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ABSTRACT

-1 review a recently developed procedure to classify all conformal
field theories with a finite number of characters. This method involves -
writing the most general modular-invariant differential equation on the
moduli space of the torus, and looking for solutions which satisfy the
axioms of conformal field theory. On identifying these solutions with
the genus-1 characters, one can _then reconstruct the primary field con-
tent, the fusion rules, the correlation functions and the chiial algebra of
the associated theory. Contour-integral representation,s'of Feigin-Fuchs

type are proposed for the characters.
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1. Inf“réductio‘n_

Rational conformal field theories (RCFT) were discovered by Belavin, Polyakov
and Zamolodchikov (BPZ) [1], although the term “rational” was used in this context
later. These authors constructed a class of RCFT with Virasoro central charge ¢ < 1,
the so-called minimal series. Their procedure starts from highest-weight representa-
tions of the Virasoro algebra, and the existence of null-vectors in these representations.
The fields creating highest-weight states are called primaries, and their descendants
under the Virasoro algebra, secondaries. It is shown that the constraints due to the
presence of null vectors are strong enough to deduce the primary field content of the
theory. Conformal Ward identities and null vectors together then provide differential
equations for the correlation functions of the theory, from which the operator-product
coefficients and fusion rules can be worked out. The characters can be obtained from
the representation theory of the Virasoro algebra {2}, and the partition function is con-
structed in terms of these. In this sense, the ¢ < 1 RCFT’s are completely classified

and exactly solved on the plane.

The situation is rather different for ¢ > 1 or for Riemann surfaces other than
the plane. For Riemann surfaces of higher genus, the methods of [1] alone are not
sufficient to give ordinary differential equations for the conformal blocks in terms of
which the correlation functions are constructed. This is because insertion of the energy-
momentum tensor brings about deformations in the moduli of these surfaces [3], and
one gets partial differential equations in terms of locations and moduli. The question
of how to solve ROFT (other than those described by free bosons and fermions) on
Riemann surfaces of genus g > 0 was studied in [4-6]. Ref. 6, in particular, gives
a general procedure fo obtain ordinary differential equations for the correlators and
characters of any RCFT, on a Riemann surface of any genus. This method does not
rely in any direct way on the existence of null vectors, nor does it encounter any
limitations on the value of the central charge c. The differential equations in [1] for

correlators on the plane can be reproduced by this method.



So much for the solution of RCFT on general Riemann surfaces. As to the classifica-
tion of RCFT, most of the progress in the last few years involved finding representatlons
of extended chiral algebras which include the Virasoro algebra as a proper subalgebra.
Knizhnik and Zamolodchikov [7] studied RCFT based on affine Kac-Moody algebras
associated to compact simple Lie gfoups. The procedure of BPZ goes through, and pro-
duces a collection of infinite discrete series of RCFT, one for each compact Li¢ group G,
labelled by the value of the Kac-Moody central charge k. As before, the solution of the
theory on the plane relies on the existence of null vectors, this time for the combined
Virasoro-Kac-Moody algebra. This procedure was also extended to superconformal,

pa.rafermlon and W- algebras among others. (References o these can be found in {8] ).

Unfortunately, none of these procedures provided a general method to classify and
construct all rational conformal field theories. It became clear that a different approach
is needed for such a classiﬁcatién. Two important, and related, inputs became available
more recently. One was the observation, by Friedan and Shenker [9], that the characters
of RCFT can be thought of as holomorphic sections of a certain line bundle over moduli
space. The other was the remarkable discovery, by Verlinde {10}, that the fusion rules
are diagonalized by the matrix §;; which implements the modular transformation
T — —-% on the characters. Verlinde’s result implies certain constraints on the values
of the central charge and the conformal dimensions in an RCFT, given the number of

characters and the fusion rules. These were explored in {10] and {11].

An important ingredient that was lacking in approaches to RCFT based on “mod-
ular geometry” was the fact that, besides forming a section of a line bundle on moduli
space, the characters have another important property: their power-series expansion
in the variable ¢ = exp (27ir) involves coefficients which are positive integers. These
integers count the number of secondaries at a given level, with respect to whatever
chiral algebra is involved. Another relevant observation is that for the character over
the identity field, the overall normalization is fixed by the axiom that there is a unique

identity field in any quantum field theory. Thus the first term in the expansion of this



character must have coefficient unity.

These simple facts about RCFT were used in the work of Mathur, Sen and my-
self [12-13], to provide a complete and systematic classification of all rational conformal
field theories. This approaéh does not rely on specific chiral algebras and their null
vectors. Instead, it simply addresses the question of how to find all possible sets of
(multivalued) functions on moduli space which have the right properties to be the char-
acters of an RCFT. This approach, and some of its consequences, will be discussed in

the rest of this article.

2. Characters and Fusion Rules

The characters of a conformal field theory are defined by
Xi (1') = tr; qL°‘2%, g= e (2.1)

where Lg is the zero mode operator in the Virasoro algebra, ¢ is the Virasoro central
charge, and the trace is taken over all states above a given primary, generated by the
action of some (as yet unknown) chiral algebra. (We require this chiral algebra to
have only integrally moded operators. This not a serious limitation, since if there are
generators of fractional spin, one can always take combinations of them which have
integral moding, to form the “spectrum generating algebra”).
The partition function of the theory is then constructed from bilinears in the
characters:
n—1
Z(r,7)= Y X:(F) MyX;(7) (2.2)
i,j=0
Here M;; is a constant matrix. In what follows, we confine our attention to the case
when M;; is diagonalf.

1 1tis known [14] that whenever it is possible to construct a modular-invariant partition function from
a non-diagonal combination of characters, there also exists a modular-invariant diagonal combination.



Under modular transformations, the characters transform as

Xi(r+1)= gZrilhi— i)

1

Xi (———) = SijX; (7) (2.3)

T

A modular-invariant diagonal partition function Z (Eq. (2.2)) will exist if. 5;; leaves

invariant the matrix

M= . . (2.4)

\ ‘ M,/

The numbers M; appearing in the diagonal matrix M represent the number of distinct
primaries in the theory with the same character. For example, & primary may be
inequivalent o its charge-conjugate, but the two necessarily have the same character.
Some theories even have symmetries which are responsible for assigning the same
character to three or more primaries.

The fusion rules of a conformal field theory are defined to be positive integers
N;;x which count the number of distinct ways in which primaries ¢ and 7 (or their
descendants) can fuse to give the representation k. (For ease of notation we write all
indices as subscripts, although this is strictly correct only when the primaries are self-
conjugate). Verlinde [10,14] showed that, as matrices acting in the space of primary

fields, the S;; determine the fusion rules completelyt via the formula. . .

m—1 ' : ‘
Sias'aska
Nijk = E M—E{)-a.—_ (2'5)

a={
1’ Actually, the S;; which satisty Verlinde’s identity act in the space of primaries, which is generically
larger than the space of characters. The precise relation between these matrices and the ones defined
in Eq. (2.3} is explained in Ref. 13.




Finally, we examine the power-series expansion of the characters defined in Eq. (2.1 ).

This must be of the form

xi(r) = g5y alle® (:.6)
n=0

where h; is the conformal dimension of the primayy field above which the chiracter
“is built. The important point here is that the coefiicients ol must all be inegers
> 0, simply because they count the number of states at each level. In partic uiar,
ag") counts the degeneracy of the sth primary, and the axiom that the identity  be
non-degenerate implies that a.f)o) = 1. We will see below ‘hat in general our appro:i:h
does not automatically determine the normalization of vhe characters, as it is bas«d
on linear homogeneous differential equations. As a result, the preceding statement )

which fixes the normalization for the identity character, turns' out to be rather crucia’.

3. Modular-Invariant Differential Equations

We have seen that the characters of any RCFT form a set ot” holomorphic func-
tions of the parameter . Now, given any set of n such functions X', X1, Xn-1, we
can always view them as the independent solutions of a linear komogeéneous ordinary

differential equation in 7:

Xo s Xn_1 X
DTXO cre D‘an—] DTX

i . l=0 (3.1)
DiXg -+ DiXa-1 DX

Here we have used the covariant derivative on modular forms ol" weight r, defined in

terms of the second Eisenstein series, which is a holomorphic corwnection on moduli

space [15]: 5
(ry o O T
Dro= ar 6 Bz (7) _
1 s SRS
Eq (1) = const. - - 3.4
Zemst L fenry

m#EQnF£)



Clearly, Eq. (3.1) is satisfied if and only if X is a linear combination of the given

functions Xg, X1, Xn—1. The equation can alternatively be writien
n—1

S (-1 Wi (1) Dix(r) = 0 (3.3)
: : k=0 . :
where the functions Wy () are the minors in the expansion of the determinant above,

in terms of the last column.

We know that under modular transformations, the characters transform into lin-
ear combinations of themselves, as in Eq. (2.3), or in other words, they form finite-
dimensional representations of the modular group, 5L (2, Z). It follows that the Wron-
skians W} transform as modular forms of weight n (n + 1) — 2k, as one can check using
the fact that the covariant derivative D increases the weight of a modular form by
2. The fact that the W) are actually modular forms, in the sense that they are holo-
morphic everywhere in the interior of moduli space, follows from the holomorphicity
properties of the characters.

It is convenient to rewrite Eq. (3.3) in monic form. Dividing out by Wy, and

defining ®5 = (~1)""F (Wy/W,.), we have
n—1

DX+ Y ®xDEx =0 (3.4)
k=0

Clearly, the &, transform like modular functions of weight 2(n — k). However, unlike

the W, the &, need not be modular forms. In general they have poles, wherever W,
has zeroes. For the classification which follows, the number of zeroes of W, will play
a crucial role, and we compute it here.

This number can actually be fractional, since moduli space has orbifold points
which can be encircled by traversing an angle of =/3 or = rather than 27. However,
precisely for this reason, it must be of the form /6 where { is an integer. Now it is a
standard theorem [15] that the number of zeroes and poles of a weight-k modular form
(including the behaviour as  — oo) differ by &£/12. We know that each character has

the asymptotic behaviour

X: (1) — q"f’i‘i‘h‘ as g—0 (3.5)



From this it follows that the number of zeroes of W, is given by
£=M+Ef_2h‘. (3.6)
. i

(Recall that n is the number of characters). From what was said above, I/6 is also the
maximum number of poles that each &; can have.

The classification procedure requires one to first choose a value for n and I. Then
one finds the most general modular-invariant differential equation consistent with these
values, and imposes the requirements that the g-expansion coeflicients be integers, and
that the identity be non-degenerate.

Suppose first that we choose [ = 0. This means that the $; have no poles. Then
each ®; is a genuine modular form, of weight 2{n — k). It is a fundamental result
in the theory of modular forms thet the space of forms of a given weight is finite
dimensional. In fact, the number d; of independent modular forms of weight k is
given by the formula [15]

dy, =0, k odd

d,,:[-’i], k=2 mod 12

12 (3.7)

k .
di = {—}:2_ + 1} otherwise

where [z] denotes the integer part of z. Moreover, a convenient basis for the space of

modular forms of weight k is provided by the Eisenstein series E4 and Eg, where

1
Eq; = const. —_— 3.8
2 m,nze:z (m + m')Z‘ (3.8)
- (m,m)#(0,0)

The space of modular forms of weight & is generated by all monomials of the form
E2E} with the integers a and b satisfying 4a + 6b = k.

Thus the most general modular-invariant differential equation does not contain
arbitrary functions, but only a finite number of arbitrary constants. This is what

ultimately makes our analysis tractable. A similar analysis goes through for [ # 0,



-although that situation generally involves more parameters. As an illustration of the
discussion above, we may write down the most general modular—in_vafiant differential

equation in the simplest non-trivial case, namely, [ = 0 and n =2:
DiX(7) + pum’Es(T)X (1) = 0 (3.9)

This involves only a single arbitrary constant, . In the next section we show how to

analyse this equation to extract all possible RCFT’s with two characters (and ! =0).

4. Integrality Requirements and Classification

The first step in examining Eq. (3.9) is to rewrite it in terms of ordinary derivatives.

From the definition of D, (Eq. (3.2)) one gets
a%x (r) — ‘—;EEg (7)8:X (7) + pm? By (1) X (7) = 0 (4.1)

Now if the solutions of this equation are to be characters, they must have power-series

expansions of the form
. oS .
xi(r) ="y al'q" (4.2)

n=0
for some integfal coefficients agf ), and some number ¢, which must in fact be rational,
since it corresponds to éfz—khi. We insert this power-series in the differential equation,
along with the power-series expansion of the Eisenstein series
o
Ey(r)=1+ Z Eging"” ' (4.3)
n=1

To lowest order, the differential equation gives .

2 ' ‘ : :
4o’ - 3@ b =0 C (4.4)

This is the indicial equation, which can be solved to determine o in terms of u:

a‘: 1—12 (1 * \/1—]—_33_6-;) | | o (4.5)
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Defining z to be the positive sqﬁare root ++/T + 36, we can identify the two leading

power behaviours allowed by this equation

1 ¢
M =pt-e)=y (4.6)
o= e (l4z)=h— — )
T 12 Y

which determines the central charge ¢ of this two-character theory, and the dimension

h of the non-identity field(s)

c=2(z-1)
1 (4.7)
hﬂ“ﬁ-a‘

Thus we already have the information that the free parameter p in the differential
equation (4.1) is such as to make z = /T 36y rational. Note that in Eq. (4.6) we
have identified the two values of the index « in a specific way, based on the assumption
that the dimension h is positive. This is necessarily so only in a unitary theory, and
one should always examine whether the opposite identification is also possible, giving
rise to a non-unitary two-character RCFT. Our analysis has no particular prejudice in
favour of unitarity.

Assuming nevertheless for definiteness that Eq. (4.6) holds, we proceed to examine
the next order in ¢ in the series solution of the differential equation. Labelling the

identity character and its expansion coefficients with the superscript (0}, we find

ol 102?42z 12

(4.8)

Now all the an’s are positive integers, so the right hand side of this equation must
be a positive rational number. But, as mentioned earlier, the identity character is
non-degenerate, so ag)) is in fact equal to unity, with the result that the right hand
side is actually a positive integer. This turns out to be a very strong constraint on the
allowed values of x4, and leads to a discrete set of allowed values. This comes about as

follows.
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Denote by m; the positive integer to which both sides of Eq. {4.8) are equal.

Solving for z, we get

1

.’l}=“2"6

{—(m1+2):t\/(m1'+2)2+240(m1+2)] O (49)

Since z is rational, the square root on the right hand side must be rational. But m;
is an integer, so this square root can be rational only if it is an integer. Denoting this

integer by k, we have the diophantine equation
(ma +2)° + 240 (m1 + 2) = k7 (4.10)

which can be rewritten
(mq +122)® — k? = (120)° | (4.11)

Factoﬁzing the left hand side, we need to find all positive integeré k,my such that-
(mq + 122 — k) (my + 122 + k) = (120)° (4.12)

which is clearly a finite set! In fact, the allowed values for (mi1 + 122 — k) are pfecisely
2, 4, 8, 16, 32, 6, 18, 10, 50, 30, 90, 12, 36, 20, 100, 60, 24, 72, 40, 48, 80, 96. (The
order in which these integers are written here looks less arbitrary if we work iﬁ terms
of their prime decompositions). T_he‘n,ext step is to numerically check whether, for
each of these values of m; and k, the higher-order coeflicients ay, a3 etc. turn out to
be integers. It looks as if this involves an inﬁnite amount of calculation, since we have
no guarantee that all coefficients will be intégers after only chécking a finite number.
But in fact, one finds on doing the caiculation that once the first few coefficients are
integers, all the remaining turn out to be integers as well, upto about 80 terms in the
power series expansion. _ | |

Clearly, something of fundamental number-theoretic significance is going on. Ae-
tually, for modular forms of a given weight, it can be shown [16] that the integrality
of some finite number of expansion coefficients suffices to prove that all the remaining

coefficients are integral. To my knowledge, no corresponding theorem has been proved
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for finite-dimensional representations of the modular group. We conjecture that such
a property holds.

Checking the higher-order coefficients in this way rules out a number of possi-
ble values in the list above. For those values which survive, it is straightforward to
compute the central charge and the conformal dimension of the non-identity field(s).
Remarkably, almost all the values obtained this way lead one immediately to identify
the corresponding model with a known two-character RCFT. The results are listed in
Table 1. We have not listed the values of j, the parameter in the differential equation,
as these are not very illuminating. They can, of course, be deduced easily from ¢ and
h via Eq. (4.7). In the table, we have included the actual number of primary fields
other than the identity present in the theory, denoted by the integer M. This can be
independently calculated after solving the differential equation, and will be discussed
below. - - e

All the entries in this table, except for the column labelled M (the number of
non-identity primaries) have been obtained by the methods described above. The
identification with known two-character theories is straightforward, and it is quite
remarkable that a list of these theories has been obtained just from considerations
of modular geometry and the integrality requirement on the coefficients in the g¢-
expansion. At this stage, it seems a bit surprising that there is an entry with ¢ = ?‘5—8,
since no such two—cha.raéter theory is known. It is also puzzling that the one-character
Ej theory has made an appearance. These and other facts will be explained in the

next section, where we analyze the consequences of this classification.

5. Reconstruction of RCFT from Modular Geometry

We have found all the values of the parameter x in the differential equation (4.1)
for which the solutions have the right properties to he the characters of an RCFT. It
does not follow as yet that these are actually the characters of a consistent theory. On
the other hand, we also cannot rule out the possibility that a given set of characters

describes more than one distinct theory.



13

Table 1: Two-character theories

m1 c h M Identification
1 1(-%) (-1 1 non-unitary minimal
3 1 1 1 k=1 SU(2)
8 2 : 2 k=1 SU(3)
14 ¥ 2 1 k=1 Gy
28 4 } 3 k=1 50(8)
26 3 —
52 2% : 1 k=1F,
78 6 2 2 k=1 Eg
133 7 3 1 k=1 E;
38 4
190 % ¢ ? ?
248 8 2 0 k=1 FEg

To analyze this situation in detail, it is helpful to first make a change of variables
which maps moduli space to the complex plane. This is achieved by the transformation

93 (1)
A e _..,.2..._. 5_1
| 7 () 54
which actually maps six copies of the fundamental region in Teichmiiller space to the

complex plane. In terms of this variable, the modular transformations become

T: 7-7+1 < A- —A—A-—i
| . - (5.2)
S: 1 - e A—-1—2A
1t is easy to check that the differential equation (4.1) is mapped onto -
. 82X 2 0X

M(1-X) 53 (1«»»)\)(2/\—1)5+p(A(1-)\)—1)x:0 (5.3)
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This is a Fuchsian differential equation with regular singular points at 0,1 and oo. It
can be checked that it is invariant under modular transformations. '
The solution to this equation can be conveniently written down in terms of hyper-

geometric functions. We have -

AN 1 s 1 e z )
x"‘( 16 ) Flzg-gr37 2117312

(5.4)
xlzN(Ll) F(1+£ ﬂ+§|1+§,,\)

16
Here N is & normalization constant, and z = ++/1 + 36p = 1 + § as before. We have
tentatively identified the upper expression with the identity character, as it is the one
with the leading power behaviour in the limit ¢ — 0. The reverse identification is also
possible in principle, if one wishes to classify non-unitary theories as well.
The first useful result tha}: one can deduce from this solution is the matrix .S,-,-
which implements the modular transformation § (see Eq. (5.2)) on the characters.
From standard textbooks on hypergeometric functions, one finds that this matrix (the

“monodromy” matrix for these functions) is

r-Hr@ e TP
i e I =

2 6

N __T+35)T(3) T(1+%)T(-
(16 T(3+§)T (3 +5) fé:%%,r:%

S = (5.5)

3
Thus we have at once written down the modular transformation matrix for all the

theories listed in Table 1.

The role of the normalization constant N for the non-identity character needs to
be explained. We have defined this so that it corresponds to the degeneracy of the
associated primary field. For the identity character, we know that the number of
states at the lowest level is 1, and it has been normalized accordingly. There is no
such information for the other character, and we simply choose the integer N so that
the coeflicients in the ¢-expansion are integers. This does not fix N uniquely, but it
allows only a finite number of possibilities, and these can be subjected individually to

the consistency checks described below.
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As mentioned in Section 2, the diagonal matrix left invariant by Sij determines

the modular-invariant partition function of the theory. In the presen.t case this is a

(é 13[) | | (5.6)

and the modular-invariant partition function is

2 % 2 matrix .

Z(r,7) = Xo (1) P + MIxa () (8.7)

‘This means that M must be a positive integer, corresponding to the number of non-
identity primaries in the theory. Working this out for each case, 6ne gets the column
labelled by M in the table.

The multiplicities of the primaries can be readily understood. The fundamental
representations of SU (3) ahd Eg are complex, so that the corresponding primary fields
appear along with their complex conjugates, which of course have the same character.
For SO (8), the well-known property of triality tells us that there are three primaries
with the same character: the fundamental, the spinor and the spinor’. The case of Eg
is more subtle. We were unable to find a sensible value of N in this case, buf it turns
out that for any value of N, the matrix § leaves invariant a matrix of the fqrm given
in Eq. (5.6}, with M = 0. It follows that the square of the identity character is itself
modular-invariant, and we actually have a one-character theory. | |

The next step is to find the fusion rﬁles of the primary fields, using Verlinde’s
theorem [10]. For the theories which have M =1in the table,. this is straightforward,
from Eq. (2.5). But if M > 1, we need to find the (1+ M) x (1 + M) matrix §
which acts in the space of primaries, which in these cases is larger than the space of
¢haracters. A procedure to do this is described in Ref. 13. |

A remarkable property of Verlinde’s identity is that whereas the entries of the
matrix S can very well be fractional, or even irrational, the combinations of these
entries which give the fusion-rule coefficients N;;; must be non-negative integers. This
is an important consistency check on characters which have been obtained solely from

considerations of modular geometry.
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The fusion rules have been calculated in Ref. 13 for every theory in Table 1. This
calculation has actually been done twice in each case — once for the identification
of the identity character made in Eq. (5.4), which is the only valid one for unitar;
theories, and once for the reverse identification, which could hold if the dimension
h is allowed to be negative. It turns out that in every case at most one of these
possibilities is consistent in the sense that the Ny turn out to be non-negative and
integral. One case where neither identification works is the ¢ = $ solution. One
identification gives negative fusion-rule coefficients, while the other necessarily leads
to a degenerate identity field. We conclude that there is no consistent two-character
theory with ¢ = %, despite the fact that a pair of characters could be found with the
right modular and integrality properties. For the other cases, the fusion rules obtained
in this way confirm the identification with known two-character RCFT’s which was
originally made just on the basis of the values of ¢ and A.

After this, one can attempt to study the correlation functions of the theories discov-
ered using modular geometry. This has been discussed in Ref. 13, along with a method
to recover the chiral algebra of the theory (or at least the spectrum-generating algebra)
from the characters. For reasons of space, these techniques will not be described here,
although they are important ingredients in the complete reconstruction of RCFT’s
from modular geometry. Another question which is not addressed here is the problem
of constructing a table é.na.logous to the one presented above, for theories with, for ex-
ample, | = 0 and n = 3 (three characters) or theories with { # 0 and n = 2. This turns
out to be considerably more complicated, although some progress has been made.

In the next section, we turn instead to the question of solving the differential

equations for theories with more than two characters.
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6. Contour-Integral Representations for Characters

We have seen that modular-invariant differential equations for characters of RCFT’s
can be solved, in the two-character case, by mapping moduli space to the ¢omplex
plane. The solutions are hypergeometric functions,. and because their monoadromy
properties are known, we can find the important matrix §;; which implements the
modular transformation 7 — -% on the characters. This matrix in turn permits us to
obtain the primary field content and the fusion rules of the theory.

One may ask to what extent an analogous procedure can be carried out for theories
. with more than two characters. This question was first addressed in [13] and studied
in detail in [17). We found that for a large class of RCFT’s, the characters can be
described in terms of Feigin-Fuchs (FF) contour-integral representatibns [18-19] on the
complex plane. Since hypergeometric functions bave contour-integral representations,
the FF integrals can be thoﬁght of as generalizations of hypergeometric functions
suitable for the description of conformal characters. Most important, there exists an
explicit procedure {18-19] to determine the monodromy matrices for the functions
_defined by FF contour 1ntegrals i |

Consuier first the two character theones which we have chscussed in preceding
sections. We show that then: characters wh:ch were eatlier written down as hypergeo—
~ metric functions, can be expressed as contour integrals. We i nna,gme that moduli space
has been mapped onto the complex plane as in the previous sectmn, via the function

A(7) defined there. Consider now the pair of functions

Xo(X) = (A(1 = A0/ f T a (- 1) (- N)°
1
| (6.1)
X1 (M) = (A(1 = a)~e 073 f ' dt(t(t— 1) (¢ — AN°
0 .

These have the following properties, which can be easily checked:
(i) Under modular transformations, whose generators are given in Eq. (5.2), they go
into linear combinations of themselves with constant coefficients.

(ii) In particular, they are eigenstates of T with eigenvalues of unit modulus.
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(iii) As X — 0 they have the power behaviour:

Xo ~ A—e-(1/3)
' 6.2
Xq ~ Aﬂj+(2/3) ( )

Property (i) implies that X and X can be thought of as the linearly independent
solutions of a modular-invariant second-order differential equation. Property (ii) tells
us that, when re-expressed as functions of ¢, they have expansions in integer powers
of ¢ up to an overall multiplicative factor of the form ¢”. Thus Xo and X; satisfy some
of the necessary conditions to be the characters of a two-character RCFT. If they are
indeed consistent characters, we can identify the central charge ¢ and the conformal

dimension of the non-identity field(s) h using property (iii):

e g1
Sy oh=a+ s
12 3
It follows that
c 1
2-2—4-:'—’7:-1"6'—0 (64)

Now we have already seen that the most general modular-invariant second-order
differential equation is Eq. {4.1). Since the functions described above in Eq. (6.1) are
solutions of this equation, we can relate the constant ¢ appearing in these functions to
the constant p which specifies the differential equation. One easily finds, by inserting

the leading power behaviours into Eq. (4.1}, that
p=a’+a+ - (6.5)

From the analysis in the preceding sections, we can conclude that whenever y has the
right value to describe an ROFT, the value of a obtained from the above equation
specifies a pair of contour integrals {Eq. (6.1)) which are the characters of this theory.
(The parameter z introduced in Section 4 is easily seen to be related to a by z = 6a+3).

It is noteworthy that we have re-obtained the solutions of the modular-invariant

second order differential equation, this time without making use of any information
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about hypergeometnc functions. What is more, by deforming contours {18-19] it is
possible to compute explicitly the matnces which describe the linear transformation
undergone by these contour integrals under A — 1 - A. One obtains, of course, the
matrix S of Eq. (5.5). .

Note that in this case the number of parameters in the differential equation co-
incides with the number of parameters in the integrals Eq. (6.1), so that there is
a one-to-one correspondence between the possible second-order differeniial equations
and the set of FF integrals Eq. (6.1).

Generalizing to contour-integral representations with two contours, one can find
sets of three functions which go into each other under modular transformations, and are
therefore candidates for the characters of three- character theories. These functions
depend on two independent parameters, while the corresponding modular-invariant
third-order differential equation also depends on two parameters. In fact, using the
notation and the properties of modular forms discussed in Section 3, we find that the

_most general modular-invariant third-order differential equation for theories with [ = 0
is |

DIX(7) + 1 By (1) DeX (1) +ipem Eg (1) X (7) = 0 (6.6)
In terms of the variable A on the complex plane, this becomes
3%%52VU—A)@A—UZ;

A= N R - ) (= AL - X) -2} 5

—tua (A -1 (A+1){(A-2}Xx=0

It was found in [13] that the characters for all three-character RCFT’s with [ =0

A3 (1= )
(6.7)

can be represented in terms of Feigin- Fuchs contour integrals. Instead of writing the
explicit forms for the contour integrals in the three-character case, we immediately
turn to the description of the general FF contour integrals, from whiéh this special
case can be easily deduced. '

The general FF integrals appropriate to represent characters turn out to have

ny contours of one type, labelled by integration variables £; (¢=1,-- ,n1), and ng
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contours of another type, labelled by = (¢ =1,---,ny}. They are described by two

independent parameters ¢ and b, and have the form

nl

~ (A=) fHdt‘ CICIEERIEE) H(r, _-~1)( Y

=1

T[] —) )2 ] (s - Ol | (ti - 75)"
iJ

i<k j<i
= (A1 =A)N*T(A)
(6.8)

where

r

b
a= |:-—'ﬂq (14 3a) —n2 (1 + 3b) + -gn1 (n1--1)+ Enz (n2 — 1) + 2nyns (6.9)

I =

It is easy to check that the integrals so defined are invariant, upto a change of
integration limits an.d possible phase factors, under the modular transformations A —
1-M A= Ai_l Invariance of the integrand upto a phase under the first of these
transformations is manifest. A simple calculation shows that the second transformation
also has this property; in fact this determines a in Eq. {6.9). The other exponents in
the integrand are fixed by the requirement that there be no simple pole in any (£; — 7;),

which permits us to deform the ¢; and 7; contours through each other.

Next we must choose the limits of integration. The integrand has a singularity
whenever any of the contours passes through 0,1,00 or A. These four points can be
connected by two independent contours. These should be chosen so that the trans-
formation T : A 737 leaves the integration limits unchanged, so that each integral
will go into itself upto a phase. Since T interchanges the points 1 and oo and leaves 0
fixed, the two independent choices of contour should be 0 to A and 1 to 0o. Accordingly

we define J4p to be the integral with 4 contours of type f; between 0 and A and B
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contours of type 7; between 0 and A:

A A oo o0 .
JAB=(,\(1—A))“f dtl---f th/ th+1--~/ dtn,
0 ¢ 1 1

A A oo &0
j dry«: ] drp / drgiy--- / dtn,
0 0 1 1

I et = 1)t = 0 T (75 (g = ) (75 = X))’
i=1 j=1

-t ™[] - [ =)
<k g<i 1,3
= (A(1=A)*Tap ()
Since we have 0 < A < ny and 0 < B < ny, there are altogether (n; +1)(nz + 1)

(6.1LY)

independent functions J4p which go into each other under modular transformations.

" Consider now the behaviour of each J ap a8 A — 0. First let us look at the functions
Jap defined in Eq. (6.10) above. To find the A — 0 behaviour, one simply redefines
the integration variables for those contours which run from 0 to A by scaling so that

they run from 0 to 1. In this way one gets
Jap~ A48 a5 A0 (6.11)

where

Apap = A{1+2a)+ B(1+2b) - %A(A—l) — gB(B —1)—2AB {6.12)

It follows that the FF integrals J45 go like
Jag ~XotBaB a3 XA 50 (6.13)

where o is defined in Eq. {(6.9) and A4p in Eq (6.11). Notice in particular that
Agp = 0. Also note the identity:
Ny h2 1
33 e+ Aup) = grln- 1) (6.14)
A=0B=0
where n = (ny + 1) (ng + 1) is the number of integrals J 4. This identity follows from

a straightforward computation.
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A character X; associated with a primary field of conformal weight h; behaves in
the A — 0 limit as
X ~ A~ Tr+2hi (6.15)

If we identify the characters with the FF integrals, then we must identify the set of
numbers {—3 + 2h;} with the set {@ + A4p}. Then the identity Eq. (6.14) satisfied

by a and the A 4p translates to the relation
_nc o on(n—1)

Note that the Feigin-Fuchs integrals with any number of contours always depend
on only two parameters a and b, besides the integers n; and n, specifying the numbers
of contours. Thus, given a known RCFT with its value of ¢ and spectrum of dimensions
hi, it is not obvious that a set of contour integrals can be chosen such that each one
has the right power behaviour near A = 0 to be one of the characters. Even if such a
set can be found with the right leading behaviours in A, it does not always follow that
they are actually the characters of the theory. This would be so if we could show that
the leading behaviour of the characters as A — 0 completely determines the differential
equation, since in that case the FF integrals and the characters would be the solutions

of the same differential equation.

In the simple cases of two- and three-character theories, the number of constants
in the most general modular-invariant differential equation is n — 1, where n is the
number of characters. Since the FF integrals always give | = 0, there are precisely
n — 1 independent leading power behaviours in A. These suffice to determine the
parameters in the differential equation, from which it follows that the FF integrals are
the characters, upto normalization. To check how far this reasoning works, we need to
know the number of independent constants in a general nth order modular-invariant
differential equation for an [ = 0 theory.

Tt is most convenient to study this problem in terms of the original modular param-

eter 7. The differential equation when written in monic form has coefficient functions
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which are modular forms, with no singularities in moduli space. We have already seen
the formula for di, the dimension of the space of modular forms of a given weight k
(Eq. (3.7)). As we saw in Section 3, the nth order differential equation for [ = 0 can

be written, in monic form,

k=n

DX (7) + E & (1) D X (r) =0 ' (6.17)
k=1 ~

where ®; () is any modular form of weight 2k. Then the number of independent

parameters ¥ is just
N=Y dn (6.18)

This is equal to 7~ 1 only for n < 5, while for large n it grows quadratically. Thus, for
n 2 6, computing the leading behaviour in A of the FF integrals does not completely
determine the diﬂ'erexitiélequatioﬁ which they satisfy, and so is insufficient to prove
that they are the characters. To demonstrate the equivalence of FF integrals and
characters for n > 6, we need to compute a number of terms in the power-series
eii)ansion of some FF integral in the variable g, equal to the difference N — (n — 1)
betwefén the number of parameters in the differential equation and the number of
independent leading behaviour of the FF integrals, and show that they match with
the expected power series expansion of the character. |

This has been carried out in detail in Ref, 17. It is shown there that one can find FF
integrals with the right leading behaviour to be the characters of several infinite chains
of RCFT’: the A, D and E series SU (2), current-algebra theories, the SU (n);_,
‘current-algebra theories and the A and D series ¢ < 1 minimal theories. All these
theories have [ = 0. As one can see from the formulae quoted above, for theories with
upto five characters, this matching alone guarantees that we have found the solutions
of the corresponding differential equations, which proves that the FF integrals are the
characters. In the more general case, it has been checked in Ref. 17 that the first
subleading powers in the FF integrals are also consistent with the hypothesis that

they are the characters of the corresponding theories. A check of their monodromy
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properties, and comparison with the known values of the modular transformation
matrices in these cases, lends further support to this hypothesis. '

If modular-invariant differential equations provide a powerful framework in which
all rational conformal field theories can be unified, it seems equally likely that Feigin-
Fuchs integrals serve to unify the characters of the RCFT’s in a way which permits

computation of their essential properties.

7. Conclusions

In this lecture I have described an approach to the classification and reconstruction
of rational conformal field theories. The basic premises of this approach are that
characters of RCFT's are sets of functions which transform into linear combinations
of themselves under modular transformations, and that their power-series expansion
in ¢ has integer coefficients. These properties, and the requirement that the identity
field be non-degenerate, lead to a systematic classification of RCFT’s in terms of two
parameters: [/6, the number of zeroes of the Wronskian in the interior of moduli
space, and n, the number of characters. The integrality requirement on the expansion
coefficients leads to diophantine equations. The relevant properties of an RCFT: the
primary field content, the fusion rules, the correlators and the chiral algebra, can be
reconsiructed starting from the characters. Explicit formulae for the characters can
be obtained in terms of Feigin-Fuchs contour integrals.

Clearly, the collection of RCFT’s forms a rich and beautiful structure, and we
have yet to unravel all of its important properties. It remains to be seen what new
information one can gain from the classification scheme proposed here, of relevance to

string theory and to critical phenomena in two dimensions.
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