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An Introdu
tion To Continuum Non-Criti
al Strings
Sunil MukhiTata Institute of Fundamental Resear
hHomi Bhabha Rd, Mumbai 400 005, IndiaAbstra
tString theory with 
 � 1 matter is des
ribed in the path-integral, 
onformal-gaugeapproa
h. It is shown how to obtain the gravitational s
aling dimensions and string sus-
eptibility in this framework. This is followed by a dis
ussion of the operator quantizationof the theory, the nature of Liouville theory Fo
k spa
e, the spe
trum of physi
al states inthe BRS framework, and the existen
e of extra physi
al states of nontrivial ghost number.Finally, I return to the path-integral to dis
uss the partition fun
tion on the torus and thetree-level 
orrelation fun
tions.

1. 1. Introdu
tionIn 1981, Polyakov[1℄ wrote down a path integral formalism for bosoni
 string theory,in whi
h the a
tion depends on a two-dimensional metri
 in addition to the 
oordinatesof the string, and both sets of �elds are quantized independently. He observed that thesymmetries of the a
tion (reparametrization invarian
e on the world sheet, and invarian
eunder Weyl res
alings) are su
h as to permit the elimination of all the lo
al degrees offreedom 
ontained in the two-dimensional metri
, so long as these symmetries 
an bemaintained upon quantization.* Based on a series of le
tures given at the Summer Workshop in High Energy Physi
s andCosmology, ICTP, Trieste, in July 1991.



Unfortunately, the Weyl symmetry is generi
ally anomalous in quantization s
hemeswhi
h preserve reparametrization invarian
e. This means that in general, one of the threemodes of the metri
, whi
h by 
onvention 
an be 
hosen to be the s
ale fa
tor, 
annotbe gauged away and needs to be quantized. Polyakov observed that the a
tion for thismode of the metri
 takes the form of a two-dimensional �eld theory of a single s
alar �eldwith an exponential (Liouville) intera
tion. The 
oeÆ
ient of this term is proportionalto D � 26, so that it drops out when the number of spa
etime dimensions is 26. In this
riti
al dimension, the anomaly in the Weyl symmetry 
an
els and the Liouville-like modede
ouples, leading to a straightforward quantization of the theory. In dimensions D < 26,for whi
h the string theory is said to be non-
riti
al, the anomaly for
es us to quantizethe Liouville theory along with the matter 
onformal �eld theory of D free bosoni
 �elds.This simple observation lies at the heart of the 
ontinuum approa
h to non-
riti
al stringtheory.The diÆ
ulty in quantizing the Liouville mode led to somewhat limited progress in this�eld over the next few years. Indeed, in a 
ertain sense this diÆ
ulty persists to the presentday. In what follows I will dis
uss the simplest, although possibly least rigorous, approa
hto the quantization of the non
riti
al Polyakov string. This dis
ussion, like mu
h of thework that followed it, is based on a sort of self-
onsistent approa
h, in whi
h numeri
alvalues of 
riti
al exponents, and ultimately even 
orrelation fun
tions, are determinedfrom su
h things as s
aling arguments and free-�eld representations, rather than expli
itresolution of the Liouville theory. Sin
e the intent of this arti
le is primarily pedagogi
al,I will refrain from dis
ussing alternate approa
hes where a single one suÆ
es to displaythe main results.A powerful approa
h to non-
riti
al string theory, in terms of random-matrix models[2℄has been very su

essful in providing results to all orders in string perturbation theory. Inwhat follows, we will o

asionally note the 
orresponden
e between the 
ontinuum resultsand those 
oming from matrix models.The �rst part of this arti
le will deal with the fun
tional integral approa
h (in 
on-formal gauge), in whi
h 
riti
al exponents may be derived. The se
ond part deals withthe operator quantization a la BRS, whi
h is the most logi
al and 
omplete framework inwhi
h to obtain the spe
trum of physi
al states. Finally, I dis
uss the partition fun
tion onthe torus, and the e�orts that have been made to extra
t at least the tree-level 
orrelationfun
tions in this approa
h, for whi
h the path-integral will again prove to be a 
onvenientstarting point.



2. 2. The Polyakov Path IntegralConsider a string propagating in a 
at, Eu
lideanized D-dimensional spa
etime. The
oordinates of the string are parametrized by maps X�(�1; �2) from a two-dimensionalsurfa
e to spa
etime. Let the surfa
e be 
ompa
t and of genus h, and denote the metri
on this surfa
e by gab(�1; �2). The basi
 obje
t of relevan
e in the �rst-quantized approa
hto string theory is the path integral[1℄
Zh = Z DggDgXvol (Di�) e�SM�S
 (1)

where SM = 18� Z d2�pggab �aX��bX�
S
 = �02� Z d2�pg (2)

The �rst term is the \matter" a
tion, des
ribing D free s
alar �elds 
oupled to two-dimensional gravity, while the se
ond is a 
osmologi
al term in the two-dimensional sense,whose 
oeÆ
ient is an arbitrary parameter, the bare 
osmologi
al 
onstant. The rationalefor this a
tion is that the �rst term alone, on elimination of the metri
 via its equationsof motion, gives rise (
lassi
ally) to the famous \area law" a
tion of Nambu and Goto,analogous to the 
lassi
al a
tion for a free relativisti
 s
alar parti
le, whi
h is proportionalto the invariant length of its traje
tory. The se
ond term is in
luded to a

ommodatepossible renormalization e�e
ts. The measures are formally divided by the volume of thedi�eomorphism group, whi
h should 
an
el out after gauge �xing.On a surfa
e with two dis
s removed, Zh represents the amplitude, in order h, fora free string to propagate from one of the boundaries to the other. We will, however,generally 
hoose the surfa
e to be 
ompa
t and without boundary. S
attering amplitudesof string states will then arise as 
orrelation fun
tions of physi
al operators, whi
h 
an bestudied in this formalism on
e the spe
trum has been understood.To examine Eq.(1) in more detail, it is ne
essary to give a meaning to the pathintegration measures. This done by �rst de�ning a reparametrization-invariant norm onin�nitesimal variations of the �elds appearing in the path integral, and then de�ning thefun
tional integration over the squared norm. The norms are given by
kÆXk2g � Z d2�pg ÆX�ÆX�
kÆgk2g � Z d2�pggabgbd ÆgabÆg
d (3)



They 
arry the subs
ript g be
ause they are metri
-dependent. The fun
tional measure isnow de�ned impli
itly via Z Dg(ÆX) e�kÆXk2g = 1Z Dg(Æg) e�kÆgk2g = 1 (4)
Be
ause of the manifest di�eomorphism invarian
e of the measures, we 
an be surethat they will des
end to measures on the spa
e of metri
s and 
oordinates modulo di�eo-morphisms, so that the volume fa
tor in the denominator will indeed 
an
el out.Now let us examine the behaviour under the Weyl res
alings

gab(�)! e�(�)gab(�) (5)
Clearly the matter a
tion SM is invariant, although the 
osmologi
al term S
 is not. Asfor the measure, it is not invariant either, as is 
lear from the de�nitions Eqs.(3),(4)above.The 
hoi
es for the norms above were di
tated by reparametrization invarian
e, whi
h isevidently in
ompatible with Weyl invarian
e.The Weyl transformation of the bosoni
 
oordinate measure is 
omputable by a varietyof methods (see for example Ref.[3℄). One �nds

De�g X = e(D=48�)S0L(�;g)DgX (6)
where the prefa
tor appearing is the exponential of a lo
al a
tion for the s
ale mode �(�)
oupled to the two-dimensional metri
:

S0L(�; g) = Z d2�pg�12gab�a��b� +R� + �e�� (7)
Here, � is an arbitrary 
onstant, whi
h has the e�e
t of renormalising the bare 
osmologi
al
onstant �0. The relative 
oeÆ
ients of the �rst two terms are, however, not arbitrary.Although we will not derive Eqs. ; (8)h (9)ere, it is instru
tive to 
he
k the relative 
oeÆ
ient of the �rst two terms in the aboveexpression. Performing two su

essive Weyl transformations on the metri
, with fa
tors�(�) and �0(�), we have on the one hand

De�+�0gX = e D48� S0L(�+�0;g)DgX (10)



and on the other handDe�+�0gX = e(D=48�)S0L(�;e�0g) De�0gX= e(D=48�)[S0L(�;e�0g)+S0L(�0;g)℄ DgX (11)
This gives the linear relation

S0L(� + �0; g) = S0L(�; e�0g) + S0L(�0; g)Supposing that � = 0, the above relation is equivalent toZ d2�pg �gab�a� �b�0 +R(g)� � e�0R(e�0g)�� = 0
whi
h is true be
ause of the Weyl-transformation law for the Ri

i s
alar:

R�e�0g� = e��0 �R(g)� gabDa�b�0�This shows that the relative 
oeÆ
ient of the �rst two terms is not arbitrary, and also thatthe form of S0L (ex
ept the 
osmologi
al term, whi
h is arbitrary anyway) is 
onsistentwith the required property.It is appropriate to make one more 
omment about the Weyl anomaly here. It hasbeen argued[4℄ that for any 
lassi
ally Weyl-invariant, reparametrization invariant theoryin two-dimensions, one 
an 
ompute the Weyl anomaly as follows. At the 
lassi
al level,the stress-energy tensor Tab will be 
onserved, by virtue of reparametrization invarian
e,and tra
eless, be
ause of Weyl invarian
e. This implies that the 
omponent Tzz in asystem of 
omplex 
oordinates is analyti
, from whi
h the deep and elegant stru
ture oftwo-dimensional 
onformal �eld theory 
an be worked out. In parti
ular, 
onformal �eldtheories are 
hara
terized by the value of the \
entral 
harge" in the 
ommutation relationsof two stress-energy tensors. Now in a 
urved ba
kground metri
, tra
elessness is violatedat the quantum level by a term proportional to the s
alar 
urvature R(�) (whi
h is oneway of seeing the Weyl anomaly), whi
h implies that analyti
ity of Tzz is also violated bya similar term. One 
an then show that the 
oeÆ
ient of the Weyl anomaly is proportionalto the 
entral 
harge of the 
orresponding 
at-spa
e 
onformal �eld theory.Sin
e we will not go into the details here, it is suÆ
ient to write down the result: any
onformal �eld theory of 
entral 
harge 
, when 
oupled to gravity, has a Weyl anomalygiven by e(
=48�)S0L(�;g) (12)



where S0L is the Liouville a
tion written in Eq.(9). This provides the most pra
ti
al wayto determine Weyl anomalies in fun
tional integrals. In the 
ase of D free bosons, forexample, one obtains Eq.(8)by noting that ea
h free boson has a 
entral 
harge 
 = 1.Armed with the above results, we now pro
eed to study the full theory of D two-dimensional bosons 
oupled to gravity. We have seen that the entire theory (a
tion as wellas measure) is invariant under reparametrizations, whi
h vary the metri
 as follows:
Ægab = ga
r
V b + gb
r
V a � gabr
V 
 (13)

where V a(�) is the in�nitesimal ve
tor �eld whi
h de�nes the reparametrization Æ�a = V aof the 
oordinates.We now pi
k a gauge in order to �x these degrees of freedom. A 
onvenient 
hoi
eis the 
onformal gauge, whi
h amounts to �xing the metri
 to be 
onformal to some �xedreferen
e metri
: gab(�) = e�(0)(�)ĝab(�)The referen
e metri
 is labelled by a set of 
omplex parameters des
ribed for the sakeof brevity by � in the above. These parameters des
ribe the moduli spa
e of the 
hosenRiemann surfa
e, whi
h is the spa
e of 
onformally inequivalent metri
s on this surfa
e.Next we must repla
e the integration measure over all metri
s by the measure overthe s
ale fa
tor �(0)(�), the measure over reparametrizations (the in�nitesimal ve
tor �eldsV a) and the measure on moduli spa
e. The repla
ement will involve the Ja
obian of thetransformation in Eq.(13)above. We will assume that the referen
e metri
 is just theidentity Æab in the neighbourhood of some 
hosen point, in whi
h situation it is 
onvenientto go to a system of 
omplex 
oordinates z = �1 + i�2, �z = �1 � i�2. near that point. Inthese 
oordinates, the 
omponents of the referen
e metri
, and hen
e the full metri
 (fromthe above equation), satisfy gzz = g�z�z = 0.Making an in�nitesimal 
hange of 
oordinates near the 
hosen point, one easily �ndsthat the Ja
obian J between variations of the 
omponents gzz; g�z�z and the ve
tor �eld V zis J = det �rzr�z�
where the di�erential operators inside the determinant are just the 
ovariant derivativeson ve
tor �elds. Then we 
an 
an
el out the formal expression \vol(Di�)" and exponen-tiate the Ja
obian determinant in the standard Faddeev-Popov pro
edure. Be
ause theoperators inside the determinant a
t on ve
tor �elds (whi
h 
an be thought of as having




onformal spin �1, by virtue of their single holomorphi
 upper index), we must introdu
eanti
ommuting ghost �elds 
z of spin j = �1, and 
onjugate antighost �elds bzz of spin1 � j = 2, as well as their antiholomorphi
 
ounterparts. The a
tion for these �elds in
onformal gauge will be Sgh � Z d2z (bzzrz
z + 
:
)One 
an now rewrite this in a general 
oordinate system and general metri
 ba
kground:
Sgh(b; 
; g) = 14� Z d2�pg �bab �r

bga
 +r

agb
 � gabr


�� (14)

Evidently the ghost is a ve
tor �eld 
a, while the antighost is a tra
eless symmetri
 tensorbab. Now one 
an 
he
k that the ghost a
tion is also Weyl invariant:
Sgh(b; 
; e�g) = Sgh(b; 
; g)

but the measures de�ned through the norm
kÆbk2g = Z d2�pg �ga
gbd + gadgb
 � gabg
d� ÆbabÆb
dkÆ
k2g = Z d2�pggab Æ
aÆ
b

are not. In fa
t, one �nds that
De�gb De�g
 = e�(26=48�)S0L(�;g) Dgb Dg
 (15)

The simplest way to derive this is to note that the system of ghosts desribed above, whenstudied as a 
onformal �eld theory in a 
at metri
, has 
entral 
harge -26, so that theabove result follows from Eq.(12).Thus after gauge �xing and the introdu
tion of ghosts, the Polyakov path integralbe
omes Z = Z [d� ℄ Dg�(0) Dgb Dg
 DgX exp �� SM (X; g)
� Sgh(b; 
; g) � �02� Z pgd2��The integration over metri
s has been repla
ed by an integral over moduli and over thes
ale or Liouville mode �(0), the fa
tor \vol(Di�)" has been 
an
elled and the ghost



terms have appeared to take 
are of the 
hange of variables between metri
 variationsand reparametrizations.Now the only measure that has not yet been studied is that for the Liouville mode�(0). At this point the distin
tion between 
riti
al and non
riti
al string theory appears.We should �rst 
he
k whether the ghost and matter se
tors 
ontain a dependen
e on �(0)or not. We have noted that both the a
tions are Weyl invariant. The measures are notinvariant, as we have seen, so the passage from a general metri
 to the referen
e metri
will produ
e the Liouville a
tion S0L(�(0); g) de�ned in Eq.(9), with 
oeÆ
ient (D�26)48� asone 
an see by 
ombining the anomalous transformation laws given in Eqs.(8) and (15).Therefore if we 
hoose D = 26, 
orresponding to a string propagating in a 26-dimensional
at spa
etime, the Weyl anomaly 
an
els between ghosts and matter 
oordinates. In thissituation we 
an also set the 
osmologi
al 
onstant to zero, and the entire theory be
omesindependent of the Liouville mode �(0). Then we must drop the integration over theLiouville mode, and what remains is the 
riti
al string theory.If on the other hand D is not 26, then the integrand depends on the Liouville �eldthrough the lo
al a
tion S0L(�(0); g). The 
oeÆ
ient will have the 
orre
t sign for a s
alar�eld a
tion if D < 26, and we 
on�ne ourselves to this 
ase. Now we must indeed addressthe question of the measure for �(0). This should be indu
ed from the norm that we hadde�ned in Eq.(3) for variations of the full metri
. It follows that
kÆ�(0)k2g = Z d2�pg (Æ�(0))2

= Z d2�pĝ e�(0)(Æ�(0))2
This displays the 
ru
ial problem whi
h made it diÆ
ult to study the non
riti
al string inthe path integral formalism for several years. The measure for the Liouville �eld dependsin a highly nonlinear way on the Liouville �eld itself, be
ause of the exponential fa
tor inthe integrand. This makes it impossible to expli
itly perform this part of the fun
tionalintegration.What we would like to do would be to transform the entire fun
tional measure formatter, ghosts and the Liouville mode in the ba
kground of a general metri
 (whi
h hasthe nonlinearity des
ribed above) into a measure for some set of �elds in the ba
kgroundof the referen
e metri
, in whi
h 
ase no su
h nonlinearity 
an be present. A

ordingly, wemake the ansatz[5℄ that there is su
h a transformation, and try to determine everything by



self-
onsisten
y of the resulting theory. It is quite remarkable that su
h a bold and simpleansatz will lead to unambiguous and useful results.We postulate that the Liouville �eld �(0) 
an be repla
ed by another s
alar �eld �, interms of whi
h the following equivalen
e holds:
Dg�(0) Dgb Dg
 DgX = e�SL(�;ĝ)Dĝ� Dĝb Dĝ
 DĝXwhere � has the simple norm (free of the exponential fa
tor) given by

kÆ�k2̂g = Z d2�pĝ (Æ�)2:
and the prefa
tor e�SL(�;ĝ) is some lo
al, renormalizable a
tion for the new �eld �(�). Itis 
lear that if this ansatz is 
orre
t, we will be able to treat the new Liouville �eld � onessentially the same footing as the string 
oordinates and the ghosts.We now assume that the lo
al a
tion SL(�; ĝ) has the same general form as theLiouville a
tion S0L(�(0); g) introdu
ed in Eq.(9), but with arbitrary 
oeÆ
ients. These
oeÆ
ients will then be �xed by self-
onsisten
y. Thus we have

SL(�; ĝ) = 18� Z d2�pĝ � 1�2 ĝab�a��b�+ Q� R(ĝ)�+ �1e��
and it remains to �x the parameters Q and �. The third 
oeÆ
ient �1 multiplies the 
os-mologi
al term, hen
e it remains arbitrary like the 
osmologi
al 
onstants whi
h appearedearlier, and will be a free parameter of the theory.It is useful to �rst 
hange the normalization of the Liouville �eld by the transformation

�! ��
so that the kineti
 term takes the 
anoni
al form:

SL[�; ĝ℄ = 18� Z d2�pĝ �ĝab�a��b�+Q R(ĝ)�+ �1e��� (16)
Before pro
eeding further, it is worth 
ommenting that by our ansatz we have repla
edthe original Liouville �eld �(0) and a
tion S0L(�(0); g) by a new �eld � and a new a
tionSL(�; ĝ), so it will be 
onvenient in what follows to refer to this new �eld as the Liouville�eld, and the new a
tion as the Liouville a
tion. The pro
ess of going from �(0) to � 
anbe thought of as a kind of renormalization of the Liouville �eld, so that from the point ofview of physi
al interpretation, it is the new �eld that should be thought of as the s
ale



fa
tor of the metri
 in the quantum theory. Sin
e a res
aling of � was also performed atthe end, this means that gab = e��ĝab (17)although admittedly this equation has a rather heuristi
 meaning.Now we obtain the 
onditions 
oming from the self-
onsisten
y assumption. The�rst observation is that the referen
e metri
 ĝab was arbitrary. Sin
e all the degrees offreedom inherent in the original metri
 have either been divided out or a

ommodated inthe Liouville mode, the �nal path integral 
annot depend on the 
hoi
e of ĝab. The wayto see this is that a Weyl transformation on the referen
e metri
 
an be 
ompensated bya shift in the Liouville �eld, sin
e the transformationsĝab(�)! e�(�)ĝab(�)�! �� ��leave the original metri
 un
hanged, from Eq.(17). But sin
e the Liouville �eld is anintegration variable in the path integral, it 
an be shifted ba
k without 
hanging anything,so the theory as a whole is invariant under Weyl transformations of the referen
e metri
.Of 
ourse, sin
e the 
osmologi
al 
onstant �1 is an arbitrary parameter, we should onlyrequire invarian
e upto 
hanges in �1, whi
h is most simply examined by setting �1 = 0.Thus, de�ning
Stotal(�; b; 
;X; ĝ) = SL(�; ĝ) + Sgh(b; 
; ĝ) + SM (X; ĝ)

and setting the total 
osmologi
al term to zero, we have the requirement
De� ĝ� De� ĝb De� ĝ
 De� ĝX e�Stotal(�;b;
;X;e� ĝ) = Dĝ�Dĝb Dĝ
 DĝX e�Stotal(�;b;
;X;ĝ) (18)
This equation has a simple and beautiful meaning: the 
ombined system of matter 
oordi-nates, ghosts and the Liouville �eld, has 
omplete Weyl invarian
e even in
luding measurefa
tors. One may imagine that 
oupling the system to two-dimensional gravity has re-stored the Weyl invarian
e whi
h was broken by the anomalies in the matter and ghostse
tors. This has to happen, sin
e after integrating over metri
s there is nothing left towhi
h the Weyl anomaly 
ould be proportional!This is enough to determine the arbitrary parameter Q, as follows. In absen
e ofthe 
osmologi
al term, the Liouville a
tion Eq.(16)des
ribes a 
onformal �eld theory. The



Weyl anomaly 
oming from this se
tor will be proportional to the 
entral 
harge 
L of thistheory, and Eq.(18)above merely implies that the total Weyl anomaly 
an
els out betweenstring 
oordinates, ghosts and the Liouville mode, i.e.
D � 26 + 
L = 0 (19)

Now to �nd 
L, we 
ompute the analyti
 stress-energy tensor by varying Eq.(16)(with�1 = 0), to get T (L)zz = �12 ��z��z�+Q�2�� (20)By expli
itly 
omputing the operator-produ
t expansion for two stress-energy tensors,using Wi
k 
ontra
tion for the free bosoni
 �eld, one gets

L = 1 + 3Q2

and solving Eq.(19)above we end up with
Q =r25�D3 (21)

where we 
hoose the positive sign of the square root by 
onvention.Next we determine �. The 
osmologi
al term, whi
h is the only term that dependson �, is �1 Z d2�pĝ e��Now the vertex operator being integrated should, in the quantum theory, be a 
onformalprimary �eld of dimension (1; 1) sin
e only in that 
ase does its integral over the surfa
ehave an invariant meaning. In the Liouville �eld theory at zero 
osmologi
al 
onstant,de�ned by the stress-energy tensor in Eq.(20), we 
an 
ompute 
onformal dimensions ofvertex operators using Wi
k 
ontra
tions, and one easily �nds that the dimension � isgiven in general by �(ek�) = � 12k(k �Q)Thus 
hoosing k = � and setting the dimension equal to 1, we �nd �(��Q)+1 = 0, fromwhi
h � = Q2 � 12pQ2 � 8= 12p3 �p25�D �p1�D� (22)



Later we will show that requiring the 
orre
t semi-
lassi
al limit �xes the sign in the aboveexpression to be negative.At this point we may note that � is real for D � 1, imaginary for D � 25 and 
omplexin between. Of 
ourse, the way we have de�ned string theory, the number D is an integerdes
ribing the number of dimensions of the 
at spa
etime in whi
h the string propagates.But we 
an generalize the notion of string propagation by repla
ing the matter a
tionSM for D spa
etime 
oordinates, in Eq.(2), by an arbitrary 
onformal �eld theory withsome 
entral 
harge 
M . In that 
ase, although the physi
al interpretation of a stringpropagating in spa
etime is lost, the manipulations above go through with D repla
edeverywhere by 
M . Now it makes sense to 
onsider any value of 
M , in parti
ular valuesless than 1.We 
on
lude that the region 1 < 
M < 25 is problemati
 as it leads to 
omplex valuesfor the exponent � in the 
osmologi
al term. A
tually, we will see shortly that severalother quantities, whi
h have some kind of physi
al interpretation, will also be 
omplex inthe same region of 
M . As a result, the present quantization of the Polyakov string maybe thought of as in
onsistent for these values of 
M .In what follows we will therefore 
on�ne ourselves to the region 
M < 1. We 
ould also
onsider 
M = 1, whi
h is on the boundary of the forbidden region, but will not do so herefor reasons of spa
e. Many interesting phenomena o

ur only at the spe
i�
 value 
M = 1,and the interested reader is urged to 
onsult the relevant literature on this subje
t, or theex
ellent review by Klebanov[6℄.
3. 3. S
aling and Criti
al ExponentsIn this se
tion, we show that a good deal of information 
an be extra
ted from thePolyakov path integral at 
M < 1 just by s
aling arguments[5℄. It is impressive thatthis information agrees, in the domain of overlap, with a number of s
attered resultsobtained from numeri
al simulations on the dis
retized theory of random surfa
es, whi
his believed to be
ome string theory in the 
ontinuum limit[7℄, and also with a 
ontinuumapproa
h to two-dimensional gravity in whi
h a 
ertain SL(2; R) 
urrent-algebra symmetryis exploited[8℄.We start by re
alling the expression for the Polyakov path integral that we will bestudying: Zh(�) = Z [d� ℄h Dĝ� Dĝb Dĝ
 DĝX e�Stotal(�;b;
;X;ĝ)



where Stotal(�; b; 
;X; ĝ) = SL(�; ĝ) + Sgh(b; 
; ĝ) + SM (X; ĝ)and SL(�; ĝ) = 18� Z d2�pĝ �ĝab�a��b�+QR(ĝ)�+ �e���Here, the ghost a
tion is the same as in Eq.(14), and we will assume in what follows thatghost zero-modes have been absorbed by appropriate insertions. For the matter se
tor wewill not postulate any spe
i�
 a
tion, but will simply assume that it des
ribes a 
onformal�eld theory of 
entral 
harge 
M < 1. The symbol X above is therefore just a generi
 namefor the �elds that may appear in su
h an a
tion. The parameters Q and � are �xed (thelatter upto a sign) by Eqs.(21) and (22), while � is arbitrary and the dependen
e of thepath integral Z on it is displayed expli
itly. The subs
ript h on Z displays the fa
t thatit is to be 
omputed ea
h time for a �xed genus h of the two-dimensional surfa
e. [d� ℄hdenotes the integration measure over the moduli spa
e of this surfa
e.We now start by examining the physi
al role played by � and 
omputing the �-dependen
e of Z. Suppose �rst that the Liouville �eld � takes a positive 
onstant value�0. Then, examining only the se
ond term in the Liouville a
tion, we �nd18�QZ d2�pĝ R(ĝ)�! Q�0� 18� Z d2�pĝR(ĝ)�= Q�0(1� h)where h is the genus of the surfa
e. The se
ond step involves the standard relation whi
hstates that the s
alar 
urvature integrated over a 
ompa
t two-dimensional manifold isproportional to its Euler 
hara
teristi
 � = 2 � 2h. Now when �0 ! 1, this termtends to �1 if the genus is greater than 1, and e�SL diverges exponentially. However,the presen
e of a 
osmologi
al term saves us from disaster, sin
e � is always positiveand exp(��e�� R d2�pĝ) tends to zero even more rapidly. Thus a (positive) 
osmologi
al
onstant is needed to stabilize the a
tion, and we 
an expe
t singular behaviour when� ! 0. On the other hand, if the genus is 0, then the Q-term 
auses the integrand todiverge as �0 ! �1, and in this 
ase the 
osmologi
al term does not help to stabilize thetheory. So we should be parti
ularly 
areful about the genus-0 
ontribution, whi
h mightturn out to give unphysi
al results in formal manipulations.We 
an easily extra
t the �-dependen
e of Zh(�). Let us shift the Liouville �eld by a
onstant: �! �� 1� ln�



Then, �e�� ! e��so that this shift has the e�e
t of setting � = 1. The measure is of 
ourse invariant underthis shift, and so is the kineti
 term, but the Q-term 
hanges, so the total a
tion 
hangesas follows: Stotal ! Stotal + Q8� Z d2�pĝ R(ĝ)�� 1� ln��
= S � Q� ln�(1� h)So in the path integral the 
hange is
e�Stotal ! e�Stotal+Q� (ln�)(1�h)= �(Q� )(1�h) e�Stotaland we 
on
lude that for any nonzero �,
Zh(�) = �(Q� )(1�h) Zh(� = 1) (23)

This exhibits the fa
t that for genus h > 1, the path integral blows up for � ! 0, as wepredi
ted above, but it also shows that the behaviour near � = 0 is singular in the sensethat there is a bran
h 
ut, even in genus 0.Re
all that the 
osmologi
al term R d2�pĝexp(��) is a
tually the area of the surfa
e,R d2�pg in the original metri
. Thus the 
osmologi
al 
onstant �, whi
h multiplies it, is\dual" to the area, in the same sense as the 
hemi
al potential to the number of parti
lesin a statisti
al system. Thus the expe
tation value of the area in a given genus is
hAi � 1Zh(�) Z Dĝ� Dĝ(X; b; 
)�Z d2�pĝe��� e�Stotal

= � ��� lnZh(�)= �Q� (1� h) 1�Zh(�)This is singular near � = 0 just like the partition fun
tion itself. But note that for positive�, the average area is positive only for h > 1, while on the sphere (h = 0) it is negative.This is a 
onsequen
e of the singular behaviour of the a
tion for large negative �, whi
hwas noted earlier.



A more physi
ally sensible quantity is the partition fun
tion at �xed area. We de�nethis by inserting a delta-fun
tion in the path integral:
Zh(A) = Z Dĝ� Dĝ(X; b; 
)Æ�Z d2�pĝe�� �A� e�Stotal(�;X;b;
;�=0) (24)

where now we have set � = 0, sin
e it e�e
tively multiplies a 
onstant and hen
e fa
torsout of the path integral. One 
an also think of the �xed-area partition fun
tion as theLapla
e transform in � of the original partition fun
tion.We 
an extra
t the area-dependen
e again by a s
aling argument on the partition fun
-tion. Even simpler is to extra
t the dependen
e from Eq.(23)by dimensional arguments,noting that a formal Lapla
e transform will produ
e the resultZh(A) � K AQ� (h�1)�1� K A�(h)�3 (25)
where K is some 
onstant, and �(h), 
alled the string sus
eptibility, is given by

�(h) = Q� (h� 1) + 2= 112(h� 1)�25� 
M �p(25� 
M )(1� 
M )�+ 2
Here we have used the expressions for Q and � derived earlier.This expression 
an be 
ompared with results obtained in spe
i�
 situations via otherapproa
hes. In parti
ular, the sus
eptibility has been 
omputed in the semi
lassi
al limit
M ! �1, [9℄, giving �(h)! (1� h) (
M � 19)6 + 2whi
h determines the sign in the above expression to be the lower one, whi
h translatesinto the 
hoi
e of the minus sign in Eq.(22). We will nevertheless �nd it 
onvenient tokeep both signs in some of the expressions that follow.Finally, we 
an 
onsider the gravitational s
aling behaviour for non-trivial operators ofthe theory. To be systemati
, we should �rst extra
t the full operator 
ontent of the theory,but we postpone this task to the next se
tion. Here we simply make an ansatz for a 
lassof physi
al operators, whi
h will be justi�ed subsequently in the BRS formalism. Suppose	M is some primary �eld of the matter theory. We assume that gravity \dresses" this bymultiplying with a Liouville vertex operator, su
h that the result is a (1,1) primary �eldof the 
ombined theory, whi
h is then integrated over the entire surfa
e. This assumption



is in a

ord with what we know about 
riti
al string theory, where most of the physi
aloperators 
an indeed be des
ribed as integrated (1; 1) primaries of the matter se
tor. Thuswe have 	M (�)! Z d2�pĝ ekL�	Mwhere the number kL is to be determined. If 	M has 
onformal dimension �M , then the
ondition that the total dimension is 1 gives�M � 12 kL(kL �Q) = 1so that k�L = 12p3 �p25� 
M �p1� 
M + 24�M�Note that the two solutions k�L satisfy k+L + k�L = Q, so we adopt the 
onvention thatk�L < Q2 and k+L > Q2 . The semi
lassi
al limit again imposes a parti
ular 
hoi
e of sign,namely the one 
orresponding to k�L . We will return to this point in the subsequentanalysis.The path integral with n insertions of these physi
al operators, whi
h gives the stringtheory n-point amplitudes in genus h (without a �xed-area 
onstraint, but with a 
osmo-logi
al 
onstant) is written
hZ 	(1)M ek(1)l � : : : Z 	(n)M ek(n)L �ih;�� Z Dĝ� Dĝ(X; b; 
) Z 	(1)M ek(1)l � : : : Z 	(n)M ek(n)L � e�Stotal(�;b;
;X)

We 
an again examine when the potential is stable. A similar analysis as was 
arried outfor the va
uum amplitude tells us that ifX ki �Q(1� h) > 0the 
osmologi
al term again su

eeds in stabilizing the theory. If this 
ondition is notsatis�ed then again we must 
onstrain the area to get a sensible result.Let us de�ne the \gravitational s
aling dimension" of the physi
al operator by exam-ining the area-dependen
e of the normalized one-point fun
tions of this operator at �xedarea. De�nehZ 	MekL�iA
� 1Zh(A) Z Dĝ� Dĝ(X; b; 
) Z 	MekL�Æ�Z d2�pĝe�� � A� e�Stotal(�;b;
;X;�=0)



The e�e
t of dividing out by the va
uum amplitude is to remove the genus-dependen
eof this expression when we examine the s
aling with area. Thus we will get a s
alingbehaviour whi
h des
ribes a purely lo
al property of the physi
al operator. Using thenow-familiar pro
edure of shifting the Liouville �eld by a 
onstant, one 
an extra
t theresult hZ 	MekL�iA � K A1�Æ
with Æ� = 1� k�L�= p1� 
M + 24�M �p1� 
Mp25� 
M �p1� 
MThis equation also agrees perfe
tly with the result derived in Ref.[8℄ in the SL(2; R) ap-proa
h.Let us note at this point that the various formulae derived above for the sus
eptibilityand for various s
aling exponents are not quite 
orre
t for a general matter 
onformal�eld theory ba
kground. In the 
ase when this ba
kground is a non-unitary theory, 
ertainmodi�
ations are required. The reason for this is that we had made an impli
it assumptionthat the 
osmologi
al term is a pure Liouville vertex operator, whi
h 
an be thought of asthe \dressed" identity �eld of the matter theory. In a unitary matter theory, the identity isthe operator of minimum 
onformal dimension, but if the matter theory is non-unitary thenit will generally have operators of negative s
aling dimension. The dominant perturbationof the theory will then be by the dressed version of the operator among these whosedimension is most negative. Let us 
all this operator 	(min)M , and denote its dimensionby �(min). It is the dressed version of this operator whi
h we will de�ne as the areaoperator for non-unitary matter theories, and whi
h will appear in the a
tion multipliedby the 
osmologi
al 
onstant. This physi
ally motivated assumption is supported by other
al
ulations in di�erent approa
hes.Thus the 
osmologi
al term in the a
tion is repla
ed byZ d2�pĝ 	(min)M e��



so that repeating the earlier arguments leads to
� = 2(h� 1)p25� 
Mp25� 
M �p1� 
M + 24�min� = 12 = p3 �p25� 
�p1� 
+ 24�(min)�
Æ� = 1� k�L�= p1� 
M + 24�M �p1� 
M + 24�(min)p25� 
M �p1� 
M + 24�(min)

(26)

In parti
ular, the matter CFT, for 
M < 1, is most naturally 
hosen to be a memberof the minimal series obtained by Belavin, Polyakov and Zamolod
hikov, for whi
h thepossible values are 
M = 1� 6(p� q)2pqThe spe
trum of 
onformal dimensions of primary �elds in these theories is given by theKa
 formula �rs = (ps� qr)2 � (p� q)24pq (27)from whi
h one obtains the most negative dimension
�(min) = 1� (p� q)24pqInserting these in the expressions Eq.(26)one �nds
�(h) = 2h(p+ q)� 2p+ q � 1� = 1p2 p+ q � 1ppqÆ(r;s) = jps� qrj � 1p+ q � 1This 
ompletes the formulation of the non
riti
al string as a path integral. We haveextra
ted various s
aling dimensions by formal manipulations on this path integral, withouta
tually trying to evaluate it expli
itly. In the next se
tion, we will 
hange over to theoperator formalism for this theory and des
ribe the physi
al states and operators of thetheory.



4. 4. Spe
trum of Physi
al StatesWe now turn to the operator formalism for the 
ombined theory of minimal 
onformalmatter, the Liouville �eld and ghosts, whi
h was formulated above in the fun
tional integrallanguage.From the above dis
ussion, we 
on
lude that the matter se
tor is des
ribed by aminimal 
onformal �eld theory with some analyti
 stress-energy tensor TM (z) with 
entral
harge and 
onformal dimensions given by Eqs.�and (27). The Liouville theory, at zero
osmologi
al 
onstant, is des
ribed by the 
onformal �eld theory of a single free boson �eld� with stress-energy tensor and 
entral 
harge
TL(�) = �12(��L��L +Q�2�L)
L = 26� 
M = 1 + 3Q2

Vertex operators exp(kL�) in this theory have 
onformal dimensions
�L = �12 kL(kL �Q)

These vertex operators 
reate Liouville momentum states from the va
uum by
jkLi =: ekL� : (0)j0i

De
omposing the Liouville �eld into its os
illator modes via
��(z) = Xn�ZZ �(L)n z�n�1

we �nd that the momentum states are eigenstates of �(L)0 :
�(L)0 jkLi = �ikLjkLiand the 
onformal dimension (L0-eigenvalue) of these states is�kL = � 12kL(kL �Q)

Thus for ea
h dimension, there are two possible momenta, a fa
t whi
h we have en
ounteredearlier. Be
ause of the ba
kground 
harge (Q-term) in the Liouville stress-energy, the innerprodu
t between momentum states is given by
hkLjk0Li = Æ(kL + k0L �Q) (28)



Finally, the ghosts are des
ribed by a CFT of anti
ommuting �elds (b; 
) of spins(2;�1) respe
tively, with a stress-energy tensor Tgh and 
entral 
harge 
gh = �26. Wede
ompose the ghost �elds into their modes by

(z) = Xn�ZZ 
nz1�nb(z) = Xn�ZZ bnz�n�2

Denoting by j0i the SL(2; C)-invariant ghost va
uum, we �nd that it must be annihilatedby a semi-in�nite subset of ghost modes as follows:

mj0i = 0; m � 2bmj0i = 0; m � �1

As a 
onsequen
e, the true ghost va
uum has L0-eigenvalue -1, and is given by 
1j0 >.We should keep in mind that from the outset, the Liouville mode and the ghosts aredes
ribed by the bosoni
 and fermioni
 Fo
k spa
es des
ribed above, but the matter theory
an be des
ribed 
ompletely by its irredu
ible module under the Virasoro algebra, as inRef.[10℄.Thus the full Hilbert spa
e of the theory may be denoted
H = HL 
HM 
Hgh

whi
h is the tensor produ
t of the individual Liouville, matter and ghost Hilbert spa
es.To 
onstru
t the physi
al states, we will follow the BRS pro
edure. De�ne the operator
QBRS = I : 
(z) (TM (z) + TL(z)) + 12 I : 
(z)Tgh(z) : + antiholomorphi
 part

= Xn�ZZ 
�n �L(M)n + L(L)n �� 12 Xm;n�ZZ(m� n) : 
�m
�nbm+n : + 
:
 (29)
where L(L)n = 12 +1Xm=�1 : �(L)n�m�(L)m : + iQ2 (n+ 1)�(L)n

One 
an 
he
k by expli
it 
al
ulation that the BRS 
harge QBRS is nilpotent:Q2BRS = 0. Now in this framework, the physi
al states of the theory are de�ned as



the 
ohomology of this operator on the full Hilbert spa
e. This is the spa
e of states an-nihilated by the operator (the kernel) modulo those 
reated by the a
tion of the operatoron other states (the image). One 
an write this as
fj�i : QBRSj�i = 0=j�i � j�i+QBRSj�igThus, physi
al states are annihilated by QBRS and are not produ
ed by a
ting with QBRSon anything else. States not satisfying both these 
onditions are not in the spe
trum: they
an be 
lassi�ed into two types, those whi
h are not annihilated by QBRS (whi
h we willrefer to as \unphysi
al") and those whi
h are produ
ed by a
ting with QBRS on someother state (whi
h we will refer to as \pure gauge").Although QBRS is a
tually the sum of holomorphi
 and antiholomorphi
 
omponents,it turns out that one 
an extra
t the full 
ohomology from the 
ohmology of the purely
hiral BRS operator, 
orresponding to the �rst, or holomorphi
, term in Eq.(29). Hen
e inwhat follows we will study only the 
hiral 
ohomology, and we will use the notation QBRSto mean only the holomorphi
 part.Classifying physi
al states amounts to �nding this 
ohomology. Before starting toexamine this problem, let us note the following. The anti
ommutator of QBRS with theb-ghost zero mode b0 is �QBRS; b0	 = Ltot0 � L(M)0 + L(L)0 + L(G)0Suppose we have a state j�i su
h that QBRSj�i = 0, and Ltot0 j�i = �j�i with � 6= 0.Then one 
an immediately show that j�i is a pure gauge state:

QBRS b0j�i+ b0 QBRSj�i = �j�i
implies j�i = QBRS� 1� b0j�i�Thus, we 
an restri
t to states with Ltot0 j�i = 0 in studying the 
ohomology.Next, let us 
onsider an arbitrary state in the 
ohomology and expand it in 
0:j�i = j�1i+ 
0j�2iSin
e j�i is annihilated by QBRS we have

QBRSj�1i+QBRS(
0j�2i) = 0



Now let us similarly de
ompose QBRS in terms of its 
0 
ontent:QBRS = 
0Ltot0 + ~QBRSSin
e we have already de
ided that Ltot0 must annihilate j�i, we �nd~QBRSj�1i+ ~QBRS
0j�2i = 0
from whi
h we �nd the two equations~QBRSj�1i+ �j�2i = 0~QBRSj�2i = 0 (30)
To derive this, we have 
ommuted ~QBRS through 
0 and used the relation

fQBRS; 
0g = f ~QBRS; 
0g = � � 1Xn=1n
�n
nwhi
h de�nes the operator �. The two equations then follow from separately equatingto zero the terms proportional to and independent of 
0. One 
an rewrite Eq.(30)afterdropping the tilde on QBRS, sin
e again the extra term is just proportional to Ltot0 whi
hannihilates the states. Thus, the 
omponents of j�i separately satisfyQBRSj�1i+ �j�2i = 0QBRSj�2i = 0In a similar fashion, one 
an examine the 
ondition for j�i to be a pure gauge state, interms of its 
omponents, and one �ndsj�1i = QBRSj�1i � �j�2ij�2i = QBRSj�2iWe see that in some sense the role of 
0 is to 
ause a \doubling" of all the 
onsidera-tions involved in studying the 
ohmology of QBRS. Thus it makes sense to restri
t one'sattention to states j�i whi
h have j�2i = 0, whi
h is the same as 
hoosing the subspa
e
fj�i : b0j�i = 0g

We will impose this 
ondition on the Hilbert spa
e in what follows. The 
ohomology ofQBRS within this subspa
e is known as the \relative 
ohomology".



Now that we have established all the ne
essary notation to study the BRS 
ohomologyof non
riti
al string theory, we 
an pro
eed with the analysis. The �rst step is to analysethe Liouville Fo
k spa
e, whose unusual properties turn out to be responsible for the spe
ial
hara
teristi
s of non
riti
al string theory.In CFT we often hear the statement that all states in the Hilbert spa
e are eitherprimary or se
ondary. If they are both, we 
all them null ve
tors sin
e they are orthogonalto both primaries and se
ondaries. In the Liouville Fo
k spa
e this property does not hold.Let us start with an example. Consider the two states �(L)�1 jkL = 0i, �(L)�1 jkL = Qi. Thesehave the same L0 eigenvalue. Now let us ask if these are primary or se
ondary. It is asimple exer
ise to 
he
k that the �rst state is not primary (sin
e it is not annihilated by L1)but it is also not se
ondary (it 
annot be 
reated by L�1, sin
e this operator annihilatesthe va
uum). On the other hand, the se
ond state is primary, sin
e it is annihilated byL1, and also se
ondary, sin
e it is 
reated by L�1 from the state jkL = Qi. It is 
onvenientto divide the Liouville Fo
k spa
e HL into two 
omponents: the se
tor with momentakL < Q2 , whi
h we 
all HL�, and the one with momenta kL > Q2 , whi
h we 
all HL+.Then the two states above are respe
tively in HL� and HL+. This simple example is aspe
ial 
ase of the following result:Theorem:(i) States in HL+ are either primary or se
ondary or both.(ii) States in HL� are either primary or se
ondary or neither.We will examine this theorem below. More details, in
luding the proof, 
an be foundin Refs.[11℄,[12℄,[13℄. One important point to note is that if we look �rst at the Vermamodule for the Liouville theory, then the proje
tion from this to the Fo
k module has thefollowing property: in HL+, null states in the Verma module des
end to non-vanishingstates in the Fo
k module. Thus the proje
tion to the Fo
k module is bije
tive. In HL�,on the other hand, there are no null states in the Fo
k module, so the proje
tion losesthese null states (they vanish in the Fo
k spa
e). At the same time, there are non-primary,non-se
ondary states in the Fo
k module, whi
h 
annot 
ome from the Verma module, sothat the proje
tion in this se
tor is neither one-to-one nor onto. In fa
t, these results arethe ingredients whi
h go into the proof of the above theorem.Let us parametrise the matter and Liouville 
entral 
harges as follows:

M = 13� 6t � 6t
L = 13 + 6t + 6t



Then the 
ase of interest to us, 
M < 1, 
orresponds to t > 0. Now the Ka
 formula tellsus that a primary state in the Liouville theory of 
onformal dimension
�L = (1� rs)2 � (r2 � 1)4 1t � (s2 � 1)4 t

has a null ve
tor at level rs above it. Suppose we look at Liouville momentum states ofthis dimension: �12kL(kL �Q) = �LThen we get two null ve
tors in Fo
k spa
e, one over k+L > Q=2, the other over k�L < Q=2.Now the �rst step is to prove that the proje
tion from the Verma module to Fo
k spa
eis bije
tive in HL+, while in HL� it has a kernel 
orresponding to all the null ve
tors.This 
an be proved from a detailed 
onstru
tion of the null states in the Verma module,although we will not enter into those details here.We 
an now see how this result implies the theorem above, by a state-
ounting ar-gument. The Verma module has states above a primary of given dimension �, givenby L(L)�p1L(L)�p2 � � �L(L)�pn j�i:Similarly, the Fo
k module has states above a primary of given momentum kL, given by
�(L)�p1�(L)�p2 � � ��(L)�pn jk
i:The number of states at a given level is the same in both, sin
e it is given by the numberof partitions of the level. However, the Verma module may have states whi
h vanish onredu
tion to the Fo
k spa
e HL� (whi
h is possible only if they are both primary andse
ondary, i.e. null). In that 
ase, a new state must appear in the Fo
k spa
e, whi
h doesnot 
ome from the Verma module. But one 
an also predi
t the existen
e of su
h a statefrom the fa
t that the Fo
k spa
e is manifestly positive de�nite, and it has states in HL+whi
h are both primary and se
ondary. This means that there must be states in the dualspa
e HL� with whi
h the original state has a nonzero inner produ
t, in the norm indu
edby Eq.(28). Thus these new states in HL� must be neither primary nor se
ondary.Now we 
an begin to 
lassify physi
al states. The �rst thing to note is that all statesin the full Hilbert spa
e H whi
h are of the form
jprimaryiL;M 
 
1j0igh



are ne
essarily in the relative 
ohomology. Here we have simply taken an arbitrary primaryof the matter-Liouville system of dimension 1, so that after adding the dimension of the trueghost va
uum, one �nds total 
onformal dimension 0 as required. The proof of this result isstraightforward: it is easy to 
he
k that su
h states are always annihilated by QBRS, andone 
an then show that there is no state on whi
h the a
tion of QBRS produ
es this state.This result is analogous to a well-known result in 
riti
al string theory. Thus, 
lassifyingthe (1; 1) primaries of the matter-Liouville system will produ
e a 
lass of physi
al states,although as we will see shortly, these are by no means all or even most of the physi
alstates in the theory.It has been shown, in Ref.[14℄, that given the tensor produ
t of two 
onformal �eldtheories with total 
entral 
harge 26, a dimension (1; 1) primary of the 
ombined theorymust be a primary of ea
h theory separately. However, a 
ru
ial ingredient in this proofis the assumption that all states in ea
h CFT are either primary or se
ondary. If we nowseek to apply this result to the Liouville-matter system, then this assumption holds only inthe se
tor HL+, as we have just seen. Thus in this se
tor, a (1; 1) primary of the 
ombinedmatter- Liouville se
tor must be a primary of both matter and Liouville se
tors separately.Moreover, our analysis above also implies that a (non-null) primary of Liouville in HL+
an only be a pure momentum state, sin
e a new primary in the Fo
k module above amomentum state would mean that the proje
tion from the Verma module is not onto. Asa result, all states of the form
jprimaryiM 
 jk+L iL 
 
1j0igh (31)

are in the relative 
ohomology. One 
an 
he
k that they are in the absolute 
ohomologyas well. It is important to note that the lengthy dis
ussion above was ne
essary to derivethis �rst simple result, as otherwise we 
ould not rule out two kinds of states: those whi
hare primary in the 
ombined matter-Liouville theory but not primary in one or the other,and those whi
h are primary in both se
tors but not pure vertex operator states in theLiouville se
tor. Moreover, all this holds only in the se
tor HL+ so far, but we may nownote that repla
ing k+L by k�L in the above expression produ
es a state in HL� whi
h isstill annihilated by QBRS, and whi
h has nonzero inner produ
t with the above state.This means that all states of the form of Eq.(31)with k+L repla
ed by k�L are also physi
ala

ording to the BRS de�nition.At this point we have dis
overed pre
isely the \dressed" matter primaries whi
h wereintrodu
ed as an ansatz in the previous se
tion on fun
tional integral te
hniques. We noted



earlier that the semi-
lassi
al limit suggests a restri
tion to k�L only, but we worked withboth values of kL pre
isely be
ause the BRS pro
edure �nds both of them to give physi
alstates. A physi
al distin
tion between operators dressed by k+L and k�L is des
ribed inRef.[15℄.The �nal result seems intuitively appealing: a matter CFT 
oupled to gravity has aset of physi
al states in one-to-one 
orresponden
e with the original matter primaries, andthey 
an be thought of as having been dressed by gravitational intera
tions.Unfortunately, this intuitive result is misleading. We have only examined a spe
ial
lass of physi
al states, those of the form of Eq.(31)and their 
ounterparts inHL�. All thesestates are built on the true ghost va
uum, 
1j0igh. But the 
ohomology analysis shouldbe performed on all possible states, in
luding in parti
ular, states with ghost ex
itations(ex
luding of 
ourse 
0, sin
e we are studying the relative 
ohomology).The simplest indi
ation that there are physi
al states in se
tors of nontrivial ghostnumber with respe
t to the true ghost va
uum is the following. Let us assign ghost number+1 to the 
-ghost, -1 to the b-antighost, and 0 to the true ghost va
uum 
1j0igh. Now
onsider the state j0iM 
 j0iL 
 j0igh
orresponding to the SL(2; C) invariant va
uum state. In our 
onventions this has ghostnumber -1, and it is easily veri�ed that it is a physi
al state. Of 
ourse, an analogous stateexists in the 
riti
al string, and seems to play no essential role there, so one 
ould dismissthis example as not being very important. This might have been a reasonable point ofview, but for the following theorem, due to Lian and Zu
kerman[16℄:Theorem:(i) For 
M < 1 minimal models 
oupled to gravity, there are in�nitely many states in therelative 
ohomology of QBRS at every positive and negative ghost number. Theseo

ur in the following situation. Consider the Hilbert spa
e above a matter primarystate j rsiM and a Liouville momentum state jkLiL. If the 
onformal dimensionasso
iated to kL is su
h that it 
ould \dress" the null ve
tor at level rs above thematter primary, then this se
tor of the Hilbert spa
e 
ontains a physi
al state ofghost number �1. The sign of the ghost number is positive or negative depending onwhether the Liouville momentum is in HL+ or HL�.The meaning of \dressing" in this 
ontext is that the sum of dimensions is 1. Thusthe statement of the 
ondition is that if kL satis�es�rs + rs� 12kL(kL �Q) = 1



then there will be a physi
al state in the Hilbert spa
e.Now we know that in minimal models, there are two basi
 null ve
tors above a givenprimary, but these null ve
tors in turn have other null ve
tors above themselves and so on.Consider one su
h null ve
tor in this 
hain, whi
h is at a \distan
e" d from the originalprimary in this sense (the 
ase of the basi
 null ve
tors 
onsidered above 
orresponded tod = 1). In this 
ase we have:(ii) If the 
onformal dimension asso
iated to the Liouville momentum kL is su
h as to dressa null ve
tor at distan
e d in the 
hain above the matter primary, there is a physi
alstate at ghost number �d, where the sign of the ghost number is again determined bythe se
tor in whi
h kL lies, as above.Sin
e there are in�nitely many null ve
tors above ea
h primary of a minimal model,the theorem implies that non
riti
al string theory has in�nitely many physi
al states, with�nitely many at ea
h value of the ghost number. The dressed matter primaries are onlya small subset of these, whi
h are the easiest to 
onstru
t. An expli
it 
onstru
tion ofthe physi
al states at ghost number �1 is also known[13℄, and involves a new BRS-likeoperator whi
h interpolates between the positive and negative Liouville Fo
k spa
es.The physi
al meaning of the extra states at nonzero ghost number has been 
lari�edto a 
ertain extent by some re
ent developments, whi
h we mention here in brief. In a Fo
kspa
e des
ription of minimal CFT models[17℄,[18℄,[19℄ it is useful to introdu
e a nilpotentBRS-like operator, whi
h we will 
all QF , whi
h proje
ts out a very restri
ted set of Fo
k-spa
e states 
orresponding to the irredu
ible modules. It is this operator whi
h ultimatelyenfor
es the restri
tion to �nitely many primary �elds. Vertex operators with momentaoutside a 
ertain �nite set turn out not to be in the 
ohmology of QF . Now, 
ombining thisFo
k-spa
e theory with the Liouville Fo
k spa
e, one gets a rather symmetri
 version inwhi
h the matter and Liouville se
tors appear as two spa
e(-time) dimensions. However,one has to restri
t to the 
ohomology of two di�erent BRS-like operators, QF (whi
h isbuilt in to the des
ription of the minimal model) and QB (whi
h arises be
ause of thegauge-�xing of two-dimensional gravity).The extra states of nontrivial ghost number were studied in this formalism in[20℄and [21℄. The approa
h we des
ribed above 
learly 
orresponds to passing �rst to the
ohomology of QF and then to that of QB. Suppose, however, that we were to do it theother way. In this 
ase, it turns out that the physi
al states are all the dressed vertexoperators, in
luding those with momenta outside the \minimal table". Moreover, one
an make a 
orresponden
e between the \extra" dressed vertex operators arising in this



approa
h, and the states of nontrivial ghost number arising in the former approa
h. Thusin a well-de�ned sense, they are the same thing. Moreover, they are related to ea
h otherby a series of \des
ent equations" in the double 
ohomology.Thus it appears that on 
oupling to two-dimensional gravity, in�nitely many extrastates appear in the spe
trum. In the Fo
k-spa
e des
ription, these 
an be interpreted asthe quantized momentum states of a parti
le in two dimensions. It has been suggestedsome time ago[22℄ that a spa
etime des
ription of 
 < 1 string theory 
ould be the originof 
ertain Virasoro and W-algebra 
onstraints arising in matrix-model and topologi
alapproa
hes, and the existen
e of extra states seems to support this idea.
5. 5. Partition Fun
tion on a TorusIn this se
tion we return to the Polyakov path-integral formulation, and dis
uss howto evaluate Zh(A), de�ned in Eq.(24), for the 
ase h = 1, 
orresponding to a torus[23℄.The area term is modi�ed to a

ommodate non-unitary matter, as dis
ussed above.The �rst thing we 
an do on the torus is to 
hoose the 
at referen
e metri
, ĝab = Æab.The torus is then des
ribed by a parallelogram with sides 1 and � , where � is a 
omplexparameter with positive imaginary part, known as the modular parameter.In this and other 
al
ulations that we will do in the path integral, it is 
onvenient toseparate out the Liouville zero mode �0 and 
arry out this integration �rst[24℄. In genus1, the Liouville a
tion does not depend on the zero mode, and this part of the fun
tionalintegration redu
es to Z d�0Æ�Z d2� 	(min)M e�� �A� = 1j�jAFor the remaining modes, the integration is straightforward. It de
omposes into the prod-u
t of three 
onformal �eld theory partition fun
tions, for the matter, Liouville and ghostse
tors, ea
h of whi
h 
an be de�ned in the operator formalism asZCFT � tr�qL0� 
24 �q �L0� 
24�

The matter se
tor produ
es the minimal model partition fun
tion ZM (�; �� ) whi
h 
anbe found in the literature. The ghost and Liouville integrations are simpler sin
e theyinvolve fermioni
 and bosoni
 Fo
k-spa
e os
illators respe
tively. It turns out that ea
hghost integration produ
es a fa
tor of
�(q) � q 124 1Yn=1(1� qn); q � e2�i�



so that 
ombining the result from b and 
 ghosts and their antiholomorphi
 
ounterpartsgives a fa
tor j�(q)j4. The integration over the non
onstant modes of the Liouville �eld(the os
illators) produ
es j�(q)j�2. In addition a few fa
tors of �2 � Im(�) arise from thefa
t that the volume of the torus is �2. One eventually �ndsZ1(A) � 1j�jA Z d2� �� 322 j�(q)j2ZM (�; �� ) (32)
It is known[25℄ that the partition fun
tion for the (p; q) minimal model 
an be writtenas the di�eren
e of the partition fun
tions for a s
alar �eld 
ompa
ti�ed on two di�erentradii: Zp;q = 12 �Z(R = ppq)� Z(R =rpq )�where Z(R) � 1j�(q)j2 Xs;t q(s=R+tR)2=4�q(s=R�tR)2=4

Inserting this expression into Eq.(32) above and performing the � -integration overthe fundamental region, one �nds the torus partition fun
tion for string theory in theba
kground of a (p; q) minimal model to be
Z1(A) � (p� 1)(q � 1)(p+ q � 1)Awhere we have omitted a proportionality 
onstant independent of p; q and A. The area-dependen
e of this exa
t expression was of 
ourse predi
ted in Eq.(25). The above equationagrees with the 
orresponding result 
oming from matrix models.

6. 6. Correlation Fun
tionsIn this se
tion I will brie
y outline an approa
h to the 
omputation of 
orrelationfun
tions of 
ertain physi
al operators. The operators that we will 
onsider are (integralsof) the \dressed primaries" referred to earlier, whi
h 
an be written
��r;s(z; �z) � Z d2�pĝ 	r;s(�)ek�r;s�(�) (33)

where the Liouville momentum k�r;s gives the right 
onformal dimension to the vertex oper-ator so that the total dimension of the dressed primary is (1; 1). The label � distinguishesthe two values of k whi
h are respe
tively greater or less than Q2 . One easily �nds
k�r;s = 12 � (1� r)pt + (1� s)pt�



Te
hni
ally, one should have multiplied the dressed primaries by ghost fa
tors 
(z)�
(�z)to get physi
al states. But the ghost fa
tors are absorbed independently and their only
ontribution is to enfor
e an integration of ea
h of the operators above over the wholesurfa
e. Thus we 
an more 
onveniently work just with the integrated primaries. We willa

ordingly drop all referen
e to the ghost measures and a
tion in what follows. In addition,we will assume that there is some well-de�ned pres
ription to 
ompute the 
orrelationfun
tions in the matter theory, whi
h is a well-studied subje
t in CFT. This means weonly need to 
on
entrate on the 
omputation of 
orrelators of vertex operators in theLiouville se
tor.A useful approa
h in studying these 
orrelation fun
tions is to �rst perform the Li-ouville zero-mode integration, as was done for the 
ase of the torus partition fun
tion. Inthe presen
e of the 
osmologi
al 
onstant as well as operator insertions, this integration israther more nontrivial than in the pre
eding 
ase, but still 
an be done after making some
ontinuation, as we will see. We have
h nYi=1

Z d2�pĝ ek�i �i
= Z Dĝ� nYi=1

Z d2�pĝ ek�i �e�SL(�;ĝ)
where, as usual,

SL(�; ĝ) = 18� Z d2�pĝ �ĝab�a��b�+QR(ĝ)�+ �e���
Now de
ompose �(�) into a 
onstant part and a part whi
h has no 
onstant mode:

�(�) = �0 + ~�(�)
The part ~� must satisfy the 
ondition that its integral over the whole surfa
e vanishes.In terms of these new independent variables we 
an rewrite the Liouville a
tion:

SL(�0; ~�; ĝ) = 18� Z d2�pĝ �ĝab�a ~��b ~�+QR(ĝ)�0 +QR(ĝ)~�+ �e��0e�~��
= S0(~�; ĝ) +Q�0(1� h) + �8�e��0 Z d2�pĝ e�~�

where S0(~�; ĝ) = 18� Z d2�pĝ �ĝab�a ~��b ~�+QR(ĝ)~��



Also the vertex operators fa
torise:nYi=1
Z d2�pĝ ek�i � = nYi=1 ek�i �0 nYi=1

Z d2�pĝ ek�i ~�
= e(Pi k�i )�0 nYi=1

Z d2�pĝ ek�i �0
As a result, the Liouville path integral for 
orrelators be
omesZ Dĝ� nYi=1

Z d2�pĝ ek�i �e�SL(�;ĝ)
= Z Dĝ ~� nYi=1

Z d2�pĝ ek�i ~�e�S0(~�;ĝ) Z d�0 e((Pi k�i )�Q(1�h))�0e� �8� e��0 R d2�pĝ e�~�
Now the zero-mode integral is of the formZ 1�1 dx eAx�BeCx = 1C B�AC �(AC )

where this answer holds if A;B;C are real and positive. For other values of these 
onstants,the integral is not well-de�ned. A

ordingly, we de�ne the Liouville zero-mode integral tobe given by the right hand side of the above equation, for all values of the 
onstants, as akind of analyti
 
ontinuation. This gives the pres
riptionZ d�0 e((Pi k�i )�Q(1�h))�0e��e��0 R d2�pĝ e�~� = 1� � �8� Z pĝe�~��s �(�s)
with s = � nXi=1 k�i� + Q� (1� h) (34)

Thus we are left with the integral over the non
onstant modes:
h nYi=1

Z d2�pĝ ek�i �i = 1� � �8��s �(�s)Z Dĝ ~�Z pĝe�~� nYi=1
Z d2�pĝ ek�i ~�e�S0(~�;ĝ)(35)If s, de�ned in Eq.(34), were a positive integer, then this fun
tional integral would justbe a CFT 
orrelation fun
tion for a produ
t of vertex operators and s
reening 
harges ina free boson theory with a ba
kground 
harge iQ. Be
ause of the absen
e of zero modes,the momentum-
onserving delta-fun
tion is absent.



Unfortunately, s is never a positive integer. Note that the quantities Q and � whi
henter the de�nition of s are �xed by the 
entral 
harge and minimum dimension operatorof the matter CFT. Moreover, the k�i are those whi
h dress the matter CFT dimensions,whi
h are also determined. One 
an thus 
ompute s expli
itly for the 
ase of a (p; q)minimal model and a set of physi
al states of Liouville momentum k+ri;si and k�r0j ;s0j :s(p; q; r1; s1; : : : ; rn; sn; r01; s01; : : : ; r0m; s0m) =1p+ q � 1
0�(p+ q)(2� 2h�m� n)� nXi=1(pri + qsi)� mXj=1(pr0j + qs0j)1A

where 1 � ri; r0j � q � 1 and 1 � si; s0j � p � 1. We see that s is generi
ally negative andnon-integer.At this point it should be 
lear what the pres
ription will be, even though it may beless 
lear how to implement it. We simply evaluate Eq.(35) for positive integer s, (whi
h
an be thought of as 
ontinuing the matter 
entral 
harge away from its physi
al value)by treating the insertions of the area operator as s
reening 
harges, and performing astandard free-�eld 
omputation[26℄. If it is then possible to \
ontinue" the result be
kto negative fra
tional values of s, then this will be de�ned to be the answer. A 
lassof three-point 
orrelation fun
tions in genus zero, of the diagonal operators R ��ri;ri (seeEq.(33)) has been 
omputed in this approa
h, in the unitary minimal series ba
kgrounds,
orresponding to p = q + 1 in Eq..� The 
al
ulation in the matter se
tor is 
arried outfollowing the usual Feigin-Fu
hs pro
edure[18℄, while the Liouville part is evaluated bysimilar te
hniques after performing the steps des
ribed above. After a straightforward ifslightly tedious 
al
ulation, one obtains produ
ts of �-fun
tions whi
h depend on s, so thatone 
an then restore s to its physi
al value. The �nal result is simplest after normalizingthe 
orrelators to 
an
el out any overall fa
tors in the de�nition of the partition fun
tionand the physi
al �elds:h��r1;r1��r2;r2��r3;r3i2 Z0(�)h��r1;r1��r1;r1ih��r2;r2��r2;r2ih��r3;r3��r3;r3i = r1 r2 r3(q + 1)(2q + 1) (36)
The limitations in this 
al
ulation, to three-point fun
tions, diagonal operators andunitary models, appear to be purely te
hni
al. All of them have been over
ome to someextent in subsequent 
al
ulations.It is worth des
ribing brie
y one re�nement of the above method. Instead of treatingthe area term as the only type of s
reening 
harge, one may introdu
e the other dimension



(1; 1) Liouville vertex operator, 
orresponding to the other 
hoi
e of sign in Eq.(22), andallow both to be inserted in 
orrelation fun
tions[27℄. This is again a sort of self-
onsistentassumption, and in
reases the similarity with the 
omputation of minimal-model 
orrela-tion fun
tions in the Feigin-Fu
hs approa
h, where also there are two kinds of s
reening
harges. On
e the Liouville and matter se
tors have been brought onto a similar footing,it is natural also to make the 
ontinuation in 
entral 
harge simultaneously in the Liouvilleand matter se
tors, thereby always preserving the 
ondition that the total 
entral 
hargeis 26. In this approa
h there is a 
ertain 
omputational simpli�
ation: one only needs to
onsider negative integer numbers of s
reening 
harge insertions, and it is relatively easyto give an unambiguous pres
ription for treating these values.In addition to this simpli�
ation, there is a surprising and rather important result inthis approa
h (this was also independently observed in Ref.[28℄) - dressed primaries withindi
es (r; s) outside the \minimal table" (i.e., not satisfying 1 � r � q� 1, 1 � s � p� 1)give nonzero 
orrelators. This is at varian
e with the fa
t that su
h states in the minimalmodel se
tor alone give vanishing 
orrelators, whi
h is the reason why minimal modelshave �nite numbers of primary �elds. The point is that on analyti
ally 
ontinuing awayfrom physi
al values of the parameters, both matter and Liouville se
tors give generi
allynonzero 
ontributions. For the spe
ial 
ase of states outside the minimal table, the matter
ontribution vanishes linearly in some parameter as we return to physi
al values, butthe Liouville part a
quires a simple pole in the same parameter, so that the produ
tremains �nite. Thus, this heuristi
 pres
ription appears to give a nontrivial new pie
e ofinformation about minimal models 
oupled to gravity: there are in�nitely many physi
alstates of the form of \dressed primaries". In fa
t, as we have seen in a previous se
tion,these extra states appear naturally if one formulates the physi
al state problem as a double
ohomology. The above results are also in agreement with matrix models, whi
h is onemore reason to take them seriously.The genus-zero three-point fun
tion obtained in this approa
h, whi
h generalizesEq.(36)above to the 
ase of operators whi
h are not ne
essarily diagonal and need notlie in the minimal table, ish��r01;r1��r02;r2��r03;r3i2 Z0(�)h��r01;r1��r01;r1ih��r02;r2��r02;r2ih��r03;r3��r03;r3i = (r01 � r1�)(r02 � r2�)(r03 � r3�)(1� �)�(1 + �)
Here the minimal model is still in the unitary series, with p = q+1, and we have introdu
edthe parameter � � q+1q .



Finally, one 
an generalize to the 
ase of non-unitary (p; q) models. Here one en-
ounters the fa
t, noted above, that the 
osmologi
al 
onstant operator 
ontains not theidentity �eld in the matter se
tor but the operator of lowest 
onformal dimension. Thisintrodu
es a severe te
hni
al diÆ
ulty in doing the 
omputation as above. Re
ently ithas been suggested[29℄ that one 
an make an ansatz a

ording to whi
h s
reening in theLiouville se
tor is done by the dressed identity �eld, as in the unitary theories, with the dif-feren
e that this time one 
annot interpret this to be be the 
osmologi
al term. Again, thisappears to be a kind of self-
onsistent approa
h. Fixing the 
oeÆ
ient of the new s
reen-ing operators to be an appropriate power of the 
osmologi
al 
onstant �, one obtains agenus-zero three-point fun
tion whi
h redu
es to the 
orre
t result in the unitary 
ase (by
onstru
tion), but also gives the right answer when 
ompared with tree-level 
orrelatorsin the multi
riti
al one-matrix model. In this 
ase the result ish��r01;r1��r02;r2��r03;r3i2 Z0(�)h��r01;r1��r01;r1ih��r02;r2��r02;r2ih��r03;r3��r03;r3i = �2(r01p� r1q)(r02p� r2q)(r03p� r3q)(q + p)(q + p+ 1)
This generalizes the two pre
eding results.Some higher-point fun
tions have also been 
al
ulated in the unitary 
ase[30℄. It is
lear, however, that the 
ontinuum formulation of non-
riti
al string theory gives verylimited information after a lot of work, perhaps a disappointing 
on
lusion if one believesthat the 
ontinuum approa
h is the most basi
 one in string theory.
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