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An Introdution To Continuum Non-Critial Strings
Sunil MukhiTata Institute of Fundamental ResearhHomi Bhabha Rd, Mumbai 400 005, IndiaAbstratString theory with  � 1 matter is desribed in the path-integral, onformal-gaugeapproah. It is shown how to obtain the gravitational saling dimensions and string sus-eptibility in this framework. This is followed by a disussion of the operator quantizationof the theory, the nature of Liouville theory Fok spae, the spetrum of physial states inthe BRS framework, and the existene of extra physial states of nontrivial ghost number.Finally, I return to the path-integral to disuss the partition funtion on the torus and thetree-level orrelation funtions.

1. 1. IntrodutionIn 1981, Polyakov[1℄ wrote down a path integral formalism for bosoni string theory,in whih the ation depends on a two-dimensional metri in addition to the oordinatesof the string, and both sets of �elds are quantized independently. He observed that thesymmetries of the ation (reparametrization invariane on the world sheet, and invarianeunder Weyl resalings) are suh as to permit the elimination of all the loal degrees offreedom ontained in the two-dimensional metri, so long as these symmetries an bemaintained upon quantization.* Based on a series of letures given at the Summer Workshop in High Energy Physis andCosmology, ICTP, Trieste, in July 1991.



Unfortunately, the Weyl symmetry is generially anomalous in quantization shemeswhih preserve reparametrization invariane. This means that in general, one of the threemodes of the metri, whih by onvention an be hosen to be the sale fator, annotbe gauged away and needs to be quantized. Polyakov observed that the ation for thismode of the metri takes the form of a two-dimensional �eld theory of a single salar �eldwith an exponential (Liouville) interation. The oeÆient of this term is proportionalto D � 26, so that it drops out when the number of spaetime dimensions is 26. In thisritial dimension, the anomaly in the Weyl symmetry anels and the Liouville-like modedeouples, leading to a straightforward quantization of the theory. In dimensions D < 26,for whih the string theory is said to be non-ritial, the anomaly fores us to quantizethe Liouville theory along with the matter onformal �eld theory of D free bosoni �elds.This simple observation lies at the heart of the ontinuum approah to non-ritial stringtheory.The diÆulty in quantizing the Liouville mode led to somewhat limited progress in this�eld over the next few years. Indeed, in a ertain sense this diÆulty persists to the presentday. In what follows I will disuss the simplest, although possibly least rigorous, approahto the quantization of the nonritial Polyakov string. This disussion, like muh of thework that followed it, is based on a sort of self-onsistent approah, in whih numerialvalues of ritial exponents, and ultimately even orrelation funtions, are determinedfrom suh things as saling arguments and free-�eld representations, rather than expliitresolution of the Liouville theory. Sine the intent of this artile is primarily pedagogial,I will refrain from disussing alternate approahes where a single one suÆes to displaythe main results.A powerful approah to non-ritial string theory, in terms of random-matrix models[2℄has been very suessful in providing results to all orders in string perturbation theory. Inwhat follows, we will oasionally note the orrespondene between the ontinuum resultsand those oming from matrix models.The �rst part of this artile will deal with the funtional integral approah (in on-formal gauge), in whih ritial exponents may be derived. The seond part deals withthe operator quantization a la BRS, whih is the most logial and omplete framework inwhih to obtain the spetrum of physial states. Finally, I disuss the partition funtion onthe torus, and the e�orts that have been made to extrat at least the tree-level orrelationfuntions in this approah, for whih the path-integral will again prove to be a onvenientstarting point.



2. 2. The Polyakov Path IntegralConsider a string propagating in a at, Eulideanized D-dimensional spaetime. Theoordinates of the string are parametrized by maps X�(�1; �2) from a two-dimensionalsurfae to spaetime. Let the surfae be ompat and of genus h, and denote the metrion this surfae by gab(�1; �2). The basi objet of relevane in the �rst-quantized approahto string theory is the path integral[1℄
Zh = Z DggDgXvol (Di�) e�SM�S (1)

where SM = 18� Z d2�pggab �aX��bX�
S = �02� Z d2�pg (2)

The �rst term is the \matter" ation, desribing D free salar �elds oupled to two-dimensional gravity, while the seond is a osmologial term in the two-dimensional sense,whose oeÆient is an arbitrary parameter, the bare osmologial onstant. The rationalefor this ation is that the �rst term alone, on elimination of the metri via its equationsof motion, gives rise (lassially) to the famous \area law" ation of Nambu and Goto,analogous to the lassial ation for a free relativisti salar partile, whih is proportionalto the invariant length of its trajetory. The seond term is inluded to aommodatepossible renormalization e�ets. The measures are formally divided by the volume of thedi�eomorphism group, whih should anel out after gauge �xing.On a surfae with two diss removed, Zh represents the amplitude, in order h, fora free string to propagate from one of the boundaries to the other. We will, however,generally hoose the surfae to be ompat and without boundary. Sattering amplitudesof string states will then arise as orrelation funtions of physial operators, whih an bestudied in this formalism one the spetrum has been understood.To examine Eq.(1) in more detail, it is neessary to give a meaning to the pathintegration measures. This done by �rst de�ning a reparametrization-invariant norm onin�nitesimal variations of the �elds appearing in the path integral, and then de�ning thefuntional integration over the squared norm. The norms are given by
kÆXk2g � Z d2�pg ÆX�ÆX�
kÆgk2g � Z d2�pggabgbd ÆgabÆgd (3)



They arry the subsript g beause they are metri-dependent. The funtional measure isnow de�ned impliitly via Z Dg(ÆX) e�kÆXk2g = 1Z Dg(Æg) e�kÆgk2g = 1 (4)
Beause of the manifest di�eomorphism invariane of the measures, we an be surethat they will desend to measures on the spae of metris and oordinates modulo di�eo-morphisms, so that the volume fator in the denominator will indeed anel out.Now let us examine the behaviour under the Weyl resalings

gab(�)! e�(�)gab(�) (5)
Clearly the matter ation SM is invariant, although the osmologial term S is not. Asfor the measure, it is not invariant either, as is lear from the de�nitions Eqs.(3),(4)above.The hoies for the norms above were ditated by reparametrization invariane, whih isevidently inompatible with Weyl invariane.The Weyl transformation of the bosoni oordinate measure is omputable by a varietyof methods (see for example Ref.[3℄). One �nds

De�g X = e(D=48�)S0L(�;g)DgX (6)
where the prefator appearing is the exponential of a loal ation for the sale mode �(�)oupled to the two-dimensional metri:

S0L(�; g) = Z d2�pg�12gab�a��b� +R� + �e�� (7)
Here, � is an arbitrary onstant, whih has the e�et of renormalising the bare osmologialonstant �0. The relative oeÆients of the �rst two terms are, however, not arbitrary.Although we will not derive Eqs. ; (8)h (9)ere, it is instrutive to hek the relative oeÆient of the �rst two terms in the aboveexpression. Performing two suessive Weyl transformations on the metri, with fators�(�) and �0(�), we have on the one hand

De�+�0gX = e D48� S0L(�+�0;g)DgX (10)



and on the other handDe�+�0gX = e(D=48�)S0L(�;e�0g) De�0gX= e(D=48�)[S0L(�;e�0g)+S0L(�0;g)℄ DgX (11)
This gives the linear relation

S0L(� + �0; g) = S0L(�; e�0g) + S0L(�0; g)Supposing that � = 0, the above relation is equivalent toZ d2�pg �gab�a� �b�0 +R(g)� � e�0R(e�0g)�� = 0
whih is true beause of the Weyl-transformation law for the Rii salar:

R�e�0g� = e��0 �R(g)� gabDa�b�0�This shows that the relative oeÆient of the �rst two terms is not arbitrary, and also thatthe form of S0L (exept the osmologial term, whih is arbitrary anyway) is onsistentwith the required property.It is appropriate to make one more omment about the Weyl anomaly here. It hasbeen argued[4℄ that for any lassially Weyl-invariant, reparametrization invariant theoryin two-dimensions, one an ompute the Weyl anomaly as follows. At the lassial level,the stress-energy tensor Tab will be onserved, by virtue of reparametrization invariane,and traeless, beause of Weyl invariane. This implies that the omponent Tzz in asystem of omplex oordinates is analyti, from whih the deep and elegant struture oftwo-dimensional onformal �eld theory an be worked out. In partiular, onformal �eldtheories are haraterized by the value of the \entral harge" in the ommutation relationsof two stress-energy tensors. Now in a urved bakground metri, traelessness is violatedat the quantum level by a term proportional to the salar urvature R(�) (whih is oneway of seeing the Weyl anomaly), whih implies that analytiity of Tzz is also violated bya similar term. One an then show that the oeÆient of the Weyl anomaly is proportionalto the entral harge of the orresponding at-spae onformal �eld theory.Sine we will not go into the details here, it is suÆient to write down the result: anyonformal �eld theory of entral harge , when oupled to gravity, has a Weyl anomalygiven by e(=48�)S0L(�;g) (12)



where S0L is the Liouville ation written in Eq.(9). This provides the most pratial wayto determine Weyl anomalies in funtional integrals. In the ase of D free bosons, forexample, one obtains Eq.(8)by noting that eah free boson has a entral harge  = 1.Armed with the above results, we now proeed to study the full theory of D two-dimensional bosons oupled to gravity. We have seen that the entire theory (ation as wellas measure) is invariant under reparametrizations, whih vary the metri as follows:
Ægab = garV b + gbrV a � gabrV  (13)

where V a(�) is the in�nitesimal vetor �eld whih de�nes the reparametrization Æ�a = V aof the oordinates.We now pik a gauge in order to �x these degrees of freedom. A onvenient hoieis the onformal gauge, whih amounts to �xing the metri to be onformal to some �xedreferene metri: gab(�) = e�(0)(�)ĝab(�)The referene metri is labelled by a set of omplex parameters desribed for the sakeof brevity by � in the above. These parameters desribe the moduli spae of the hosenRiemann surfae, whih is the spae of onformally inequivalent metris on this surfae.Next we must replae the integration measure over all metris by the measure overthe sale fator �(0)(�), the measure over reparametrizations (the in�nitesimal vetor �eldsV a) and the measure on moduli spae. The replaement will involve the Jaobian of thetransformation in Eq.(13)above. We will assume that the referene metri is just theidentity Æab in the neighbourhood of some hosen point, in whih situation it is onvenientto go to a system of omplex oordinates z = �1 + i�2, �z = �1 � i�2. near that point. Inthese oordinates, the omponents of the referene metri, and hene the full metri (fromthe above equation), satisfy gzz = g�z�z = 0.Making an in�nitesimal hange of oordinates near the hosen point, one easily �ndsthat the Jaobian J between variations of the omponents gzz; g�z�z and the vetor �eld V zis J = det �rzr�z�
where the di�erential operators inside the determinant are just the ovariant derivativeson vetor �elds. Then we an anel out the formal expression \vol(Di�)" and exponen-tiate the Jaobian determinant in the standard Faddeev-Popov proedure. Beause theoperators inside the determinant at on vetor �elds (whih an be thought of as having



onformal spin �1, by virtue of their single holomorphi upper index), we must introdueantiommuting ghost �elds z of spin j = �1, and onjugate antighost �elds bzz of spin1 � j = 2, as well as their antiholomorphi ounterparts. The ation for these �elds inonformal gauge will be Sgh � Z d2z (bzzrzz + :)One an now rewrite this in a general oordinate system and general metri bakground:
Sgh(b; ; g) = 14� Z d2�pg �bab �rbga +ragb � gabr�� (14)

Evidently the ghost is a vetor �eld a, while the antighost is a traeless symmetri tensorbab. Now one an hek that the ghost ation is also Weyl invariant:
Sgh(b; ; e�g) = Sgh(b; ; g)

but the measures de�ned through the norm
kÆbk2g = Z d2�pg �gagbd + gadgb � gabgd� ÆbabÆbdkÆk2g = Z d2�pggab ÆaÆb

are not. In fat, one �nds that
De�gb De�g = e�(26=48�)S0L(�;g) Dgb Dg (15)

The simplest way to derive this is to note that the system of ghosts desribed above, whenstudied as a onformal �eld theory in a at metri, has entral harge -26, so that theabove result follows from Eq.(12).Thus after gauge �xing and the introdution of ghosts, the Polyakov path integralbeomes Z = Z [d� ℄ Dg�(0) Dgb Dg DgX exp �� SM (X; g)
� Sgh(b; ; g) � �02� Z pgd2��The integration over metris has been replaed by an integral over moduli and over thesale or Liouville mode �(0), the fator \vol(Di�)" has been anelled and the ghost



terms have appeared to take are of the hange of variables between metri variationsand reparametrizations.Now the only measure that has not yet been studied is that for the Liouville mode�(0). At this point the distintion between ritial and nonritial string theory appears.We should �rst hek whether the ghost and matter setors ontain a dependene on �(0)or not. We have noted that both the ations are Weyl invariant. The measures are notinvariant, as we have seen, so the passage from a general metri to the referene metriwill produe the Liouville ation S0L(�(0); g) de�ned in Eq.(9), with oeÆient (D�26)48� asone an see by ombining the anomalous transformation laws given in Eqs.(8) and (15).Therefore if we hoose D = 26, orresponding to a string propagating in a 26-dimensionalat spaetime, the Weyl anomaly anels between ghosts and matter oordinates. In thissituation we an also set the osmologial onstant to zero, and the entire theory beomesindependent of the Liouville mode �(0). Then we must drop the integration over theLiouville mode, and what remains is the ritial string theory.If on the other hand D is not 26, then the integrand depends on the Liouville �eldthrough the loal ation S0L(�(0); g). The oeÆient will have the orret sign for a salar�eld ation if D < 26, and we on�ne ourselves to this ase. Now we must indeed addressthe question of the measure for �(0). This should be indued from the norm that we hadde�ned in Eq.(3) for variations of the full metri. It follows that
kÆ�(0)k2g = Z d2�pg (Æ�(0))2

= Z d2�pĝ e�(0)(Æ�(0))2
This displays the ruial problem whih made it diÆult to study the nonritial string inthe path integral formalism for several years. The measure for the Liouville �eld dependsin a highly nonlinear way on the Liouville �eld itself, beause of the exponential fator inthe integrand. This makes it impossible to expliitly perform this part of the funtionalintegration.What we would like to do would be to transform the entire funtional measure formatter, ghosts and the Liouville mode in the bakground of a general metri (whih hasthe nonlinearity desribed above) into a measure for some set of �elds in the bakgroundof the referene metri, in whih ase no suh nonlinearity an be present. Aordingly, wemake the ansatz[5℄ that there is suh a transformation, and try to determine everything by



self-onsisteny of the resulting theory. It is quite remarkable that suh a bold and simpleansatz will lead to unambiguous and useful results.We postulate that the Liouville �eld �(0) an be replaed by another salar �eld �, interms of whih the following equivalene holds:
Dg�(0) Dgb Dg DgX = e�SL(�;ĝ)Dĝ� Dĝb Dĝ DĝXwhere � has the simple norm (free of the exponential fator) given by

kÆ�k2̂g = Z d2�pĝ (Æ�)2:
and the prefator e�SL(�;ĝ) is some loal, renormalizable ation for the new �eld �(�). Itis lear that if this ansatz is orret, we will be able to treat the new Liouville �eld � onessentially the same footing as the string oordinates and the ghosts.We now assume that the loal ation SL(�; ĝ) has the same general form as theLiouville ation S0L(�(0); g) introdued in Eq.(9), but with arbitrary oeÆients. TheseoeÆients will then be �xed by self-onsisteny. Thus we have

SL(�; ĝ) = 18� Z d2�pĝ � 1�2 ĝab�a��b�+ Q� R(ĝ)�+ �1e��
and it remains to �x the parameters Q and �. The third oeÆient �1 multiplies the os-mologial term, hene it remains arbitrary like the osmologial onstants whih appearedearlier, and will be a free parameter of the theory.It is useful to �rst hange the normalization of the Liouville �eld by the transformation

�! ��
so that the kineti term takes the anonial form:

SL[�; ĝ℄ = 18� Z d2�pĝ �ĝab�a��b�+Q R(ĝ)�+ �1e��� (16)
Before proeeding further, it is worth ommenting that by our ansatz we have replaedthe original Liouville �eld �(0) and ation S0L(�(0); g) by a new �eld � and a new ationSL(�; ĝ), so it will be onvenient in what follows to refer to this new �eld as the Liouville�eld, and the new ation as the Liouville ation. The proess of going from �(0) to � anbe thought of as a kind of renormalization of the Liouville �eld, so that from the point ofview of physial interpretation, it is the new �eld that should be thought of as the sale



fator of the metri in the quantum theory. Sine a resaling of � was also performed atthe end, this means that gab = e��ĝab (17)although admittedly this equation has a rather heuristi meaning.Now we obtain the onditions oming from the self-onsisteny assumption. The�rst observation is that the referene metri ĝab was arbitrary. Sine all the degrees offreedom inherent in the original metri have either been divided out or aommodated inthe Liouville mode, the �nal path integral annot depend on the hoie of ĝab. The wayto see this is that a Weyl transformation on the referene metri an be ompensated bya shift in the Liouville �eld, sine the transformationsĝab(�)! e�(�)ĝab(�)�! �� ��leave the original metri unhanged, from Eq.(17). But sine the Liouville �eld is anintegration variable in the path integral, it an be shifted bak without hanging anything,so the theory as a whole is invariant under Weyl transformations of the referene metri.Of ourse, sine the osmologial onstant �1 is an arbitrary parameter, we should onlyrequire invariane upto hanges in �1, whih is most simply examined by setting �1 = 0.Thus, de�ning
Stotal(�; b; ;X; ĝ) = SL(�; ĝ) + Sgh(b; ; ĝ) + SM (X; ĝ)

and setting the total osmologial term to zero, we have the requirement
De� ĝ� De� ĝb De� ĝ De� ĝX e�Stotal(�;b;;X;e� ĝ) = Dĝ�Dĝb Dĝ DĝX e�Stotal(�;b;;X;ĝ) (18)
This equation has a simple and beautiful meaning: the ombined system of matter oordi-nates, ghosts and the Liouville �eld, has omplete Weyl invariane even inluding measurefators. One may imagine that oupling the system to two-dimensional gravity has re-stored the Weyl invariane whih was broken by the anomalies in the matter and ghostsetors. This has to happen, sine after integrating over metris there is nothing left towhih the Weyl anomaly ould be proportional!This is enough to determine the arbitrary parameter Q, as follows. In absene ofthe osmologial term, the Liouville ation Eq.(16)desribes a onformal �eld theory. The



Weyl anomaly oming from this setor will be proportional to the entral harge L of thistheory, and Eq.(18)above merely implies that the total Weyl anomaly anels out betweenstring oordinates, ghosts and the Liouville mode, i.e.
D � 26 + L = 0 (19)

Now to �nd L, we ompute the analyti stress-energy tensor by varying Eq.(16)(with�1 = 0), to get T (L)zz = �12 ��z��z�+Q�2�� (20)By expliitly omputing the operator-produt expansion for two stress-energy tensors,using Wik ontration for the free bosoni �eld, one gets
L = 1 + 3Q2

and solving Eq.(19)above we end up with
Q =r25�D3 (21)

where we hoose the positive sign of the square root by onvention.Next we determine �. The osmologial term, whih is the only term that dependson �, is �1 Z d2�pĝ e��Now the vertex operator being integrated should, in the quantum theory, be a onformalprimary �eld of dimension (1; 1) sine only in that ase does its integral over the surfaehave an invariant meaning. In the Liouville �eld theory at zero osmologial onstant,de�ned by the stress-energy tensor in Eq.(20), we an ompute onformal dimensions ofvertex operators using Wik ontrations, and one easily �nds that the dimension � isgiven in general by �(ek�) = � 12k(k �Q)Thus hoosing k = � and setting the dimension equal to 1, we �nd �(��Q)+1 = 0, fromwhih � = Q2 � 12pQ2 � 8= 12p3 �p25�D �p1�D� (22)



Later we will show that requiring the orret semi-lassial limit �xes the sign in the aboveexpression to be negative.At this point we may note that � is real for D � 1, imaginary for D � 25 and omplexin between. Of ourse, the way we have de�ned string theory, the number D is an integerdesribing the number of dimensions of the at spaetime in whih the string propagates.But we an generalize the notion of string propagation by replaing the matter ationSM for D spaetime oordinates, in Eq.(2), by an arbitrary onformal �eld theory withsome entral harge M . In that ase, although the physial interpretation of a stringpropagating in spaetime is lost, the manipulations above go through with D replaedeverywhere by M . Now it makes sense to onsider any value of M , in partiular valuesless than 1.We onlude that the region 1 < M < 25 is problemati as it leads to omplex valuesfor the exponent � in the osmologial term. Atually, we will see shortly that severalother quantities, whih have some kind of physial interpretation, will also be omplex inthe same region of M . As a result, the present quantization of the Polyakov string maybe thought of as inonsistent for these values of M .In what follows we will therefore on�ne ourselves to the region M < 1. We ould alsoonsider M = 1, whih is on the boundary of the forbidden region, but will not do so herefor reasons of spae. Many interesting phenomena our only at the spei� value M = 1,and the interested reader is urged to onsult the relevant literature on this subjet, or theexellent review by Klebanov[6℄.
3. 3. Saling and Critial ExponentsIn this setion, we show that a good deal of information an be extrated from thePolyakov path integral at M < 1 just by saling arguments[5℄. It is impressive thatthis information agrees, in the domain of overlap, with a number of sattered resultsobtained from numerial simulations on the disretized theory of random surfaes, whihis believed to beome string theory in the ontinuum limit[7℄, and also with a ontinuumapproah to two-dimensional gravity in whih a ertain SL(2; R) urrent-algebra symmetryis exploited[8℄.We start by realling the expression for the Polyakov path integral that we will bestudying: Zh(�) = Z [d� ℄h Dĝ� Dĝb Dĝ DĝX e�Stotal(�;b;;X;ĝ)



where Stotal(�; b; ;X; ĝ) = SL(�; ĝ) + Sgh(b; ; ĝ) + SM (X; ĝ)and SL(�; ĝ) = 18� Z d2�pĝ �ĝab�a��b�+QR(ĝ)�+ �e���Here, the ghost ation is the same as in Eq.(14), and we will assume in what follows thatghost zero-modes have been absorbed by appropriate insertions. For the matter setor wewill not postulate any spei� ation, but will simply assume that it desribes a onformal�eld theory of entral harge M < 1. The symbol X above is therefore just a generi namefor the �elds that may appear in suh an ation. The parameters Q and � are �xed (thelatter upto a sign) by Eqs.(21) and (22), while � is arbitrary and the dependene of thepath integral Z on it is displayed expliitly. The subsript h on Z displays the fat thatit is to be omputed eah time for a �xed genus h of the two-dimensional surfae. [d� ℄hdenotes the integration measure over the moduli spae of this surfae.We now start by examining the physial role played by � and omputing the �-dependene of Z. Suppose �rst that the Liouville �eld � takes a positive onstant value�0. Then, examining only the seond term in the Liouville ation, we �nd18�QZ d2�pĝ R(ĝ)�! Q�0� 18� Z d2�pĝR(ĝ)�= Q�0(1� h)where h is the genus of the surfae. The seond step involves the standard relation whihstates that the salar urvature integrated over a ompat two-dimensional manifold isproportional to its Euler harateristi � = 2 � 2h. Now when �0 ! 1, this termtends to �1 if the genus is greater than 1, and e�SL diverges exponentially. However,the presene of a osmologial term saves us from disaster, sine � is always positiveand exp(��e�� R d2�pĝ) tends to zero even more rapidly. Thus a (positive) osmologialonstant is needed to stabilize the ation, and we an expet singular behaviour when� ! 0. On the other hand, if the genus is 0, then the Q-term auses the integrand todiverge as �0 ! �1, and in this ase the osmologial term does not help to stabilize thetheory. So we should be partiularly areful about the genus-0 ontribution, whih mightturn out to give unphysial results in formal manipulations.We an easily extrat the �-dependene of Zh(�). Let us shift the Liouville �eld by aonstant: �! �� 1� ln�



Then, �e�� ! e��so that this shift has the e�et of setting � = 1. The measure is of ourse invariant underthis shift, and so is the kineti term, but the Q-term hanges, so the total ation hangesas follows: Stotal ! Stotal + Q8� Z d2�pĝ R(ĝ)�� 1� ln��
= S � Q� ln�(1� h)So in the path integral the hange is
e�Stotal ! e�Stotal+Q� (ln�)(1�h)= �(Q� )(1�h) e�Stotaland we onlude that for any nonzero �,
Zh(�) = �(Q� )(1�h) Zh(� = 1) (23)

This exhibits the fat that for genus h > 1, the path integral blows up for � ! 0, as wepredited above, but it also shows that the behaviour near � = 0 is singular in the sensethat there is a branh ut, even in genus 0.Reall that the osmologial term R d2�pĝexp(��) is atually the area of the surfae,R d2�pg in the original metri. Thus the osmologial onstant �, whih multiplies it, is\dual" to the area, in the same sense as the hemial potential to the number of partilesin a statistial system. Thus the expetation value of the area in a given genus is
hAi � 1Zh(�) Z Dĝ� Dĝ(X; b; )�Z d2�pĝe��� e�Stotal

= � ��� lnZh(�)= �Q� (1� h) 1�Zh(�)This is singular near � = 0 just like the partition funtion itself. But note that for positive�, the average area is positive only for h > 1, while on the sphere (h = 0) it is negative.This is a onsequene of the singular behaviour of the ation for large negative �, whihwas noted earlier.



A more physially sensible quantity is the partition funtion at �xed area. We de�nethis by inserting a delta-funtion in the path integral:
Zh(A) = Z Dĝ� Dĝ(X; b; )Æ�Z d2�pĝe�� �A� e�Stotal(�;X;b;;�=0) (24)

where now we have set � = 0, sine it e�etively multiplies a onstant and hene fatorsout of the path integral. One an also think of the �xed-area partition funtion as theLaplae transform in � of the original partition funtion.We an extrat the area-dependene again by a saling argument on the partition fun-tion. Even simpler is to extrat the dependene from Eq.(23)by dimensional arguments,noting that a formal Laplae transform will produe the resultZh(A) � K AQ� (h�1)�1� K A�(h)�3 (25)
where K is some onstant, and �(h), alled the string suseptibility, is given by

�(h) = Q� (h� 1) + 2= 112(h� 1)�25� M �p(25� M )(1� M )�+ 2
Here we have used the expressions for Q and � derived earlier.This expression an be ompared with results obtained in spei� situations via otherapproahes. In partiular, the suseptibility has been omputed in the semilassial limitM ! �1, [9℄, giving �(h)! (1� h) (M � 19)6 + 2whih determines the sign in the above expression to be the lower one, whih translatesinto the hoie of the minus sign in Eq.(22). We will nevertheless �nd it onvenient tokeep both signs in some of the expressions that follow.Finally, we an onsider the gravitational saling behaviour for non-trivial operators ofthe theory. To be systemati, we should �rst extrat the full operator ontent of the theory,but we postpone this task to the next setion. Here we simply make an ansatz for a lassof physial operators, whih will be justi�ed subsequently in the BRS formalism. Suppose	M is some primary �eld of the matter theory. We assume that gravity \dresses" this bymultiplying with a Liouville vertex operator, suh that the result is a (1,1) primary �eldof the ombined theory, whih is then integrated over the entire surfae. This assumption



is in aord with what we know about ritial string theory, where most of the physialoperators an indeed be desribed as integrated (1; 1) primaries of the matter setor. Thuswe have 	M (�)! Z d2�pĝ ekL�	Mwhere the number kL is to be determined. If 	M has onformal dimension �M , then theondition that the total dimension is 1 gives�M � 12 kL(kL �Q) = 1so that k�L = 12p3 �p25� M �p1� M + 24�M�Note that the two solutions k�L satisfy k+L + k�L = Q, so we adopt the onvention thatk�L < Q2 and k+L > Q2 . The semilassial limit again imposes a partiular hoie of sign,namely the one orresponding to k�L . We will return to this point in the subsequentanalysis.The path integral with n insertions of these physial operators, whih gives the stringtheory n-point amplitudes in genus h (without a �xed-area onstraint, but with a osmo-logial onstant) is written
hZ 	(1)M ek(1)l � : : : Z 	(n)M ek(n)L �ih;�� Z Dĝ� Dĝ(X; b; ) Z 	(1)M ek(1)l � : : : Z 	(n)M ek(n)L � e�Stotal(�;b;;X)

We an again examine when the potential is stable. A similar analysis as was arried outfor the vauum amplitude tells us that ifX ki �Q(1� h) > 0the osmologial term again sueeds in stabilizing the theory. If this ondition is notsatis�ed then again we must onstrain the area to get a sensible result.Let us de�ne the \gravitational saling dimension" of the physial operator by exam-ining the area-dependene of the normalized one-point funtions of this operator at �xedarea. De�nehZ 	MekL�iA
� 1Zh(A) Z Dĝ� Dĝ(X; b; ) Z 	MekL�Æ�Z d2�pĝe�� � A� e�Stotal(�;b;;X;�=0)



The e�et of dividing out by the vauum amplitude is to remove the genus-dependeneof this expression when we examine the saling with area. Thus we will get a salingbehaviour whih desribes a purely loal property of the physial operator. Using thenow-familiar proedure of shifting the Liouville �eld by a onstant, one an extrat theresult hZ 	MekL�iA � K A1�Æ
with Æ� = 1� k�L�= p1� M + 24�M �p1� Mp25� M �p1� MThis equation also agrees perfetly with the result derived in Ref.[8℄ in the SL(2; R) ap-proah.Let us note at this point that the various formulae derived above for the suseptibilityand for various saling exponents are not quite orret for a general matter onformal�eld theory bakground. In the ase when this bakground is a non-unitary theory, ertainmodi�ations are required. The reason for this is that we had made an impliit assumptionthat the osmologial term is a pure Liouville vertex operator, whih an be thought of asthe \dressed" identity �eld of the matter theory. In a unitary matter theory, the identity isthe operator of minimum onformal dimension, but if the matter theory is non-unitary thenit will generally have operators of negative saling dimension. The dominant perturbationof the theory will then be by the dressed version of the operator among these whosedimension is most negative. Let us all this operator 	(min)M , and denote its dimensionby �(min). It is the dressed version of this operator whih we will de�ne as the areaoperator for non-unitary matter theories, and whih will appear in the ation multipliedby the osmologial onstant. This physially motivated assumption is supported by otheralulations in di�erent approahes.Thus the osmologial term in the ation is replaed byZ d2�pĝ 	(min)M e��



so that repeating the earlier arguments leads to
� = 2(h� 1)p25� Mp25� M �p1� M + 24�min� = 12 = p3 �p25� �p1� + 24�(min)�
Æ� = 1� k�L�= p1� M + 24�M �p1� M + 24�(min)p25� M �p1� M + 24�(min)

(26)

In partiular, the matter CFT, for M < 1, is most naturally hosen to be a memberof the minimal series obtained by Belavin, Polyakov and Zamolodhikov, for whih thepossible values are M = 1� 6(p� q)2pqThe spetrum of onformal dimensions of primary �elds in these theories is given by theKa formula �rs = (ps� qr)2 � (p� q)24pq (27)from whih one obtains the most negative dimension
�(min) = 1� (p� q)24pqInserting these in the expressions Eq.(26)one �nds
�(h) = 2h(p+ q)� 2p+ q � 1� = 1p2 p+ q � 1ppqÆ(r;s) = jps� qrj � 1p+ q � 1This ompletes the formulation of the nonritial string as a path integral. We haveextrated various saling dimensions by formal manipulations on this path integral, withoutatually trying to evaluate it expliitly. In the next setion, we will hange over to theoperator formalism for this theory and desribe the physial states and operators of thetheory.



4. 4. Spetrum of Physial StatesWe now turn to the operator formalism for the ombined theory of minimal onformalmatter, the Liouville �eld and ghosts, whih was formulated above in the funtional integrallanguage.From the above disussion, we onlude that the matter setor is desribed by aminimal onformal �eld theory with some analyti stress-energy tensor TM (z) with entralharge and onformal dimensions given by Eqs.�and (27). The Liouville theory, at zeroosmologial onstant, is desribed by the onformal �eld theory of a single free boson �eld� with stress-energy tensor and entral harge
TL(�) = �12(��L��L +Q�2�L)L = 26� M = 1 + 3Q2

Vertex operators exp(kL�) in this theory have onformal dimensions
�L = �12 kL(kL �Q)

These vertex operators reate Liouville momentum states from the vauum by
jkLi =: ekL� : (0)j0i

Deomposing the Liouville �eld into its osillator modes via
��(z) = Xn�ZZ �(L)n z�n�1

we �nd that the momentum states are eigenstates of �(L)0 :
�(L)0 jkLi = �ikLjkLiand the onformal dimension (L0-eigenvalue) of these states is�kL = � 12kL(kL �Q)

Thus for eah dimension, there are two possible momenta, a fat whih we have enounteredearlier. Beause of the bakground harge (Q-term) in the Liouville stress-energy, the innerprodut between momentum states is given by
hkLjk0Li = Æ(kL + k0L �Q) (28)



Finally, the ghosts are desribed by a CFT of antiommuting �elds (b; ) of spins(2;�1) respetively, with a stress-energy tensor Tgh and entral harge gh = �26. Wedeompose the ghost �elds into their modes by
(z) = Xn�ZZ nz1�nb(z) = Xn�ZZ bnz�n�2

Denoting by j0i the SL(2; C)-invariant ghost vauum, we �nd that it must be annihilatedby a semi-in�nite subset of ghost modes as follows:
mj0i = 0; m � 2bmj0i = 0; m � �1

As a onsequene, the true ghost vauum has L0-eigenvalue -1, and is given by 1j0 >.We should keep in mind that from the outset, the Liouville mode and the ghosts aredesribed by the bosoni and fermioni Fok spaes desribed above, but the matter theoryan be desribed ompletely by its irreduible module under the Virasoro algebra, as inRef.[10℄.Thus the full Hilbert spae of the theory may be denoted
H = HL 
HM 
Hgh

whih is the tensor produt of the individual Liouville, matter and ghost Hilbert spaes.To onstrut the physial states, we will follow the BRS proedure. De�ne the operator
QBRS = I : (z) (TM (z) + TL(z)) + 12 I : (z)Tgh(z) : + antiholomorphi part

= Xn�ZZ �n �L(M)n + L(L)n �� 12 Xm;n�ZZ(m� n) : �m�nbm+n : + : (29)
where L(L)n = 12 +1Xm=�1 : �(L)n�m�(L)m : + iQ2 (n+ 1)�(L)n

One an hek by expliit alulation that the BRS harge QBRS is nilpotent:Q2BRS = 0. Now in this framework, the physial states of the theory are de�ned as



the ohomology of this operator on the full Hilbert spae. This is the spae of states an-nihilated by the operator (the kernel) modulo those reated by the ation of the operatoron other states (the image). One an write this as
fj�i : QBRSj�i = 0=j�i � j�i+QBRSj�igThus, physial states are annihilated by QBRS and are not produed by ating with QBRSon anything else. States not satisfying both these onditions are not in the spetrum: theyan be lassi�ed into two types, those whih are not annihilated by QBRS (whih we willrefer to as \unphysial") and those whih are produed by ating with QBRS on someother state (whih we will refer to as \pure gauge").Although QBRS is atually the sum of holomorphi and antiholomorphi omponents,it turns out that one an extrat the full ohomology from the ohmology of the purelyhiral BRS operator, orresponding to the �rst, or holomorphi, term in Eq.(29). Hene inwhat follows we will study only the hiral ohomology, and we will use the notation QBRSto mean only the holomorphi part.Classifying physial states amounts to �nding this ohomology. Before starting toexamine this problem, let us note the following. The antiommutator of QBRS with theb-ghost zero mode b0 is �QBRS; b0	 = Ltot0 � L(M)0 + L(L)0 + L(G)0Suppose we have a state j�i suh that QBRSj�i = 0, and Ltot0 j�i = �j�i with � 6= 0.Then one an immediately show that j�i is a pure gauge state:

QBRS b0j�i+ b0 QBRSj�i = �j�i
implies j�i = QBRS� 1� b0j�i�Thus, we an restrit to states with Ltot0 j�i = 0 in studying the ohomology.Next, let us onsider an arbitrary state in the ohomology and expand it in 0:j�i = j�1i+ 0j�2iSine j�i is annihilated by QBRS we have

QBRSj�1i+QBRS(0j�2i) = 0



Now let us similarly deompose QBRS in terms of its 0 ontent:QBRS = 0Ltot0 + ~QBRSSine we have already deided that Ltot0 must annihilate j�i, we �nd~QBRSj�1i+ ~QBRS0j�2i = 0
from whih we �nd the two equations~QBRSj�1i+ �j�2i = 0~QBRSj�2i = 0 (30)
To derive this, we have ommuted ~QBRS through 0 and used the relation

fQBRS; 0g = f ~QBRS; 0g = � � 1Xn=1n�nnwhih de�nes the operator �. The two equations then follow from separately equatingto zero the terms proportional to and independent of 0. One an rewrite Eq.(30)afterdropping the tilde on QBRS, sine again the extra term is just proportional to Ltot0 whihannihilates the states. Thus, the omponents of j�i separately satisfyQBRSj�1i+ �j�2i = 0QBRSj�2i = 0In a similar fashion, one an examine the ondition for j�i to be a pure gauge state, interms of its omponents, and one �ndsj�1i = QBRSj�1i � �j�2ij�2i = QBRSj�2iWe see that in some sense the role of 0 is to ause a \doubling" of all the onsidera-tions involved in studying the ohmology of QBRS. Thus it makes sense to restrit one'sattention to states j�i whih have j�2i = 0, whih is the same as hoosing the subspae
fj�i : b0j�i = 0g

We will impose this ondition on the Hilbert spae in what follows. The ohomology ofQBRS within this subspae is known as the \relative ohomology".



Now that we have established all the neessary notation to study the BRS ohomologyof nonritial string theory, we an proeed with the analysis. The �rst step is to analysethe Liouville Fok spae, whose unusual properties turn out to be responsible for the speialharateristis of nonritial string theory.In CFT we often hear the statement that all states in the Hilbert spae are eitherprimary or seondary. If they are both, we all them null vetors sine they are orthogonalto both primaries and seondaries. In the Liouville Fok spae this property does not hold.Let us start with an example. Consider the two states �(L)�1 jkL = 0i, �(L)�1 jkL = Qi. Thesehave the same L0 eigenvalue. Now let us ask if these are primary or seondary. It is asimple exerise to hek that the �rst state is not primary (sine it is not annihilated by L1)but it is also not seondary (it annot be reated by L�1, sine this operator annihilatesthe vauum). On the other hand, the seond state is primary, sine it is annihilated byL1, and also seondary, sine it is reated by L�1 from the state jkL = Qi. It is onvenientto divide the Liouville Fok spae HL into two omponents: the setor with momentakL < Q2 , whih we all HL�, and the one with momenta kL > Q2 , whih we all HL+.Then the two states above are respetively in HL� and HL+. This simple example is aspeial ase of the following result:Theorem:(i) States in HL+ are either primary or seondary or both.(ii) States in HL� are either primary or seondary or neither.We will examine this theorem below. More details, inluding the proof, an be foundin Refs.[11℄,[12℄,[13℄. One important point to note is that if we look �rst at the Vermamodule for the Liouville theory, then the projetion from this to the Fok module has thefollowing property: in HL+, null states in the Verma module desend to non-vanishingstates in the Fok module. Thus the projetion to the Fok module is bijetive. In HL�,on the other hand, there are no null states in the Fok module, so the projetion losesthese null states (they vanish in the Fok spae). At the same time, there are non-primary,non-seondary states in the Fok module, whih annot ome from the Verma module, sothat the projetion in this setor is neither one-to-one nor onto. In fat, these results arethe ingredients whih go into the proof of the above theorem.Let us parametrise the matter and Liouville entral harges as follows:
M = 13� 6t � 6tL = 13 + 6t + 6t



Then the ase of interest to us, M < 1, orresponds to t > 0. Now the Ka formula tellsus that a primary state in the Liouville theory of onformal dimension
�L = (1� rs)2 � (r2 � 1)4 1t � (s2 � 1)4 t

has a null vetor at level rs above it. Suppose we look at Liouville momentum states ofthis dimension: �12kL(kL �Q) = �LThen we get two null vetors in Fok spae, one over k+L > Q=2, the other over k�L < Q=2.Now the �rst step is to prove that the projetion from the Verma module to Fok spaeis bijetive in HL+, while in HL� it has a kernel orresponding to all the null vetors.This an be proved from a detailed onstrution of the null states in the Verma module,although we will not enter into those details here.We an now see how this result implies the theorem above, by a state-ounting ar-gument. The Verma module has states above a primary of given dimension �, givenby L(L)�p1L(L)�p2 � � �L(L)�pn j�i:Similarly, the Fok module has states above a primary of given momentum kL, given by
�(L)�p1�(L)�p2 � � ��(L)�pn jki:The number of states at a given level is the same in both, sine it is given by the numberof partitions of the level. However, the Verma module may have states whih vanish onredution to the Fok spae HL� (whih is possible only if they are both primary andseondary, i.e. null). In that ase, a new state must appear in the Fok spae, whih doesnot ome from the Verma module. But one an also predit the existene of suh a statefrom the fat that the Fok spae is manifestly positive de�nite, and it has states in HL+whih are both primary and seondary. This means that there must be states in the dualspae HL� with whih the original state has a nonzero inner produt, in the norm induedby Eq.(28). Thus these new states in HL� must be neither primary nor seondary.Now we an begin to lassify physial states. The �rst thing to note is that all statesin the full Hilbert spae H whih are of the form
jprimaryiL;M 
 1j0igh



are neessarily in the relative ohomology. Here we have simply taken an arbitrary primaryof the matter-Liouville system of dimension 1, so that after adding the dimension of the trueghost vauum, one �nds total onformal dimension 0 as required. The proof of this result isstraightforward: it is easy to hek that suh states are always annihilated by QBRS, andone an then show that there is no state on whih the ation of QBRS produes this state.This result is analogous to a well-known result in ritial string theory. Thus, lassifyingthe (1; 1) primaries of the matter-Liouville system will produe a lass of physial states,although as we will see shortly, these are by no means all or even most of the physialstates in the theory.It has been shown, in Ref.[14℄, that given the tensor produt of two onformal �eldtheories with total entral harge 26, a dimension (1; 1) primary of the ombined theorymust be a primary of eah theory separately. However, a ruial ingredient in this proofis the assumption that all states in eah CFT are either primary or seondary. If we nowseek to apply this result to the Liouville-matter system, then this assumption holds only inthe setor HL+, as we have just seen. Thus in this setor, a (1; 1) primary of the ombinedmatter- Liouville setor must be a primary of both matter and Liouville setors separately.Moreover, our analysis above also implies that a (non-null) primary of Liouville in HL+an only be a pure momentum state, sine a new primary in the Fok module above amomentum state would mean that the projetion from the Verma module is not onto. Asa result, all states of the form
jprimaryiM 
 jk+L iL 
 1j0igh (31)

are in the relative ohomology. One an hek that they are in the absolute ohomologyas well. It is important to note that the lengthy disussion above was neessary to derivethis �rst simple result, as otherwise we ould not rule out two kinds of states: those whihare primary in the ombined matter-Liouville theory but not primary in one or the other,and those whih are primary in both setors but not pure vertex operator states in theLiouville setor. Moreover, all this holds only in the setor HL+ so far, but we may nownote that replaing k+L by k�L in the above expression produes a state in HL� whih isstill annihilated by QBRS, and whih has nonzero inner produt with the above state.This means that all states of the form of Eq.(31)with k+L replaed by k�L are also physialaording to the BRS de�nition.At this point we have disovered preisely the \dressed" matter primaries whih wereintrodued as an ansatz in the previous setion on funtional integral tehniques. We noted



earlier that the semi-lassial limit suggests a restrition to k�L only, but we worked withboth values of kL preisely beause the BRS proedure �nds both of them to give physialstates. A physial distintion between operators dressed by k+L and k�L is desribed inRef.[15℄.The �nal result seems intuitively appealing: a matter CFT oupled to gravity has aset of physial states in one-to-one orrespondene with the original matter primaries, andthey an be thought of as having been dressed by gravitational interations.Unfortunately, this intuitive result is misleading. We have only examined a speiallass of physial states, those of the form of Eq.(31)and their ounterparts inHL�. All thesestates are built on the true ghost vauum, 1j0igh. But the ohomology analysis shouldbe performed on all possible states, inluding in partiular, states with ghost exitations(exluding of ourse 0, sine we are studying the relative ohomology).The simplest indiation that there are physial states in setors of nontrivial ghostnumber with respet to the true ghost vauum is the following. Let us assign ghost number+1 to the -ghost, -1 to the b-antighost, and 0 to the true ghost vauum 1j0igh. Nowonsider the state j0iM 
 j0iL 
 j0ighorresponding to the SL(2; C) invariant vauum state. In our onventions this has ghostnumber -1, and it is easily veri�ed that it is a physial state. Of ourse, an analogous stateexists in the ritial string, and seems to play no essential role there, so one ould dismissthis example as not being very important. This might have been a reasonable point ofview, but for the following theorem, due to Lian and Zukerman[16℄:Theorem:(i) For M < 1 minimal models oupled to gravity, there are in�nitely many states in therelative ohomology of QBRS at every positive and negative ghost number. Theseour in the following situation. Consider the Hilbert spae above a matter primarystate j rsiM and a Liouville momentum state jkLiL. If the onformal dimensionassoiated to kL is suh that it ould \dress" the null vetor at level rs above thematter primary, then this setor of the Hilbert spae ontains a physial state ofghost number �1. The sign of the ghost number is positive or negative depending onwhether the Liouville momentum is in HL+ or HL�.The meaning of \dressing" in this ontext is that the sum of dimensions is 1. Thusthe statement of the ondition is that if kL satis�es�rs + rs� 12kL(kL �Q) = 1



then there will be a physial state in the Hilbert spae.Now we know that in minimal models, there are two basi null vetors above a givenprimary, but these null vetors in turn have other null vetors above themselves and so on.Consider one suh null vetor in this hain, whih is at a \distane" d from the originalprimary in this sense (the ase of the basi null vetors onsidered above orresponded tod = 1). In this ase we have:(ii) If the onformal dimension assoiated to the Liouville momentum kL is suh as to dressa null vetor at distane d in the hain above the matter primary, there is a physialstate at ghost number �d, where the sign of the ghost number is again determined bythe setor in whih kL lies, as above.Sine there are in�nitely many null vetors above eah primary of a minimal model,the theorem implies that nonritial string theory has in�nitely many physial states, with�nitely many at eah value of the ghost number. The dressed matter primaries are onlya small subset of these, whih are the easiest to onstrut. An expliit onstrution ofthe physial states at ghost number �1 is also known[13℄, and involves a new BRS-likeoperator whih interpolates between the positive and negative Liouville Fok spaes.The physial meaning of the extra states at nonzero ghost number has been lari�edto a ertain extent by some reent developments, whih we mention here in brief. In a Fokspae desription of minimal CFT models[17℄,[18℄,[19℄ it is useful to introdue a nilpotentBRS-like operator, whih we will all QF , whih projets out a very restrited set of Fok-spae states orresponding to the irreduible modules. It is this operator whih ultimatelyenfores the restrition to �nitely many primary �elds. Vertex operators with momentaoutside a ertain �nite set turn out not to be in the ohmology of QF . Now, ombining thisFok-spae theory with the Liouville Fok spae, one gets a rather symmetri version inwhih the matter and Liouville setors appear as two spae(-time) dimensions. However,one has to restrit to the ohomology of two di�erent BRS-like operators, QF (whih isbuilt in to the desription of the minimal model) and QB (whih arises beause of thegauge-�xing of two-dimensional gravity).The extra states of nontrivial ghost number were studied in this formalism in[20℄and [21℄. The approah we desribed above learly orresponds to passing �rst to theohomology of QF and then to that of QB. Suppose, however, that we were to do it theother way. In this ase, it turns out that the physial states are all the dressed vertexoperators, inluding those with momenta outside the \minimal table". Moreover, onean make a orrespondene between the \extra" dressed vertex operators arising in this



approah, and the states of nontrivial ghost number arising in the former approah. Thusin a well-de�ned sense, they are the same thing. Moreover, they are related to eah otherby a series of \desent equations" in the double ohomology.Thus it appears that on oupling to two-dimensional gravity, in�nitely many extrastates appear in the spetrum. In the Fok-spae desription, these an be interpreted asthe quantized momentum states of a partile in two dimensions. It has been suggestedsome time ago[22℄ that a spaetime desription of  < 1 string theory ould be the originof ertain Virasoro and W-algebra onstraints arising in matrix-model and topologialapproahes, and the existene of extra states seems to support this idea.
5. 5. Partition Funtion on a TorusIn this setion we return to the Polyakov path-integral formulation, and disuss howto evaluate Zh(A), de�ned in Eq.(24), for the ase h = 1, orresponding to a torus[23℄.The area term is modi�ed to aommodate non-unitary matter, as disussed above.The �rst thing we an do on the torus is to hoose the at referene metri, ĝab = Æab.The torus is then desribed by a parallelogram with sides 1 and � , where � is a omplexparameter with positive imaginary part, known as the modular parameter.In this and other alulations that we will do in the path integral, it is onvenient toseparate out the Liouville zero mode �0 and arry out this integration �rst[24℄. In genus1, the Liouville ation does not depend on the zero mode, and this part of the funtionalintegration redues to Z d�0Æ�Z d2� 	(min)M e�� �A� = 1j�jAFor the remaining modes, the integration is straightforward. It deomposes into the prod-ut of three onformal �eld theory partition funtions, for the matter, Liouville and ghostsetors, eah of whih an be de�ned in the operator formalism asZCFT � tr�qL0� 24 �q �L0� 24�

The matter setor produes the minimal model partition funtion ZM (�; �� ) whih anbe found in the literature. The ghost and Liouville integrations are simpler sine theyinvolve fermioni and bosoni Fok-spae osillators respetively. It turns out that eahghost integration produes a fator of
�(q) � q 124 1Yn=1(1� qn); q � e2�i�



so that ombining the result from b and  ghosts and their antiholomorphi ounterpartsgives a fator j�(q)j4. The integration over the nononstant modes of the Liouville �eld(the osillators) produes j�(q)j�2. In addition a few fators of �2 � Im(�) arise from thefat that the volume of the torus is �2. One eventually �ndsZ1(A) � 1j�jA Z d2� �� 322 j�(q)j2ZM (�; �� ) (32)
It is known[25℄ that the partition funtion for the (p; q) minimal model an be writtenas the di�erene of the partition funtions for a salar �eld ompati�ed on two di�erentradii: Zp;q = 12 �Z(R = ppq)� Z(R =rpq )�where Z(R) � 1j�(q)j2 Xs;t q(s=R+tR)2=4�q(s=R�tR)2=4

Inserting this expression into Eq.(32) above and performing the � -integration overthe fundamental region, one �nds the torus partition funtion for string theory in thebakground of a (p; q) minimal model to be
Z1(A) � (p� 1)(q � 1)(p+ q � 1)Awhere we have omitted a proportionality onstant independent of p; q and A. The area-dependene of this exat expression was of ourse predited in Eq.(25). The above equationagrees with the orresponding result oming from matrix models.

6. 6. Correlation FuntionsIn this setion I will briey outline an approah to the omputation of orrelationfuntions of ertain physial operators. The operators that we will onsider are (integralsof) the \dressed primaries" referred to earlier, whih an be written
��r;s(z; �z) � Z d2�pĝ 	r;s(�)ek�r;s�(�) (33)

where the Liouville momentum k�r;s gives the right onformal dimension to the vertex oper-ator so that the total dimension of the dressed primary is (1; 1). The label � distinguishesthe two values of k whih are respetively greater or less than Q2 . One easily �nds
k�r;s = 12 � (1� r)pt + (1� s)pt�



Tehnially, one should have multiplied the dressed primaries by ghost fators (z)�(�z)to get physial states. But the ghost fators are absorbed independently and their onlyontribution is to enfore an integration of eah of the operators above over the wholesurfae. Thus we an more onveniently work just with the integrated primaries. We willaordingly drop all referene to the ghost measures and ation in what follows. In addition,we will assume that there is some well-de�ned presription to ompute the orrelationfuntions in the matter theory, whih is a well-studied subjet in CFT. This means weonly need to onentrate on the omputation of orrelators of vertex operators in theLiouville setor.A useful approah in studying these orrelation funtions is to �rst perform the Li-ouville zero-mode integration, as was done for the ase of the torus partition funtion. Inthe presene of the osmologial onstant as well as operator insertions, this integration israther more nontrivial than in the preeding ase, but still an be done after making someontinuation, as we will see. We have
h nYi=1

Z d2�pĝ ek�i �i
= Z Dĝ� nYi=1

Z d2�pĝ ek�i �e�SL(�;ĝ)
where, as usual,

SL(�; ĝ) = 18� Z d2�pĝ �ĝab�a��b�+QR(ĝ)�+ �e���
Now deompose �(�) into a onstant part and a part whih has no onstant mode:

�(�) = �0 + ~�(�)
The part ~� must satisfy the ondition that its integral over the whole surfae vanishes.In terms of these new independent variables we an rewrite the Liouville ation:

SL(�0; ~�; ĝ) = 18� Z d2�pĝ �ĝab�a ~��b ~�+QR(ĝ)�0 +QR(ĝ)~�+ �e��0e�~��
= S0(~�; ĝ) +Q�0(1� h) + �8�e��0 Z d2�pĝ e�~�

where S0(~�; ĝ) = 18� Z d2�pĝ �ĝab�a ~��b ~�+QR(ĝ)~��



Also the vertex operators fatorise:nYi=1
Z d2�pĝ ek�i � = nYi=1 ek�i �0 nYi=1

Z d2�pĝ ek�i ~�
= e(Pi k�i )�0 nYi=1

Z d2�pĝ ek�i �0
As a result, the Liouville path integral for orrelators beomesZ Dĝ� nYi=1

Z d2�pĝ ek�i �e�SL(�;ĝ)
= Z Dĝ ~� nYi=1

Z d2�pĝ ek�i ~�e�S0(~�;ĝ) Z d�0 e((Pi k�i )�Q(1�h))�0e� �8� e��0 R d2�pĝ e�~�
Now the zero-mode integral is of the formZ 1�1 dx eAx�BeCx = 1C B�AC �(AC )

where this answer holds if A;B;C are real and positive. For other values of these onstants,the integral is not well-de�ned. Aordingly, we de�ne the Liouville zero-mode integral tobe given by the right hand side of the above equation, for all values of the onstants, as akind of analyti ontinuation. This gives the presriptionZ d�0 e((Pi k�i )�Q(1�h))�0e��e��0 R d2�pĝ e�~� = 1� � �8� Z pĝe�~��s �(�s)
with s = � nXi=1 k�i� + Q� (1� h) (34)

Thus we are left with the integral over the nononstant modes:
h nYi=1

Z d2�pĝ ek�i �i = 1� � �8��s �(�s)Z Dĝ ~�Z pĝe�~� nYi=1
Z d2�pĝ ek�i ~�e�S0(~�;ĝ)(35)If s, de�ned in Eq.(34), were a positive integer, then this funtional integral would justbe a CFT orrelation funtion for a produt of vertex operators and sreening harges ina free boson theory with a bakground harge iQ. Beause of the absene of zero modes,the momentum-onserving delta-funtion is absent.



Unfortunately, s is never a positive integer. Note that the quantities Q and � whihenter the de�nition of s are �xed by the entral harge and minimum dimension operatorof the matter CFT. Moreover, the k�i are those whih dress the matter CFT dimensions,whih are also determined. One an thus ompute s expliitly for the ase of a (p; q)minimal model and a set of physial states of Liouville momentum k+ri;si and k�r0j ;s0j :s(p; q; r1; s1; : : : ; rn; sn; r01; s01; : : : ; r0m; s0m) =1p+ q � 1
0�(p+ q)(2� 2h�m� n)� nXi=1(pri + qsi)� mXj=1(pr0j + qs0j)1A

where 1 � ri; r0j � q � 1 and 1 � si; s0j � p � 1. We see that s is generially negative andnon-integer.At this point it should be lear what the presription will be, even though it may beless lear how to implement it. We simply evaluate Eq.(35) for positive integer s, (whihan be thought of as ontinuing the matter entral harge away from its physial value)by treating the insertions of the area operator as sreening harges, and performing astandard free-�eld omputation[26℄. If it is then possible to \ontinue" the result bekto negative frational values of s, then this will be de�ned to be the answer. A lassof three-point orrelation funtions in genus zero, of the diagonal operators R ��ri;ri (seeEq.(33)) has been omputed in this approah, in the unitary minimal series bakgrounds,orresponding to p = q + 1 in Eq..� The alulation in the matter setor is arried outfollowing the usual Feigin-Fuhs proedure[18℄, while the Liouville part is evaluated bysimilar tehniques after performing the steps desribed above. After a straightforward ifslightly tedious alulation, one obtains produts of �-funtions whih depend on s, so thatone an then restore s to its physial value. The �nal result is simplest after normalizingthe orrelators to anel out any overall fators in the de�nition of the partition funtionand the physial �elds:h��r1;r1��r2;r2��r3;r3i2 Z0(�)h��r1;r1��r1;r1ih��r2;r2��r2;r2ih��r3;r3��r3;r3i = r1 r2 r3(q + 1)(2q + 1) (36)
The limitations in this alulation, to three-point funtions, diagonal operators andunitary models, appear to be purely tehnial. All of them have been overome to someextent in subsequent alulations.It is worth desribing briey one re�nement of the above method. Instead of treatingthe area term as the only type of sreening harge, one may introdue the other dimension



(1; 1) Liouville vertex operator, orresponding to the other hoie of sign in Eq.(22), andallow both to be inserted in orrelation funtions[27℄. This is again a sort of self-onsistentassumption, and inreases the similarity with the omputation of minimal-model orrela-tion funtions in the Feigin-Fuhs approah, where also there are two kinds of sreeningharges. One the Liouville and matter setors have been brought onto a similar footing,it is natural also to make the ontinuation in entral harge simultaneously in the Liouvilleand matter setors, thereby always preserving the ondition that the total entral hargeis 26. In this approah there is a ertain omputational simpli�ation: one only needs toonsider negative integer numbers of sreening harge insertions, and it is relatively easyto give an unambiguous presription for treating these values.In addition to this simpli�ation, there is a surprising and rather important result inthis approah (this was also independently observed in Ref.[28℄) - dressed primaries withindies (r; s) outside the \minimal table" (i.e., not satisfying 1 � r � q� 1, 1 � s � p� 1)give nonzero orrelators. This is at variane with the fat that suh states in the minimalmodel setor alone give vanishing orrelators, whih is the reason why minimal modelshave �nite numbers of primary �elds. The point is that on analytially ontinuing awayfrom physial values of the parameters, both matter and Liouville setors give generiallynonzero ontributions. For the speial ase of states outside the minimal table, the matterontribution vanishes linearly in some parameter as we return to physial values, butthe Liouville part aquires a simple pole in the same parameter, so that the produtremains �nite. Thus, this heuristi presription appears to give a nontrivial new piee ofinformation about minimal models oupled to gravity: there are in�nitely many physialstates of the form of \dressed primaries". In fat, as we have seen in a previous setion,these extra states appear naturally if one formulates the physial state problem as a doubleohomology. The above results are also in agreement with matrix models, whih is onemore reason to take them seriously.The genus-zero three-point funtion obtained in this approah, whih generalizesEq.(36)above to the ase of operators whih are not neessarily diagonal and need notlie in the minimal table, ish��r01;r1��r02;r2��r03;r3i2 Z0(�)h��r01;r1��r01;r1ih��r02;r2��r02;r2ih��r03;r3��r03;r3i = (r01 � r1�)(r02 � r2�)(r03 � r3�)(1� �)�(1 + �)
Here the minimal model is still in the unitary series, with p = q+1, and we have introduedthe parameter � � q+1q .



Finally, one an generalize to the ase of non-unitary (p; q) models. Here one en-ounters the fat, noted above, that the osmologial onstant operator ontains not theidentity �eld in the matter setor but the operator of lowest onformal dimension. Thisintrodues a severe tehnial diÆulty in doing the omputation as above. Reently ithas been suggested[29℄ that one an make an ansatz aording to whih sreening in theLiouville setor is done by the dressed identity �eld, as in the unitary theories, with the dif-ferene that this time one annot interpret this to be be the osmologial term. Again, thisappears to be a kind of self-onsistent approah. Fixing the oeÆient of the new sreen-ing operators to be an appropriate power of the osmologial onstant �, one obtains agenus-zero three-point funtion whih redues to the orret result in the unitary ase (byonstrution), but also gives the right answer when ompared with tree-level orrelatorsin the multiritial one-matrix model. In this ase the result ish��r01;r1��r02;r2��r03;r3i2 Z0(�)h��r01;r1��r01;r1ih��r02;r2��r02;r2ih��r03;r3��r03;r3i = �2(r01p� r1q)(r02p� r2q)(r03p� r3q)(q + p)(q + p+ 1)
This generalizes the two preeding results.Some higher-point funtions have also been alulated in the unitary ase[30℄. It islear, however, that the ontinuum formulation of non-ritial string theory gives verylimited information after a lot of work, perhaps a disappointing onlusion if one believesthat the ontinuum approah is the most basi one in string theory.
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