Cytological Studies in the Genus Tephrosia Pers.

Kusum Agarwal¹ and P. K. Gupta

Department of Agricultural Botany, Meerut University, Meerut, India

Received January 8, 1982

Genus Tephrosia belongs to tribe Galegeae of family Fabaceae. It is represented by 400 species (Hutchinson 1964) which are distributed in warmer regions of the world especially Africa and tropical Australia. Very little cytological work has been done so far (about 12%) in the genus and previous studies mainly involved chromosome counts. In view of this an attempt has been made to study meiosis and root tip mitosis in available species of this genus.

Material and methods

Material of eight species was obtained in the form of seed from different sources which are listed in Table 1. Plants were raised in pots at Meerut University Experimental Farm. Dormancy of seed was broken by treating the seed with concentrated sulphuric acid. Voucher specimens are deposited in the Department of Ag. Botany, Meerut University, Meerut.

For meiosis, flower buds were collected in forenoon, fixed for at least 24 hours in Carnoy's fluid (absolute alcohol: chloroform: acetic acid, 6:3:1) and stored in 70% ethyl alcohol. Anthers were squashed in 2.0% acetocarmine.

For mitosis, young and healthy root tips were pretreated with saturated solution of α -bromonaphthalene for about one and a half to two hours, fixed in acetic alcohol (1:3) for 24 hours and squashed in 2.0% acetocarmine.

Photomicrographs were made from temporary preparations and measurements (length and width of chromosomes) were made with the help of Olympus micrometer eye piece. TC1 % and TF % were calculated as

$$TC1 \% = \frac{\text{Total length of a chromosome pair}}{\text{Total length of chromosome complement}} \times 100$$
$$TF \% = \frac{\text{Total length of all short arms}}{\text{Total length of chromosome complement}} \times 100$$

Results

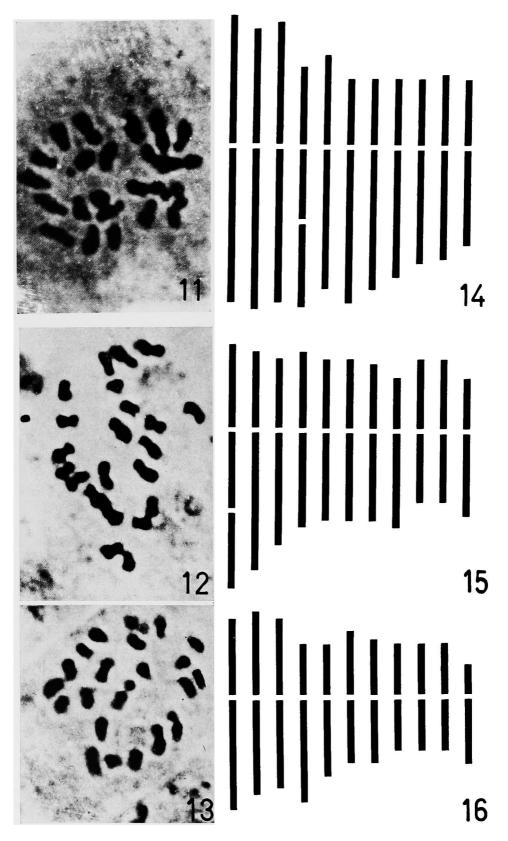
1. Meiosis

Meiosis was studied in eight species (Figs. 1-10). Chromosome associations and chiasmata frequencies are presented in Table 1. It is obvious that all the collections were diploids having n=11 (Table 1).

¹ Present address: Department of Botany, R. G. (Post-graduate) College, Meerut, India.

e 1. Gametic chromosome numbers and chiasmata frequencies of 8 species of Tephrosia	Pe	
\circ 1. Gametic chromosome numbers and chiasmata frequencies of 8 species of Te	rosia	
e 1. Gametic chromosome numbers and chiasmata frequencies of 8 species of		
e 1. Gametic chromosome numbers and chiasmata frequencie	۲. س	
e 1. Gametic chromosome numbers and chiasmata frequencie	0	
e 1. Gametic chromosome numbers and chiasmata frequencie	specie	
e 1. Gametic chromosome numbers and chiasmata frequencie	8	
e 1. Gametic chromosome numbers and chiasmata frequencie	of	
e 1. Gametic chromosome numbers and chiasmata f	ncie	
e 1. Gametic chromosome numbers and chiasmat	ff	
e 1. Gametic chromosome numbers ai	lat	
e 1. Gametic chromosome numbers ai	jia	
e 1. Gametic chromosome numbers ai	J.	
e 1. Gametic chromosome nu	and	
e 1. Gametic chro	numbers	
e 1. Gametic chro	some 1	
e I. Gar	hromo	
e I. Gar	Ö	
e I. Gar	ΪĊ	
e I. Gai	ũ	
e 1.	5	
Table 1.	0	
	Table 1.	

T. adunca Berth 1822 T. adunca Berth 1823 T. bracteolata 1823 Guill. et Perr. 1824 T. maxima Pers. 1825 Bojev ex Baker 1826 T. noctiflora 1825 Bojev ex Baker 1826 T. noctiflora 1826 Welw. ex Baker 1826 T. ovygona 1826 Velw. ex Baker 1826 T. polystachya 1828 L. Pers. 1829 Vat. incana 1829 Vat. incana 3.04 Species 1 T. bracteolata 3.04 T. bracteolata 1.00.00 11.61	(n)Xta/PMCXta/bivalentDoute11 $ -$ Southern Region11 16.25 1.47 Southern Region11 16.25 1.47 CSIRO, Canbern11 21.00 1.99 CSIRO, Canbern11 20.30 1.84 Southern Region11 20.30 1.84 Southern Region11 19.65 1.80 Southern Region11 17.62 1.80 Southern Region11 17.62 1.60 CSIRO, Canbern11 20.58 1.80 Southern Region11 20.58 1.80 Southern Region11 20.58 1.80 Southern Region11 20.58 1.60 CSIRO, Canbern11 20.58 1.80 Southern Region11 20.58 1.87 Southern Region11 </th <th>$\begin{array}{c c} (n) \\ \hline (n) \\ \hline 11 \\ \hline 01 \text{ chromosomes} \\ \text{chromosomes} \\ \text{of chromosones} \\ \end{array}$</th> <th>Xta/PMC 16.25 21.00 19.65 20.30 19.83 17.62 20.58 in three spe</th> <th>X X</th> <th>Xta/bivalent </th> <th>South Geor CSIF CSIF CSIF CSIF CSIF CSIF Geor Geor CSII Sout Geor Geor Geor Geor CSII</th> <th>Southern Regional Station, Georgia, U. S. A. CSIRO, Canberra, Australi CSIRO, Canberra, Australi CSIRO, Canberra, Australi Southern Regional Station, Georgia, U. S. A. Southern Regional Station, Georgia, U. S. A. CSIRO, Canberra, Australi Georgia, U. S. A. Southern Regional Station, Georgia, U. S. A.</th> <th>MinimizedXta/PMCXta/bivalentDouto(n)Xta/PMCXta/bivalentSouthern Regional Station, Georgia, U.S.A.$11$$-$Southern Regional Station, Georgia, U.S.A.$11$$16.25$$1.47$CSIRO, Canberra, Australia$11$$21.00$$1.99$CSIRO, Canberra, Australia$11$$20.30$$1.84$Southern Regional Station, Georgia, U.S.A.$11$$20.30$$1.84$Southern Regional Station, Georgia, U.S.A.$11$$17.62$$1.60$CSIRO, Canberra, Australia$11$$17.62$$1.80$Southern Regional Station, Georgia, U.S.A.$11$$20.58$$1.87$Southern Regional Station, Georgia, U.S.A.$11$$20.58$$1.87$Southern Regional Station, Georgia, U.S.A.$11$$20.58$$1.87$Southern Regional Station, Georgia, U.S.A.$11$$20.58$$1.87$Southern Regional Station, Georgia, U.S.A.</th> <th></th> <th>CPI 36719 308580 CPI 36719 CPI 36719 185583 185583 365043 CPI 36720</th>	$\begin{array}{c c} (n) \\ \hline (n) \\ \hline 11 \\ \hline 01 \text{ chromosomes} \\ \text{chromosomes} \\ \text{of chromosones} \\ \end{array}$	Xta/PMC 16.25 21.00 19.65 20.30 19.83 17.62 20.58 in three spe	X X	Xta/bivalent 	South Geor CSIF CSIF CSIF CSIF CSIF CSIF Geor Geor CSII Sout Geor Geor Geor Geor CSII	Southern Regional Station, Georgia, U. S. A. CSIRO, Canberra, Australi CSIRO, Canberra, Australi CSIRO, Canberra, Australi Southern Regional Station, Georgia, U. S. A. Southern Regional Station, Georgia, U. S. A. CSIRO, Canberra, Australi Georgia, U. S. A. Southern Regional Station, Georgia, U. S. A.	MinimizedXta/PMCXta/bivalentDouto (n) Xta/PMCXta/bivalentSouthern Regional Station, Georgia, U.S.A. 11 $ -$ Southern Regional Station, Georgia, U.S.A. 11 16.25 1.47 CSIRO, Canberra, Australia 11 21.00 1.99 CSIRO, Canberra, Australia 11 20.30 1.84 Southern Regional Station, Georgia, U.S.A. 11 20.30 1.84 Southern Regional Station, Georgia, U.S.A. 11 17.62 1.60 CSIRO, Canberra, Australia 11 17.62 1.80 Southern Regional Station, Georgia, U.S.A. 11 20.58 1.87 Southern Regional Station, Georgia, U.S.A.		CPI 36719 308580 CPI 36719 CPI 36719 185583 185583 365043 CPI 36720
arth err. ers. Baker va T Table 2.	mitotic ch lengths of relativ	11 11 11 11 11 11 11 11 11 11 chromosomes	16.25 16.25 21.00 19.65 20.30 19.83 17.62 20.58 in three sp	ecies of T		South Geor CSIF CSIF CSIF CSIF CSIF Sout Geou CSII Sout CSII CSII Geou CSII	hern Region gia, U.S. A tO, Canberr tO, Canberr tO, Canberr tO, Canberr Nern Regior rgia, U.S. A RO, Canber and U.S. A then Regior rgia, U.S. A the first r	al Station, a Australia ra, Australia ra, Australia ra, Australia a Station, ta ra, Australia ra, Australia ra, Ov represent		(7)
a err. Baker Baker va rs. r Table 2.	mitotic ch lengths of relativ	11 11 11 11 11 11 11 11 chromosomes	16.25 21.00 19.65 20.30 19.83 17.62 20.58 in three sp	ecies of T	1.47 1.99 1.79 1.84 1.80 1.60 1.87 1.87	CSIF CSIF CSIF CSIF CSIF CSIF Geou Geou CSIF CSIF Geou CSIF CSIF Geou CSIF	KO, Canberr KO, Canberr KO, Canberr hern Regior rgia, U. S. A hern Regior rgia, U. S. A RO, Canber rgia, U. S. A	a, Australia ra, Australia ra, Australia nal Station, h. Australia ra, Australia ral Station, L.		
ers. Baker Baker va rs. Table 2.	mitotic ch lengths of relativ	11 11 11 11 11 11 11 chromosomes	21.00 19.65 20.30 19.83 17.62 20.58 in three sp	ecies of T	1.99 1.79 1.84 1.80 1.60 1.87 1.87	CSIF CSIF CSIF CSIF Sout Geou CSII Sout Sout Sout CSII CSIF Geou	(0) Canberr (0) Canberr hern Region rgia, U.S. A hern Region rgia, U.S. A NO, Canberr (gia, U.S. A hern Region rgia, U.S. A hern Region rgia, U.S. A	ra, Australia a, Australia aal Station, b. aal Station, ra, Australia aal Station, .		- (·)
Baker Baker va rs. Table 2.	mitotic ch lengths of relativ	11 11 11 11 11 11 chromosomes chromosor	19.65 20.30 19.83 17.62 20.58 in three sp	ecies of T	1.79 1.84 1.80 1.60 1.87 1.87	CSIF Sout Geou Geou CSII Sout CSII CSII CGOU Geou Geou Geou	(0, Canbert hern Region gia, U. S. A hern Region gia, U. S. A XO, Canbert hern Region rgia, U. S. A s, the first r s, the first r	a, Australia nal Station, hal Station, ra, Australia nal Station, L.		
Baker va Ts. Table 2.	mitotic ch lengths of relativ	11 11 11 11 11 chromosomes chromosor	20.30 19.83 17.62 20.58 in three sp	ecies of Te	1.84 1.80 1.60 1.87 1.87	South Geor Sout CSII CSII CSII CSII CSII CSII CSII CSI	hern Regior gia, U. S. A hern Regior gia, U. S. A RO, Canberi hern Regior rgia, U. S. A s, the first r	al Station, al Station, L. Australia ra, Australia al Station, L. Ow represent		
ra Table 2. a	mitotic ch i lengths of relativ	11 11 11 11 chromosomes chromosor	19.83 17.62 20.58 in three sp	ecies of T	1.80 1.60 1.87 <i>ephrosia</i> (in	Sout Geor CSII Sout Sout Geor Geor	hern Region gia, U. S. A 80, Canberr hern Regior gia, U. S. A s, the first r	ual Station, ra, Australia nal Station, 		
Table 2.	mitotic ch lengths of relativ	11 11 romosomes chromosor	17.62 20.58 in three sp	ecies of Te	1.60 1.87 <i>ephrosia</i> (in	CSIF Sout Geou Geou each specie	XO, Canberi hern Regior rgia, U. S. A s, the first r	ra, Australia nal Station,		
Table 2.	mitotic ch lengths of relativ	11 romosomes chromoson	20.58 in three sp	ecies of Te	1.87 ephrosia (in	Sout Geor each specie	hern Regior gia, U. S. A s, the first r	A. A. Cow represent	ß	
Table 2.	mitotic ch lengths of relative	romosomes chromosor	in three sp	ecies of Te	<i>ephrosia</i> (in	each specie	s, the first r	ow represent	ts	
				Chr	Chromosome pairs	airs				
	6	з	4	5	9	٢	8	6	10	11
100.00 11.61	2.97 1.39	2.97 1.26	2.48 2.00	2.48	2.35 2.40	2.21 2.20	2.01 2.00	1.93 1.80	1.93	1.72 1.50
11.61	97.73	97.73	81.82	81.82	77.27	72.73	68.18	63.64	63.64	56.82
	11.34	11.34	9.50	9.50	8.97	8.44	7.91	7.39	7.39	6.60
T. noctifiora 2.55	2.35	2.00	1.86	1.72	1.72	1.66	1.59	1.52	1.52	1.45
1.69	1.83	1.64	1.25	1.27	1.27	1.78	1.87	1.00	1.00	1.62
100.00	91.89	78.38	72.97	67.56	67.56	64.86	62.16	59.46	59.46	56.76
12.80	11.76	10.03	9.34	8.65	8.65	8.30	7.96	7.61	7.61	7.22
T. purpurea 2.00	1.93	1.79	1.66	1.38	1.38	1.31	1.10	1.10	1.10	1.03
	1.15	1.67	2.00	1.50	1.00	1.11	1.00	1.00	1.00	2.00
100.00	06 55	89.65	82.57	68.96	68.96	65.52	55.17	55.17	55.17	51.72


Kusum Agarwal and P. K. Gupta

2. Mitosis and karyotypes

Three species of *Tephrosia* namely, *T. bracteolata*, *T. noctiflora* and *T. purpurea* were analysed for katyotypes. Eleven pairs of chromosomes were recorded in each species. Photomicrographs of somatic metaphase plates are presented in Figs.

Figs. 1-10. Meiosis in different Tephrosia species. 1, T. adunca, early diakinesis, 11¹¹. 2, T. bracteolata, diakinesis, 11¹¹. 3, T. maxima, metaphase I, 11¹¹. 4, T. noctiflora, prometaphase I, 11¹¹. 5, T. oxygona, diakinesis, 11¹¹. 6, T. polystachya, metaphase I, 11¹¹. 7, T. polystachya, anaphase I, 11:11. 8, T. polystachya, anaphase I, showing late disjunction. 9, T. purpurea, metaphase I, 11¹¹. 10. T. villosa var. incana, metaphase I, 11¹¹.

11-13 and data on chromosome measurements and chromosome morphology are presented in Tables 2-4. Corresponding idiograms are shown in Figs. 14-16.

Chromosomes were designated as 1-11, according to decreasing lengths. Depending upon their absolute length, chromosomes were classified into three categories, namely A=more than 3.0μ , B= 1.5μ - 3.0μ and C=less than 1.5μ .

The chromosomes were further subdivided according to position of centromere and chromosome formulae are presented in Table 4.

Discussion

A survey of previous literature on cytological studies in the genus *Tephrosia* deomonstrated that only 47 of the 400 known species of the genus have been cytologically worked out so far of which 46 species exhibit 2n=22. In the present study also

Species	Total chromatin length (μ)	$\begin{array}{c} \text{Mean} \\ \text{chromosome} \\ \text{length} \\ (\mu) \end{array}$	Longest/ shortest ratio	TF%	Chromatin volume (µ ³)
T. bracteolata	26.15	2.38	1.77	37.99	22.02
T. noctiflora	19.94	1.81	1.75	40.83	12.59
T. purpurea	15.78	1.43	1.94	44.10	8.48

Table 3. Chromosome data in three species of Tephrosia

Table 4. Karyotypic formulae of three species of *Tephrosia* (A, B and C represent long; medium and short chromosome respectively; 'sc' used as subscript represents secondary constriction in long arm; superscript 'm', 'sm' and 'st' represent respectively the median, submedian and subterminal position of centromeres)

S. no.	Species	Karyotypic formulae	
1.	T. bracteolata	$1A^{sm}+1scB^{sm}+7B^{sm}+2B^{st}$	
2.	T. noctiflora	$1scB^{sm} + 6B^{sm} + 2C^{m} + 2C^{sm}$	
3.	T. purpurea	$1B^{m} + 3B^{sm} + 5C^{m} + 2C^{sm}$	

all the eight species examined exhibited 2n=22. However, scattered chromosome counts of 2n=32 (Kawakami 1930), 2n=24 (Ramanathan 1950, 1955, Bhatt 1976) and 2n=44 (Tandon and Malik 1960) are also known in the genus. In the tribe Galegeae to which *Tephrosia* belongs, the predominant base unmber is x=8 and x=11 is mainly found in the genera *Astragalus*, *Psoralea*, *Mundulea* and *Tephrosia*. Atchison (1951) has suggested that from tribe Galegeae either the genera with x=10, 11 should be transferred to Dalbergieae or else these two tribes should be merged. Such a view was later supported by Turner and Fearing in 1959. Burkart (1952) suggested on morphological grounds that some genera from Galegeae having predominantly woody members may be transferred to Dalbergieae. In view of this,

Figs. 11-16. 11-13: Mitotic metaphase plates in different *Tephrosia* species. 11, *T. bracteolata*.
12, *T. noctiflora*. 13, *T. purpurea*. 14-16: Idiograms prepared from mitotic metaphase in different *Tephrosia* species. 14, *T. bracteolata*. 15, *T. noctiflora*. 16, *T. purpurea*.

since Tephrosia has x=11, according to Atchison's (1951) recommendation, it should be transferred from Galegeae to Dalbergieae. But since the members of the genus Tephrosia are mainly herbs and shrubs, according to recommendations of Burkart (1952), it should be retained in Galegeae. It can, therefore, be concluded that we should not reassign genera to different tribes on purely morohological and purely cytological grounds.

It is, however, important to notice that *Tephrosia* is the only genus, where 2n=22 is almost the exclusive chromosome number and, therefore, has unique position in this respect. Evolutionary significance of this situation is not very clearly known so far except that the members of this genus may be related to members of tribe Dalbergieae more closely than to members of Galegeae.

A survey of cytological literature indicated that no studies on karyotypes in this genus were earlier undertaken. The present study of karyotypes in three species indicated that average chromosome length varied, which was 2.37μ in *T. bracteolata*, 1.81μ in *T. noctiflora* and 1.43μ in *T. purpurea*. When classified with respect to karyotype asymmetry (Stebbins 1971), *T. noctiflora* was placed in 1A and the remaining two species were placed in 2A indicating that perhaps *T. bracteolata* and *T. purpurea* are more advanced relative to *T. noctiflora*.

Tephrosia has been divided by Hooker (1879) into three subgenera—Macronyx, Brissonia and Reineria. While Macronyx includes annuals with simple leaves, Brissonia includes shrubs and Reineria includes perennial herbs. If perennial habit is more primitive as some morphologists believe, T. purpurea which belongs to Reineria, should then be a primitive species. Karyotype asymmetry though worked out only in three species during the present study, suggests that T. purpurea may be more advanced.

Acknowledgements

The authors are grateful to various agencies listed in Table 1 for the supply of seed material which made it possible for us to conduct this study.

Summary

- 1. In the genus *Tephrosia* male meiosis was studied in 8 species and mitosis with the help of root tip was studied in three species. The chromosome number was invariably found to be n=11 and 2n=22. Chromosome number in three species (*T. maxima* Pers., *T. oxygona* Welw. ex Baker and *T. polystachya* E. Mey) were reported for the first time.
- 2. The meiosis was normal in all the cases. The chiasmata frequency/PMC varied from 16.15 (*T. bracteolata*) to 21.00 (*T. maxima*).
- 3. The total chromatin length varied from 15.78 μ (*T. purpurea*) to 26.15 μ (*T. bracteolata*).
- 4. The chromosomes were mainly metacentric and did not vary greatly so that the level of asymmetry was low.

References

Atchison, E. 1951. Studies in the Lenguminosae VI. Chromosome number among tropical woody species. Am. J. Bot. 38: 538-546.

Bhatt, R. P. 1976. IOPB Chromosome number reports L III. Taxon 25: 483-500.

Burkart, A. 1952. Las Leguminosas Argentinas (2nd Edit) Acme Agency Buenos Aires.

Hooker, J. D. 1879. Flora of British India Vol. II. Reeve et Co., London.

Hutchinson, J. 1964. The Genera of Flowering Plants I. Clarendon Press, Oxford, 516 pp.

Kawakami, I. 1930. Chromosome numbers in Leguminosae. Bot. Mag., Tokyo 44: 319-328.

Ramanathan, K. 1950. Addendum to list of chromosome numbers in economic plants. Curr. Sci. 19: 155.

- 1955. Chromosome numbers in Indian desert plants. Curr. Sci. 24: 17.

- Stebbins, G. L. 1971. Chromosomal Evolution in Higher Plants. Edward Arnold (publ.) Ltd., London.
- Tandon, S. L. and Malik, C. P. 1960. Morphological and cytological studies of naturally occurring diploid and tetraploid of *Tephrosia purpurea* Pers. Phyton 14: 127–134.
- Turner, B. L. and Fearing, O. S. 1959. Chromosome number in Leguminosae II. African species including phyletic interpretation. Am. J. Bot. 46: 49-57.
