
This expression can be compared with results obtained in specific situations via other
approaches. In particular, the susceptibility has been computed in the semiclassical limit

e — —00, [9], giving
(CM — 19)
6

which determines the sign in the above expression to be the lower one, which translates

T(h) — (1 - h) +2

into the choice of the minus sign in Eq.(22). We will nevertheless find it convenient to
keep both signs in some of the expressions that follow.

Finally, we can consider the gravitational scaling behaviour for non-trivial operators of
the theory. To be systematic, we should first extract the full operator content of the theory,
but we postpone this task to the next section. Here we simply make an ansatz for a class
of physical operators, which will be justified subsequently in the BRS formalism. Suppose
Wy, is some primary field of the matter theory. We assume that gravity “dresses” this by
multiplying with a Liouville vertex operator, such that the result is a (1,1) primary field

of the combined theory, which is then integrated over the entire surface. This assumption



is in accord with what we know about critical string theory, where most of the physical
operators can indeed be described as integrated (1, 1) primaries of the matter sector. Thus

we have
O - [ e/ o
where the number &k, is to be determined. If ¥,; has conformal dimension Ay, then the

condition that the total dimension is 1 gives
1
Apn — ) kr(kr — Q) =1

so that

1
+ / _

Note that the two solutions k;f satisfy k'z + k; = @, so we adopt the convention that
k; < % and kf{ > % The semiclassical limit again imposes a particular choice of sign,
namely the one corresponding to k;. We will return to this point in the subsequent
analysis.

The path integral with n insertions of these physical operators, which gives the string
theory n-point amplitudes in genus h (without a fixed-area constraint, but with a cosmo-

logical constant) is written

</\pg;>ek51>¢ . /\11(") K0y,
E/ D§¢ Dﬁ(X) b; C) /\Ilg\?ekl(l)d) . /\Il(n) k(n) —Stotal(qb,b,c,X)

We can again examine when the potential is stable. A similar analysis as was carried out

for the vacuum amplitude tells us that if

> ki—Q(1—h)>0

the cosmological term again succeeds in stabilizing the theory. If this condition is not
satisfied then again we must constrain the area to get a sensible result.

Let us define the “gravitational scaling dimension” of the physical operator by exam-
ining the area-dependence of the normalized one-point functions of this operator at fixed

area. Define

([ warct)s
1

56 Ds(X, b, c) /\I,Mekm(; </ d2§\/§ea¢ _ A> e~ Stotal (,b,¢,X;1=0)



The effect of dividing out by the vacuum amplitude is to remove the genus-dependence
of this expression when we examine the scaling with area. Thus we will get a scaling
behaviour which describes a purely local property of the physical operator. Using the

now-familiar procedure of shifting the Liouville field by a constant, one can extract the

result
</ Uprefe?) o~ K AP
with
+
st=1-— kL
a

\/1—CM+24AM:E\/1—CM
\/25—CM—\/1—CM

This equation also agrees perfectly with the result derived in Ref.[8] in the SL(2, R) ap-
proach.

Let us note at this point that the various formulae derived above for the susceptibility
and for various scaling exponents are not quite correct for a general matter conformal
field theory background. In the case when this background is a non-unitary theory, certain
modifications are required. The reason for this is that we had made an implicit assumption
that the cosmological term is a pure Liouville vertex operator, which can be thought of as
the “dressed” identity field of the matter theory. In a unitary matter theory, the identity is
the operator of minimum conformal dimension, but if the matter theory is non-unitary then
it will generally have operators of negative scaling dimension. The dominant perturbation
of the theory will then be by the dressed version of the operator among these whose
dimension is most negative. Let us call this operator \Ilg\?m), and denote its dimension
by A(™) Tt is the dressed version of this operator which we will define as the area
operator for non-unitary matter theories, and which will appear in the action multiplied
by the cosmological constant. This physically motivated assumption is supported by other
calculations in different approaches.

Thus the cosmological term in the action is replaced by



so that repeating the earlier arguments leads to

_— 2(h —1)\/25 — car
V25 —cm — VI —cur + 24A 0

1 .
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V1 —cu + 2880 £ /1 — ear + 24A0min)
V25 — e — /1 — epg + 24A(min)

In particular, the matter CFT, for cp; < 1, is most naturally chosen to be a member

of the minimal series obtained by Belavin, Polyakov and Zamolodchikov, for which the
possible values are
6(p —¢)*

pq

CM:1—

The spectrum of conformal dimensions of primary fields in these theories is given by the

Kac formula
(ps —qr)® — (p—q)°
A = 27
o (27)

from which one obtains the most negative dimension

Almin) _ 1= (= 9)*
4pq

Inserting these in the expressions Eq.(26)one finds

p+q—1
oo L pta-1
V2 /g
_lps—qr|—1
)= g1

This completes the formulation of the noncritical string as a path integral. We have
extracted various scaling dimensions by formal manipulations on this path integral, without
actually trying to evaluate it explicitly. In the next section, we will change over to the
operator formalism for this theory and describe the physical states and operators of the

theory.



4. 4. Spectrum of Physical States

We now turn to the operator formalism for the combined theory of minimal conformal
matter, the Liouville field and ghosts, which was formulated above in the functional integral
language.

From the above discussion, we conclude that the matter sector is described by a
minimal conformal field theory with some analytic stress-energy tensor Ths(z) with central
charge and conformal dimensions given by Eqs. and (27). The Liouville theory, at zero
cosmological constant, is described by the conformal field theory of a single free boson field

¢ with stress-energy tensor and central charge
1
Tr(¢) = _5(3¢L3¢L +Q0%¢1)
Cr, :26—CM:1+3Q2
Vertex operators exp(kr,¢) in this theory have conformal dimensions
1
Ap=—35 kr(kr — Q)
These vertex operators create Liouville momentum states from the vacuum by
k) =: €™ : (0)]0)

Decomposing the Liouville field into its oscillator modes via

Op(z) = Y atPz!

nexz

we find that the momentum states are eigenstates of a(()L):

P k) = —ikp|kr)
and the conformal dimension (Lg-eigenvalue) of these states is
Ag, = —3kp(kr — Q)

Thus for each dimension, there are two possible momenta, a fact which we have encountered
earlier. Because of the background charge (Q-term) in the Liouville stress-energy, the inner

product between momentum states is given by

(krlky) =0(kp + k1, — Q) (28)



Finally, the ghosts are described by a CFT of anticommuting fields (b,c) of spins
(2,—1) respectively, with a stress-energy tensor T, and central charge cy, = —26. We

decompose the ghost fields into their modes by

c(z) = Z cnzt "

nez

b(z) = Z bz "2

neZ

Denoting by |0) the SL(2,C)-invariant ghost vacuum, we find that it must be annihilated

by a semi-infinite subset of ghost modes as follows:

cm|0) =0, m>2

bn|0) =0, m>—1

As a consequence, the true ghost vacuum has Lg-eigenvalue -1, and is given by ¢;|0 >.
We should keep in mind that from the outset, the Liouville mode and the ghosts are
described by the bosonic and fermionic Fock spaces described above, but the matter theory
can be described completely by its irreducible module under the Virasoro algebra, as in
Ref.[10].
Thus the full Hilbert space of the theory may be denoted

H=Hr@Hnu & Hgn

which is the tensor product of the individual Liouville, matter and ghost Hilbert spaces.

To construct the physical states, we will follow the BRS procedure. Define the operator

QBRs = 7{ ce(2) (T (2) + Tr(2)) + %% : ¢(2)Tyn(2) : + antiholomorphic part

—Zc (L(M)-I—L(L))—1 Z(m—n)'c C_nb : + (29
- -n n n 92 cbemCb—nYm+n - c.C
nez m,nez
where
+ o0 .
L = 1 Z oD o) +@ (n+1)alH
n 2 = n—m--—"m 2 n

One can check by explicit calculation that the BRS charge QpRrg is nilpotent:
Q%RS = 0. Now in this framework, the physical states of the theory are defined as



the cohomology of this operator on the full Hilbert space. This is the space of states an-
nihilated by the operator (the kernel) modulo those created by the action of the operator

on other states (the image). One can write this as

{I2) : QBrgl®) =0/]®) ~ |®) + @BRgIA)}

Thus, physical states are annihilated by QgRrg and are not produced by acting with QpRrg
on anything else. States not satisfying both these conditions are not in the spectrum: they
can be classified into two types, those which are not annihilated by Qgrg (which we will
refer to as “unphysical”) and those which are produced by acting with QgRrg on some
other state (which we will refer to as “pure gauge”).

Although QpRg is actually the sum of holomorphic and antiholomorphic components,
it turns out that one can extract the full cohomology from the cohmology of the purely
chiral BRS operator, corresponding to the first, or holomorphic, term in Eq.(29). Hence in
what follows we will study only the chiral cohomology, and we will use the notation QpRg
to mean only the holomorphic part.

Classifying physical states amounts to finding this cohomology. Before starting to
examine this problem, let us note the following. The anticommutator of Qgrg with the

b-ghost zero mode by is

Suppose we have a state |®) such that Qgrg|®) = 0, and L§{**|®) = A|®) with A # 0.

Then one can immediately show that |®) is a pure gauge state:

QBRS 20|®) +bo QpRrs|®) = A|D)
implies
1
%) = Qpps (5 bl

Thus, we can restrict to states with L§**|®) = 0 in studying the cohomology.

Next, let us consider an arbitrary state in the cohomology and expand it in c¢g:
@) = |®1) + co|P2)
Since |®) is annihilated by QgRrg we have

QBRs|®1) + @BRS(co|P2)) =0



Now let us similarly decompose QgRg in terms of its co content:

QBRS = @ L™ + QBRS

Since we have already decided that L{°* must annihilate |®), we find

@BRS|®1) + @BRSC0|P2) =0
from which we find the two equations

QBRS|®1) + £|®2) =0
QBRg|®2) =0

To derive this, we have commuted QBRS through ¢y and used the relation

{QBRSa cot = {QBRSa co} =k = Z NC_pCp
n=1

which defines the operator x. The two equations then follow from separately equating
to zero the terms proportional to and independent of ¢y. One can rewrite Eq.(30)after
dropping the tilde on QgRg, since again the extra term is just proportional to Lt which

annihilates the states. Thus, the components of |®) separately satisfy
QBRS|®1) + £[P2) =0
QBRs|®2) =0

In a similar fashion, one can examine the condition for |®) to be a pure gauge state, in

terms of its components, and one finds
|®1) = @BRSIA1) — K[A2)
|®2) = QBRSIA2)

We see that in some sense the role of ¢y is to cause a “doubling” of all the considera-
tions involved in studying the cohmology of QgRrg- Thus it makes sense to restrict one’s

attention to states |®) which have |®2) = 0, which is the same as choosing the subspace
{12} : bo|®@) =0}

We will impose this condition on the Hilbert space in what follows. The cohomology of

QpBRg Wwithin this subspace is known as the “relative cohomology”.



Now that we have established all the necessary notation to study the BRS cohomology
of noncritical string theory, we can proceed with the analysis. The first step is to analyse
the Liouville Fock space, whose unusual properties turn out to be responsible for the special
characteristics of noncritical string theory.

In CFT we often hear the statement that all states in the Hilbert space are either
primary or secondary. If they are both, we call them null vectors since they are orthogonal
to both primaries and secondaries. In the Liouville Fock space this property does not hold.
Let us start with an example. Consider the two states a(_Ll)|kL = 0), a(_Ll) |k, = Q). These
have the same Ly eigenvalue. Now let us ask if these are primary or secondary. It is a
simple exercise to check that the first state is not primary (since it is not annihilated by L)
but it is also not secondary (it cannot be created by L 1, since this operator annihilates
the vacuum). On the other hand, the second state is primary, since it is annihilated by
Ly, and also secondary, since it is created by L ; from the state |k;, = @). It is convenient
to divide the Liouville Fock space H; into two components: the sector with momenta
kr < %, which we call H; , and the one with momenta k;, > %, which we call H; ™.
Then the two states above are respectively in Hyz~ and #;". This simple example is a
special case of the following result:

Theorem:
(i) States in Hy " are either primary or secondary or both.
(ii) States in Hy~ are either primary or secondary or neither.

We will examine this theorem below. More details, including the proof, can be found
in Refs.[11],[12],[13]. One important point to note is that if we look first at the Verma
module for the Liouville theory, then the projection from this to the Fock module has the
following property: in #; ™, null states in the Verma module descend to non-vanishing
states in the Fock module. Thus the projection to the Fock module is bijective. In H ™,
on the other hand, there are no null states in the Fock module, so the projection loses
these null states (they vanish in the Fock space). At the same time, there are non-primary,
non-secondary states in the Fock module, which cannot come from the Verma module, so
that the projection in this sector is neither one-to-one nor onto. In fact, these results are

the ingredients which go into the proof of the above theorem.

Let us parametrise the matter and Liouville central charges as follows:
6
cy =13 — i 6t

6
CL:13+¥+615



Then the case of interest to us, cp; < 1, corresponds to t > 0. Now the Kac formula tells

us that a primary state in the Liouville theory of conformal dimension

A = — 2y
L 2 4 4

(1—rs) (r*— 1)1 (s> —1)
t

has a null vector at level rs above it. Suppose we look at Liouville momentum states of

this dimension:

_%k’L(kL -Q)=Ar

Then we get two null vectors in Fock space, one over kzr > /2, the other over k; < Q/2.
Now the first step is to prove that the projection from the Verma module to Fock space
is bijective in Hy ", while in H;~ it has a kernel corresponding to all the null vectors.
This can be proved from a detailed construction of the null states in the Verma module,
although we will not enter into those details here.

We can now see how this result implies the theorem above, by a state-counting ar-
gument. The Verma module has states above a primary of given dimension A, given
by

LB L) Ay,

—p1—p2
Similarly, the Fock module has states above a primary of given momentum kj,, given by
04(_1—“17)104(_[22 cee a(_Lp)n |ke).

The number of states at a given level is the same in both, since it is given by the number
of partitions of the level. However, the Verma module may have states which vanish on
reduction to the Fock space Hy~ (which is possible only if they are both primary and
secondary, i.e. null). In that case, a new state must appear in the Fock space, which does
not come from the Verma module. But one can also predict the existence of such a state
from the fact that the Fock space is manifestly positive definite, and it has states in "
which are both primary and secondary. This means that there must be states in the dual
space Hy~ with which the original state has a nonzero inner product, in the norm induced
by Eq.(28). Thus these new states in H1~ must be neither primary nor secondary.

Now we can begin to classify physical states. The first thing to note is that all states
in the full Hilbert space H which are of the form

[primary)z, i ® ¢1]0)gn



are necessarily in the relative cohomology. Here we have simply taken an arbitrary primary
of the matter-Liouville system of dimension 1, so that after adding the dimension of the true
ghost vacuum, one finds total conformal dimension 0 as required. The proof of this result is
straightforward: it is easy to check that such states are always annihilated by QpRg, and
one can then show that there is no state on which the action of QpRrg produces this state.
This result is analogous to a well-known result in critical string theory. Thus, classifying
the (1,1) primaries of the matter-Liouville system will produce a class of physical states,
although as we will see shortly, these are by no means all or even most of the physical
states in the theory.

It has been shown, in Ref.[14], that given the tensor product of two conformal field
theories with total central charge 26, a dimension (1,1) primary of the combined theory
must be a primary of each theory separately. However, a crucial ingredient in this proof
is the assumption that all states in each CFT are either primary or secondary. If we now
seek to apply this result to the Liouville-matter system, then this assumption holds only in
the sector H 1, as we have just seen. Thus in this sector, a (1,1) primary of the combined
matter- Liouville sector must be a primary of both matter and Liouville sectors separately.
Moreover, our analysis above also implies that a (non-null) primary of Liouville in Hy*
can only be a pure momentum state, since a new primary in the Fock module above a
momentum state would mean that the projection from the Verma module is not onto. As

a result, all states of the form
|primary) s ® [k ) ® €1]0)gn (31)

are in the relative cohomology. One can check that they are in the absolute cohomology
as well. It is important to note that the lengthy discussion above was necessary to derive
this first simple result, as otherwise we could not rule out two kinds of states: those which
are primary in the combined matter-Liouville theory but not primary in one or the other,
and those which are primary in both sectors but not pure vertex operator states in the
Liouville sector. Moreover, all this holds only in the sector Hy 1 so far, but we may now
note that replacing k;f by k; in the above expression produces a state in Hy~ which is
still annihilated by QBRg, and which has nonzero inner product with the above state.
This means that all states of the form of Eq.(31)with k:j{ replaced by k; are also physical
according to the BRS definition.

At this point we have discovered precisely the “dressed” matter primaries which were

introduced as an ansatz in the previous section on functional integral techniques. We noted



earlier that the semi-classical limit suggests a restriction to k; only, but we worked with
both values of k1, precisely because the BRS procedure finds both of them to give physical
states. A physical distinction between operators dressed by k:j{ and k; is described in
Ref.[15].

The final result seems intuitively appealing: a matter CFT coupled to gravity has a
set of physical states in one-to-one correspondence with the original matter primaries, and
they can be thought of as having been dressed by gravitational interactions.

Unfortunately, this intuitive result is misleading. We have only examined a special
class of physical states, those of the form of Eq.(31)and their counterparts in 77, ~. All these
states are built on the true ghost vacuum, ¢;|0)45. But the cohomology analysis should
be performed on all possible states, including in particular, states with ghost excitations
(excluding of course ¢y, since we are studying the relative cohomology).

The simplest indication that there are physical states in sectors of nontrivial ghost
number with respect to the true ghost vacuum is the following. Let us assign ghost number
+1 to the c-ghost, -1 to the b-antighost, and 0 to the true ghost vacuum c¢1]0)4,. Now
consider the state

0)m ©[0) @ [0)gn

corresponding to the SL(2,C) invariant vacuum state. In our conventions this has ghost
number -1, and it is easily verified that it is a physical state. Of course, an analogous state
exists in the critical string, and seems to play no essential role there, so one could dismiss
this example as not being very important. This might have been a reasonable point of
view, but for the following theorem, due to Lian and Zuckerman[16]:

Theorem:

(i) For c¢pr < 1 minimal models coupled to gravity, there are infinitely many states in the
relative cohomology of QpRg at every positive and negative ghost number. These
occur in the following situation. Consider the Hilbert space above a matter primary
state |1.s)n and a Liouville momentum state |kr)r. If the conformal dimension
associated to kj, is such that it could “dress” the null vector at level rs above the
matter primary, then this sector of the Hilbert space contains a physical state of
ghost number +1. The sign of the ghost number is positive or negative depending on
whether the Liouville momentum is in H; " or H .

The meaning of “dressing” in this context is that the sum of dimensions is 1. Thus

the statement of the condition is that if k;, satisfies

Ars +rs— %kL(kL — Q) =1



then there will be a physical state in the Hilbert space.

Now we know that in minimal models, there are two basic null vectors above a given
primary, but these null vectors in turn have other null vectors above themselves and so on.
Consider one such null vector in this chain, which is at a “distance” d from the original
primary in this sense (the case of the basic null vectors considered above corresponded to
d = 1). In this case we have:

(ii) If the conformal dimension associated to the Liouville momentum k7, is such as to dress
a null vector at distance d in the chain above the matter primary, there is a physical
state at ghost number +d, where the sign of the ghost number is again determined by
the sector in which kj, lies, as above.

Since there are infinitely many null vectors above each primary of a minimal model,
the theorem implies that noncritical string theory has infinitely many physical states, with
finitely many at each value of the ghost number. The dressed matter primaries are only
a small subset of these, which are the easiest to construct. An explicit construction of
the physical states at ghost number +1 is also known[13], and involves a new BRS-like
operator which interpolates between the positive and negative Liouville Fock spaces.

The physical meaning of the extra states at nonzero ghost number has been clarified
to a certain extent by some recent developments, which we mention here in brief. In a Fock
space description of minimal CFT models[17],[18],[19] it is useful to introduce a nilpotent
BRS-like operator, which we will call @, which projects out a very restricted set of Fock-
space states corresponding to the irreducible modules. It is this operator which ultimately
enforces the restriction to finitely many primary fields. Vertex operators with momenta
outside a certain finite set turn out not to be in the cohmology of Q) . Now, combining this
Fock-space theory with the Liouville Fock space, one gets a rather symmetric version in
which the matter and Liouville sectors appear as two space(-time) dimensions. However,
one has to restrict to the cohomology of two different BRS-like operators, Q@ (which is
built in to the description of the minimal model) and @Qp (which arises because of the
gauge-fixing of two-dimensional gravity).

The extra states of nontrivial ghost number were studied in this formalism in[20]
and [21]. The approach we described above clearly corresponds to passing first to the
cohomology of Qr and then to that of (). Suppose, however, that we were to do it the
other way. In this case, it turns out that the physical states are all the dressed vertex
operators, including those with momenta outside the “minimal table”. Moreover, one

can make a correspondence between the “extra” dressed vertex operators arising in this



approach, and the states of nontrivial ghost number arising in the former approach. Thus
in a well-defined sense, they are the same thing. Moreover, they are related to each other
by a series of “descent equations” in the double cohomology.

Thus it appears that on coupling to two-dimensional gravity, infinitely many extra
states appear in the spectrum. In the Fock-space description, these can be interpreted as
the quantized momentum states of a particle in two dimensions. It has been suggested
some time ago[22] that a spacetime description of ¢ < 1 string theory could be the origin
of certain Virasoro and W-algebra constraints arising in matrix-model and topological

approaches, and the existence of extra states seems to support this idea.

5. 5. Partition Function on a Torus

In this section we return to the Polyakov path-integral formulation, and discuss how
to evaluate Zp(A), defined in Eq.(24), for the case h = 1, corresponding to a torus|23].
The area term is modified to accommodate non-unitary matter, as discussed above.

The first thing we can do on the torus is to choose the flat reference metric, Gap = dgp.
The torus is then described by a parallelogram with sides 1 and 7, where 7 is a complex
parameter with positive imaginary part, known as the modular parameter.

In this and other calculations that we will do in the path integral, it is convenient to
separate out the Liouville zero mode ¢y and carry out this integration first[24]. In genus

1, the Liouville action does not depend on the zero mode, and this part of the functional

min « 1
J oo ([ ewip e ) =

For the remaining modes, the integration is straightforward. It decomposes into the prod-

integration reduces to

uct of three conformal field theory partition functions, for the matter, Liouville and ghost

sectors, each of which can be defined in the operator formalism as
Zopr = tr <qL°_ﬁqE°_2_c4)

The matter sector produces the minimal model partition function Zys(7,7) which can
be found in the literature. The ghost and Liouville integrations are simpler since they
involve fermionic and bosonic Fock-space oscillators respectively. It turns out that each

ghost integration produces a factor of

E %ﬁl_q ZBQW'L'T



so that combining the result from b and ¢ ghosts and their antiholomorphic counterparts
gives a factor |n(q)|*. The integration over the nonconstant modes of the Liouville field
(the oscillators) produces |n(q)|~2. In addition a few factors of 7p = Im(7) arise from the

fact that the volume of the torus is 7. One eventually finds

1 _3
24) ~ oy [ @ @ 2t 7) (32
alA
It is known[25] that the partition function for the (p,q) minimal model can be written
as the difference of the partition functions for a scalar field compactified on two different
radii:

Zoa =} (200~ v - 22 = 7))

where

Z(R) =

1
n(q)|?

Inserting this expression into Eq.(32) above and performing the 7-integration over

2 2
Zq(s/R—{—tR) /4q(s/R—tR) /4
s,t

the fundamental region, one finds the torus partition function for string theory in the
background of a (p,q) minimal model to be

(p—1)(¢g—1)

L) ~ (p+q—-1)A

where we have omitted a proportionality constant independent of p,q and A. The area-
dependence of this exact expression was of course predicted in Eq.(25). The above equation

agrees with the corresponding result coming from matrix models.

6. 6. Correlation Functions

In this section I will briefly outline an approach to the computation of correlation
functions of certain physical operators. The operators that we will consider are (integrals

of) the “dressed primaries” referred to earlier, which can be written

B5(202) = [ PEVG (€00 (33)

where the Liouville momentum kﬂfs gives the right conformal dimension to the vertex oper-
ator so that the total dimension of the dressed primary is (1,1). The label + distinguishes

the two values of k which are respectively greater or less than % One easily finds

ki =1 (“iﬁr) + (1is)ﬁ>



Technically, one should have multiplied the dressed primaries by ghost factors c(z)¢(2)
to get physical states. But the ghost factors are absorbed independently and their only
contribution is to enforce an integration of each of the operators above over the whole
surface. Thus we can more conveniently work just with the integrated primaries. We will
accordingly drop all reference to the ghost measures and action in what follows. In addition,
we will assume that there is some well-defined prescription to compute the correlation
functions in the matter theory, which is a well-studied subject in CFT. This means we
only need to concentrate on the computation of correlators of vertex operators in the
Liouville sector.

A useful approach in studying these correlation functions is to first perform the Li-
ouville zero-mode integration, as was done for the case of the torus partition function. In
the presence of the cosmological constant as well as operator insertions, this integration is
rather more nontrivial than in the preceding case, but still can be done after making some

continuation, as we will see. We have
01 [ #evs e
i=1
_ / D@¢H/ 2E\/G FEbeSr6.0)
i=1

where, as usual,

1
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Now decompose ¢(&) into a constant part and a part which has no constant mode:

B(€) = ¢o + (&)

The part gg must satisfy the condition that its integral over the whole surface vanishes.

In terms of these new independent variables we can rewrite the Liouville action:

1

SL(¢0)Q~S).@) = ]

[ #6v/3 (570,00, + QR0 + QR(G)I + e

— 50(d.9) + Qoo(1 ~ h) + Jre® [ de/G e
where
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Also the vertex operators factorise:

n

ﬁ/ d*6\/g ek b = ﬁekii"so H/ d*¢\/g eki
1=1 i =1

=1

:e(zikit)aﬁoﬁ/ dzg\/g oFEdo
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~

As a result, the Liouville path integral for correlators becomes
/ D§¢H/ d26\/§ kb ,—S1(4.9)
i=1
:/ DEJ&H/ 2e\/5 ok P o—S0(4.9) /d¢0 (02, k) =Q1=h))po —ge?0 [d6\/5 e?
i=1

Now the zero-mode integral is of the form

* = 1 A
/ dx eA* B = _ p-¢ (=)
oo C
where this answer holds if A, B, C are real and positive. For other values of these constants,
the integral is not well-defined. Accordingly, we define the Liouville zero-mode integral to
be given by the right hand side of the above equation, for all values of the constants, as a

kind of analytic continuation. This gives the prescription

R e R Y N
T

with

Q

s:—i%+9(1—h) (34)

Thus we are left with the integral over the nonconstant modes:

11 [ #eviet =2 (L) v [ pid [ Vaer' 11 [ ey eiesidn
(35)
If s, defined in Eq.(34), were a positive integer, then this functional integral would just
be a CFT correlation function for a product of vertex operators and screening charges in

a free boson theory with a background charge 7). Because of the absence of zero modes,

the momentum-conserving delta-function is absent.



Unfortunately, s is never a positive integer. Note that the quantities () and a which
enter the definition of s are fixed by the central charge and minimum dimension operator
of the matter CFT. Moreover, the k:zi are those which dress the matter CFT dimensions,
which are also determined. One can thus compute s explicitly for the case of a (p,q)

minimal model and a set of physical states of Liouville momentum k. _ and &k _,:
J J

. A N
s(paQ7 T1,81y-++5Tn,Sn; rlasla"'armasm) —

1

ptqg—1 (pri + gsi) Z pr; + qs})

=1 7j=1

L

(r+q)(2-2h—m—n)—

where 1 < r;, 7';- <g—1land1 < sy, s;- < p—1. We see that s is generically negative and
non-integer.

At this point it should be clear what the prescription will be, even though it may be
less clear how to implement it. We simply evaluate Eq.(35) for positive integer s, (which
can be thought of as continuing the matter central charge away from its physical value)
by treating the insertions of the area operator as screening charges, and performing a
standard free-field computation[26]. If it is then possible to “continue” the result beck
to negative fractional values of s, then this will be defined to be the answer. A class
of three-point correlation functions in genus zero, of the diagonal operators [ D, . (see
Eq.(33)) has been computed in this approach, in the unitary minimal series backgrounds,
corresponding to p = ¢ + 1 in Eq., The calculation in the matter sector is carried out
following the usual Feigin-Fuchs procedure[18], while the Liouville part is evaluated by
similar techniques after performing the steps described above. After a straightforward if
slightly tedious calculation, one obtains products of I'-functions which depend on s, so that
one can then restore s to its physical value. The final result is simplest after normalizing
the correlators to cancel out any overall factors in the definition of the partition function
and the physical fields:

<(I);l T1 (I);z,Tz (I);g,,r3> ZO(IU') _ 1 Ty T3
<(I);1’7,1 (I)7T1,T1><(I)7Tz,rz (I)7T2,7‘2><(I);357‘3 (I)TT?,,T3> (q + 1)(2q + 1)

(36)

The limitations in this calculation, to three-point functions, diagonal operators and
unitary models, appear to be purely technical. All of them have been overcome to some
extent in subsequent calculations.

It is worth describing briefly one refinement of the above method. Instead of treating

the area term as the only type of screening charge, one may introduce the other dimension



(1,1) Liouville vertex operator, corresponding to the other choice of sign in Eq.(22), and
allow both to be inserted in correlation functions[27]. This is again a sort of self-consistent
assumption, and increases the similarity with the computation of minimal-model correla-
tion functions in the Feigin-Fuchs approach, where also there are two kinds of screening
charges. Once the Liouville and matter sectors have been brought onto a similar footing,
it is natural also to make the continuation in central charge simultaneously in the Liouville
and matter sectors, thereby always preserving the condition that the total central charge
is 26. In this approach there is a certain computational simplification: one only needs to
consider negative integer numbers of screening charge insertions, and it is relatively easy
to give an unambiguous prescription for treating these values.

In addition to this simplification, there is a surprising and rather important result in
this approach (this was also independently observed in Ref.[28]) - dressed primaries with
indices (7, s) outside the “minimal table” (i.e., not satisfying 1 <r <g—1,1<s<p-—1)
give nonzero correlators. This is at variance with the fact that such states in the minimal
model sector alone give vanishing correlators, which is the reason why minimal models
have finite numbers of primary fields. The point is that on analytically continuing away
from physical values of the parameters, both matter and Liouville sectors give generically
nonzero contributions. For the special case of states outside the minimal table, the matter
contribution vanishes linearly in some parameter as we return to physical values, but
the Liouville part acquires a simple pole in the same parameter, so that the product
remains finite. Thus, this heuristic prescription appears to give a nontrivial new piece of
information about minimal models coupled to gravity: there are infinitely many physical
states of the form of “dressed primaries”. In fact, as we have seen in a previous section,
these extra states appear naturally if one formulates the physical state problem as a double
cohomology. The above results are also in agreement with matrix models, which is one
more reason to take them seriously.

The genus-zero three-point function obtained in this approach, which generalizes
Eq.(36)above to the case of operators which are not necessarily diagonal and need not

lie in the minimal table, is

- - - 2
<@1"’1 , 1 @ré,r2 @Té,"’3> ZO(/'I’) _ (r’l _ rlp) (ré _ r2p) (ré . r3p)
(o B i (B B B B ) (1= p)p(1+p)

Here the minimal model is still in the unitary series, with p = ¢+1, and we have introduced

— atl

the parameter p 7



Finally, one can generalize to the case of non-unitary (p,q) models. Here one en-
counters the fact, noted above, that the cosmological constant operator contains not the
identity field in the matter sector but the operator of lowest conformal dimension. This
introduces a severe technical difficulty in doing the computation as above. Recently it
has been suggested[29] that one can make an ansatz according to which screening in the
Liouville sector is done by the dressed identity field, as in the unitary theories, with the dif-
ference that this time one cannot interpret this to be be the cosmological term. Again, this
appears to be a kind of self-consistent approach. Fixing the coefficient of the new screen-
ing operators to be an appropriate power of the cosmological constant u, one obtains a
genus-zero three-point function which reduces to the correct result in the unitary case (by
construction), but also gives the right answer when compared with tree-level correlators

in the multicritical one-matrix model. In this case the result is
— - — 2
(@0 s Py By Z0(10) _2(rhp = r1g)(rhp — raq) (rhp — 7309)

SN SERDIC VN AP L VRN vy (@+p)g+p+1)

This generalizes the two preceding results.

Some higher-point functions have also been calculated in the unitary case[30]. It is
clear, however, that the continuum formulation of non-critical string theory gives very
limited information after a lot of work, perhaps a disappointing conclusion if one believes

that the continuum approach is the most basic one in string theory.
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