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For 0 u < 1, functions f(y) are obtained such that for any real indefinite
quadratic form Q(x, », z) of type (1, 2) and determinant D and real xq, y,, 2,
the inequality

w(f(B) DR < Q(x + X0 ¥ + Yor 2 + 25) < (f(w) D)3
has a solution in integers x, y, z.

This result is used to prove that for any real quaternary from Q(x, y, z, £} of
type (1, 3) and determinant D and real numbers x,, Vo, Zo» %y, the inequality

128 14
0< 0+ 207+ 0zt zmt+i)<(e@vi-1|D])

has a solution in integers x, y, z, and ¢.

1. INTRODUCTION

Let Q(x;, X3, ..., X») be a real indefinite quadratic form in n variables with
signature (r,n — r), 0 < r < n and determinant D 5= 0. Blaney (1948) proved
that there exist constants I' such that for any such quadratic form Q and any real
numbers ¢;, ¢y, ..., ¢a We can find integers x,, X,, ..., xn satisfying

0< Q(x], - €1y X3 F Coy eeny Xn + Cn) < (T l D l )1/". .(1.1)

Let T,,nr denote the greatest lower bound of all such constants I'.  Davenport and
Hejlbronn (1947) showed that I;,, = 4. I, =4 and TI';,, = 8 were proved by
Barnes (1961) and Dumir (1967) respectively. Dumir (1968a, b) has also shown that
T, = 16/3 and 'y, = 16. In this paper we shall prove that

16 < Iy,s < 1282 4/7 — 1)/25 = 21.972 ... .

The motivation for these estimates is to prove in another paper* that the symmetrical
non-homogeneous minimum for quadratic forms in five variables of the type (4, 1) or
(1, 4) is }; thus proving in this case a conjecture of Watson (1962). We shall also
use this bound on I, , to prove I'y,; = 8 in another paper. Here we prove:

Theorem 1 — Let Q(x, y,z,t) be an indefinite quaternary quadratic form of
the type (1, 3) and determinant D(<< 0). Then given any real numbers x,, ¥y, Z,, 7,
we can find integers x, y, z, ¢ such that

*Sce pages 75-91.
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0< O+ x4,y +ypp2+ 20t + ) <(K|DJ|)N/A ...(1.2)
where K = 128(24/7 — 1)/25.

Theorem 2 — Let Q(x, y, 2,1) = —x* — xz — y2 — 22 — yz -+ 2zt. Then the
inequality

0< O,y z1t+ P <(16]D])n
is not solvable in integers x, y, z and ¢.

In order to prove Theorem 1, we prove an asymmetric inequality for indefinite
ternary quadratic forms. This result is analogous to that of Blaney (1950). He has
proved that if Q(x, y) is an indefinite binary quadratic form of discriminant A% > 0
and x,, y, are any real numbers then there exist integers x, y satisfying

VA A
{T—)3 (I F 3wHnr <O+ X0y + ¥o) < {(l ZVR( F 3P

where 0 < v < 1is a real number, Here we prove:

Theorem 3 — Let Q(x, y, z) be an indefinite ternary quadratic form of type
(1, 2) and determinant D(> 0). Let 0 < p < 1. Then given any real numbers
Xo» Yo, 2, there exist integers x, y, z satisfying

p(f(p) D3 < Q(x + X0, ¥ + Voo 2 + 20) < (f(w) D)'3 -(1.4)
where f is any function satisfying

f(w) 2 max (fi(p), fo(w) for 0 p <1 ---(1.5)

and where
32
41 (4/16_4#+«[11,L+1)3
P =5 = (W16 —adp + 3410 + 1)

2. SoME LEMMAS
In the course of the proofs we shall use the following lemmas.

Lemma 1 — Let O(x,, ..., X») be an indefinite quadratic form in n(>> 3) variables
with real coefficients. Suppose that Q is non-singular and takes arbitrarily small
non-zero values for integers Xy, ..., Xa. Let ¢y, ...s Cn, &, 3 be real numbers, 3 being

positive. Then we can find integers X;, X3, ..., Xn satisfying
| O(x; + €1 cees Xn + €n) —a | < 3. ..(2.1)
This is Theorem 1 of Watson (1960).
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Lemma 2 — Let O(x,y, z,t) be an indefinite quaternary quadratic form of
the type (3, 1) and determinant D(< 0). Then there exist integers x;,y;, 21, &
such that

16 1/4
0< O(xs, 315 21, 1) < (T | D | ) ...(2.2)

This is Theorem 2 of Oppenheim (1953).

Lemma 3 — Let Q(x, y, z) be an indefinite ternary quadratic form of the type
(2, 1) and determinant D(<C 0). Then there exist integers u, v, w such that

0< Qv (3] D|Ns .(2.3)

unless Q(x, y, z) is equivalent to a positive multiple of one of the following eight
forms

O, =2x*+ yz Qs = 2x* + 3yz

Qs = 3x* + 4yz Qs = 4x* + z(4y — 2)

Qs = 12x% + 2(8y — z + 4x) Q. = 9x? + z(6y — z + 3x)
0, = 2x% 4 yz 0, = 16x% + z(8y — 2).

Equality in (2.3) is necessary if and only if Q is equivalent to a positive multiple of
one of the following forms

Qy=2x + 3y + £ — $29)
O = 3x2 & yz.
This is a Theorem of Watson (1968).

Lemma 4 — Let «, 8, d be real numbers with 82 > 1/4 andd > 1. Then for
any real number x, we can find x = x, (mod 1) such that

O<—(x+a)+pgd ..(2.9)
provided that
r< (d + l) if d is an integer
2

.(2.5)
L ([d] ) + d if d is not an integer.

Further strict inequality in (2.5) implies strict inequality in (2.4). This is Lemma 2 of
Dumir (1967).

Lemma 5 — Let 0 v < 1 be a real number and ¢(y, z) be an indefinite binary
quadratic form of discriminant A? > 0. Then for any real numbers y,, z, there
exist integers y and z such that
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VA A
=P Fapr < 0+ 2D <Eema e
...(2.6)
Equality occurs in (2.6) if and only if
v =0 and ¢o(y, 2) ~ pyz, (¥p 2,) = (0, 0) (mod 1)
or o, 2) ~ p(¥* — 2%), (Vo 20) = (3, %) (mod 1)
v=1%, ¢, 2) ~ p(3y* — 2%), (¥o, 20) = (}, §) (mod 1)
v=1 e, 2) ~ o(¥* + ¥z — ¥*), (3o, 20) = (0, 0) (mod 1)
where p > 0.
This is Theorem 3 of Blaney (1950).
3. TerRNARY FOrMS : PROOF OF THEOREM 3
Let m = Inf —Q(uw, v,w) )
uv,weZ | -..(3.1)

f
O(u, v, w) < 0. J
Then m2>20.

If m = 0, then (1.4) follows from Lemma 1 with « = u(f(x) | D | )'/3 + § where
0<d<i(l—p(f(W!|D]Ner

Lemma 6 —If Q ~ —p0;,p > 0,1 € i < 8, m > 0, then (1.4) is satisfied.

PrOOF : Suppose without loss of generality that
0=—-0,1<i<38.

Let «; be the coefficient of yz in Q; for each i, 1 < i < 8. Let D; be the determinant
of O, and let

di = (f(w) | Di | ).
Therefore (1 — p*d? = (1 — w3 f(8) | Di | > 2o | Dy .
Since | Dy | =1/4, | Dy | =12, | Dy | =192, | D, | =1/2, | D5 | = 9/2, | D¢ | = 16,
| D, | = 81, | Dy | = 256, we notice that

(1 — p) d; > a; foreachi.

Now choose x == x, (mod 1) arbitrarily and z = z, (mod 1) such that 0 < z< 1. Let
Ai = —Qux, ¥, z) 4+ a;yz. Then A4; is a real number. Now choose y == y, (mod 1)
such that
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O<di—ayz—pdi€ozL o<l — p)d;
ie.
pdi < Ai — aiyz = —Q«(x, y, 2) < di.

Let now m >0, —Q ~—~ p0;, 1 € i< 8. Then given ¢, 0 < ¢, < § there
exist integers u, v, w such that

=0, vw)=ml(l - < (5| D]|)NA ..(3.2)

where 0 < € < ¢, Equality holds in (3.2) iff —Q ~ ¢Q, or pQ;,. Further by the
definition of m we must have g.c.d. (4, v, w) = 1. Applying a suitable unimodular
transformation we can suppose that

—0(1,0,0) = m/(1 — ¢
and then write

o(x, ¥, 2) = — {m/(1 — R} {(x + hy + 22 + oy, 2)}
where g(y, z) is an indefinite binary quadratic form with discriminant

m

3
A2=4IDl/(i-:) >4.%==3
with equality iff 0 ~ — pQ, or — p(Q,,. Because of homogeneity it suffices to prove:
Theorem A — Let Q(x,y,z) = —(x + hy + 82)* + o(y, z) where ¢(y, z) is an
indefinite binary quadratic form with discriminant
Ar=4|D|[>3 ...(3.3)
with strict inequality unless @ ~ —Q, or —Qy,.

Let d = (f(u) | D | )1/3, where f(u) satisfies (1.5). Then given any real numbers
X9, Vo» 2, there exist (x, y, 2) = (X4, Yo, Zo) (mod 1) such that

pd < O(x, y, 2) < d. ' (34)

3.1. Proof of Theorem A

Remark 7 : One can easily verify that there is a real number e, 1/12 < « < 1/9
such that f,(x) 2> fa(p) if and only if p < «.

Lemma 8 — Let Q(x, y, z) satisfy the conditions of Theorem A. Suppose that
we can find (y, 2) = (¥,, z,) (mod 1) such that

lf< (1_"'“_)5_1'_}) + pd if (1 — p)d is an integer
Bru<snd L (3.3)
([ ~) ) + dif (1 — p)d is not an integer.
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Then there exists x = x, (mod 1) satisfying

pd < Q(x, ¥, 2) < d. ...(3.6)
Further strict inequality in (3.5) implies strict inequality in (3.6).

Proor: Since (1 — p)*d® = (1 — p®f(w) | D |

32 3=8

>(1—P)33(T—_7)3'T = 8,

the result follows from Lemma 4 witho = hy + gz and B2 = o(y, z) — ud with d
replaced by (1 — p)d (> 2).

Lemma 9 — If (1 — p)d = 2, then (3.6) is true with strict inequality.

PROOF : One sees that (1 — p)d = 2 if and only if

S(w) = fi(w), | D | = 34,
and O~ —Qy = —2x + 3P — 3y + } 2
or O~ —Qj¢ = —3x2 — yz,

By Remark 7, . < 1/9.

Case (i) : =—=2x + 4y)* + }z2 — §y2.  Choose y =y, (mod 1) such
that | y | < 3.
Ifog |yl <\/3(1 , then choose x = x, (mod 1) such that|x + 3y | < }
and z = z, (mod 1) such that2 <lz| <3 Sothat
2u 1— 5u z2
I‘d=l“’_—;=~%+§—%-§r—)< 2(x + 3y —““}’2
z2 25 2
ST S <9=1=

If\[lil(l__—SZ)< [ »1 <3, then choose x = x, (mod 1) such that | x + 3y | < }
and z = z, (mod 1) such that § < | z | < 3. So that

% u 2 25, 2
Pd—rjﬂ<l—6*—'—j4—+ﬁ—zi —2(x + }») + ‘“"“}’2

2 s,
<4 2y

s_3 1—=5%  T4np 2
SETEAT) Tii—p ST
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Case (ii) — When Q = —3x? — yz, the proof is similar to that of Lemma 6.
32, Letnow(l — p)d > 2.

Letn<(1—pd<n+1,n=23, .. .{3.7)
Now we shall prove that there exist (¥, z) = (s, 2,) (mod 1) such that

thud<en)< o +d (38)

Let 0 < v < 1 be a real number satisfying
A

A=W + e =&+ u ..(3.9)
M sz‘i
1.e. g(v) = a1 - V)3(1 + 3v) — m = Q.

Such a choice of v is always possible as g(0) > 0 and g(1) < 0. Then (3.8) will follow
from Lemma 5 if we can show that
A < nt
{(1—v)3(l + 3Pz 4

d
i-l;# +d

+d

ie.
v

So it suffices to prove that

14+
v > ﬂ%{d = a* (say). ...(3.10)
Clearly @ > piff a2 < Un?, iff p < 1/n2 ..(3.11
. 1 — a2n?
Also if * # s then d = Z-GIT:—;)’ ...(3.12)

If p = 1/n%, we bave a® = 1/n%, We discuss these cases separately,

Lemma 10 — If n < (1 — p)d << n + 1, p 7 1/n?, then (3.10) is true,
—_y)3 3
PROOF : Since A(v) = (—l———v)v—pﬁ) = (—:— — l) (L + 3) is a decreas-
v
ing function of vin 0 < v < 1, to prove v > a? it suffices to prove that h(a) > h(v)

(1—ay*d + 3aq)
at

ie.

A

_ (1 — n2a?)?
T (@ — ) at(l — nPup

and d from (3.12)]

[substituting for A? = %
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(1 —ap (1 + 3a)(a® — p) 1

ie. Y(a) = 0 = marys > @ O = ey «.(3.13)
. o 1 +4pd 1—n%
Since @ = s 4d n2+4d+’l’
as a function of d, a* decreases if p < 1/n? and increases if p > 1/n% Since
n n+1
T, <4<1—,
it follows that
n+1 I
a2>1+4“1 p_Untptl o0 1
/n2+4n+1 (n + 2)t — n ¢ nt
1 —p
...(3.14
Lt - (3.14)
and @< 1—p_ (@Gn+3u+1 1”>l.
. n-+1 (n+2)2—n2p n
+4. 0200
1— g J

Differentiating J(a) with respect to a, and using (3.11) one can verify that {(a) increases
for 0 < a < 1/n and decreases for 1/n < a < 1. Therefore

(4n + 3u + 1
Wa) > tP( m)

_ (s 2Pt — A Gn Dt P (V1528 — %+ 34 @t Dt (1 —p).
(@n 4y (1 — )’

Therefore (3.13) will be satisfied if

e e N e e R (TR PR

X (A (n + 27 = n?u + 3 d(@n+3)ut+1).
Rationalizing and simplifying the right-hand side of (3.15) we see that (3.13) is true if

> 1 (n+2P —ru+ Y@n+ 3 + 10
(n + 3)s A=) W L2 —mu+34@n+t3prtl)
= f(n, p) (say) ...(3.16)

One can prove that for fixed g, 0 < s < 1, f(n, p) is a strictly decreasing function of
nforn > 2. Also f(2, p) = fu(s). Therefore (3.13) will be satisfied if f(x) > fi(p)
and equality in (3.8) can occur only if n=2, f (p) fi(p),d= ” ntl_ 3 and

—» 1=
v =.a. Hence the result follows in this case.
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Lemma 1l — If n < (1 — p)d < n + 1, and & = 1/n?, then (3.10) is true.

. .
PROOF : ;4=72—1mp11esa2=n—————~=»__.

I)? 37
I— — ) {1+ =
1 ( ) ( 4d3
h(—}—;):g nl ] ")>h(v)= 1 64d . i
(+) () (1 3 )
2 2
ie. g(d) = (n —534d) > 64nt

f(w)e-1ra+ '

g(d) is a decreasing function of d and , therefore

n <d<ril
I— o I

S(r 1y n? _(mn—=1)(n + 3
@) > (1) = o(;2) = e E
64nt

HGr) o=@+

. 1 64n8 1

it f(??{)>(n—l)4(n+3)3=f(”' Tz)

where f(n, p) is as defined in (3.16). Since f(u) > f(n, p) forall pin0 < p < 1,
we have in particu]arf(;lz—) > f(n, ,,IT)

This will be >

Thus the Lemma is proved.

n-4+1
1 —

-3

L—p

Remark : Equality can occur in (3.10) only if f(x) = fy(p), d =

*®

and v = a.
Lemma 12 — (3.6) holds with strict inequality, so that theorem A follows.

ProorF: If we have strict inequality in (3.8) we have strict inequality in (3.6)
by Lemma 8. Therefore suppose that equality holds in (3.8). As remarked above, it

happens only if

3
f(f‘)=f2(l‘)’d= l_ﬁ,n=2,

&= (4n+3p+1  1lp+1

2 — 2
T+ 22—n% 16— 4u and v = &%,
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Further by Lemma 5, equality can occur only at v=0, 3, 1 .v = 0 is not possible as
Hp +1 Mp + ]

2 — 1 ey gy o __ _ 1
V=T an # 0. 3 15 also not possible as v2 = 16 =4, % implies p = ]03
1
and f(p) > fo(p) for 0 < p < {3~ Solety =3, then ié" +1_ 1 implies p = }
and therefore d = 3 = 4,
L —u

From Lemma 5, we can suppose

o(r, 2) = po(¥* + yz — 2%), (¥o» Zo) = (0, 0) (mod 1)
4dd 4.4 5

A T R e
Therefore

p=1
and oy, 2) = % (3 + yz — 22), (¥o Zo) = (0, 0) (mod 1).
Let F(x,y,2) = ~(x + xo + hy + g2)* + § ()* + yz — 2%).

Takey = 1, z = 1, and choose integer x such that
[x+x +h+gl<}

Then
pd=1=—1+5<Fx 1,1
=—(x4+x,+h+gr+i<i<é=d
Therefore we have strict inequality in (3.6) unless
x, + h + g =% (mod 1). ..(3.17)
Similarly considering F(x, —1, 0) and F(x, 1, 0) we have strict inequality unless
x, — h=1}(mod 1) ..(3.18)
Xo + h =} (mod 1). ...(3.19)

From (3.17), (3.18), (3.19) we must have
g = 0 (mod 1) and 2k = 0 (mod 1).

Replacing x by x + ry -+ sz where 7 and s are suitable integers we can suppose that
lh<s1gl<%
Therefore we must have

g=0 and h=0or+ }
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If h = 0, then x, = $ (mod 1).
When x, = }, we observe that
1 < F(1,2,0) < 4
If h = 4 4, then x, = O (mod 1).
When x, = 0, we observe that
1< F(1,2,1)<4 if h=1%}
1< F3,2,1)<4 if h=—1.

So we always have strict inequality in (3.6). This proves Theorem A and Theorem 1
now follows from Lemmas 6-12.

4. QUATERNARY FORMS : PROOF OF THEOREM 1
Let m' =Inf —Q(x,5,2,¢) )
|
X, y, 2, t integers v ...(4.1)

I
ox,y,2,8) <0. J
Then m' > 0.

Case I — If m’ = 0 then the result follows from Lemma 1 with ¢ = & and
0<d<i(K|D|))

Case Il — If m’ > 0, then given 0 < ¢, < 3, there exist integers x,, ¥y, z;, t1,
such that

m' 16 1/4
—06 yz ) = (o < (5 121) (42)
where 0 < € < ¢5. By the definition of m’ we must have g.c.d. (x;, y;, 25, ;) = L.
Replacing Q(x, y, z, t) by an equivalent form we can suppose that

’

m

""'Q(]’ 0,0,0) = l“"_‘_‘_“:
and write
0%, 5,2, 1) = — IT_ A+ by + g2 + ) — oy, 2, 1)}

where o(y, z, t) is an indefinite ternary quadratic form of the type (1, 2) and deter-

minant | D | /(T-'l’_——e)‘ > 3/16.

Because of homogeneity it suffices to prove.

Theorem B — Let Q(x,y,z,t) = —(x + hy + gz + vt)* + o(y, z,t) where
o(y, z, t) is an indefinite ternary quadratic form of the type (1, 2) and determinant
—D =-| D | > 3/16.
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Let d=(K|D|¥# and K= 22 247 1) (43)

Then given any real numbers x,, y,, 2,, t,, we can find (x, y, z, 1) = (xq, Yo, 2o, to)
{mod 1) such that

0 < Qx,y,21t) <d ...(4.4)

Lemma 13 — Let Q(x, ¥, z, t) satisfy the conditions of Theorem B. Suppose we
can find (y, 2, 1) = (Yo, %o, tp) (mod 1) such that

2
!r éi—l—) if dis an integer

P<o(yzt)< < ]
l.( ) + dif d is not an integer,

..(4.5)

Then there exists x = x, (mod 1) satisfying (4.4).

PROOF: Sinced = (K| D | )14 > (24(2 /7 — 1)/25)1/4 > ] the proof follows
from Lemma 4 and taking « = Ay -+ gz -+ vt and B = ¢(y, z, ?).

Lemma 14 — If d 2> 3, then we can find (y, z, t) = (¥,, 2,, 2,) (mod 1) satisfy-
ing (4.5).

2 2
O, 2, 1) = (¥, 2y, 1) (mod 1) such that

2 2
Proor : Since (d * 1) <(M) -+ d, it suffices to prove that there exist

d + 1\2
P<oly.z,t) < (%—) . ...(4.6)

By Theorem 3, applied to ¢(y, z, t) with x = (7;1—-——{1-—1? (sothat 0 < u < 1/16 < 1/12)
there exist (v, z, ) = (Jy, 2o, £,) (mod 1) such that
() | DN <oy, z,0) <(f(w)| D)5

if S 2 fi(p)-
(4.6) will follow if

F<utf 1D and (S < Dy
ie. if 64# [D|< f(;z)<(d2 1)8 [ D]

This is satisfied if we take f(u) = (d ; I)G DT
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Therefore (4.6) will follow if we have

H(@w) >4 l@)
o (d_zu)s IlDt =(d-;—41)°.6§—>3(1_2—%1_)2)3

. K 3 d
ie. if a * ‘3—2“ > (d T 2)3'
Right-hand side is a decreasing function of d and d > 3, therefore

4 _3 _K 3
@F2®r <% 6 3
64 .32

if K> 125 ° which is true.

Lemma 15 — If 2 < d < 3, then again we can find (y, z, 7) = (¥,, z,, ¢,) (mod 1)
satisfying (4.5).

ProorF: By Lemma 13, it is enough to prove that there exist (y, z, 1) =
(Yo Zo» tp) (mod 1) such that

}<o(y,z,t) <1+ d ..(4.7)
. i 1 1 1
We apply Theorem 3 to ¢(y, z, ) with f(u) = G D] and p = m(< 1~2—)

There exist (y, z, t) = (¥,, 2, 1) (mod 1) satisfying

t=u/@IDIPE<e,z)<(fW[D|P=1+d
if ﬂm>mm=§§%$.

Substituting for x we see that this is so if

(G + 4dys _ 32 .48
dt Z 3K °

This can be easily verified.
Lemma 16 — If 1 < d < 2, then again (4.5) is true.

PROOF: By Lemma 13, it is enough to prove that there exist (y,z, f) =
(Yo, 2, ) (mod 1) such that

t<ez)<i+d ...(4.8)
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. 1 1 1 1
Apply Theorem 3 to o¢(y, z,t) with f(u) = 67;3 . TT)T and p = m(} ?)
Then we can find (3, z, 1) = (y,, 2, t,) (mod 1) such that
t=p(f(WIDIVE<oy,z,) <(f/W|D|)2=%+d

provided
43 1 {(16 — 4u)t? - (1p + 1112}

f(l‘l‘) > f2(’l') = —5-;;; * (1 . ”)4 (16 ____ 4#)1/2 + 3(11“ + ])1/2 . ...(4.9)
Substituting for p, we see that (4.9) is true if

{(12 4 64d)1 2 - (12 + 44)1 33 1~2~5K

C (12 + 64d)172 - 3(12 + 4d)/E TS 16 T
Now L.H.S. is an increasing function of d and d < 2, therefore
(V140 + +/208 0 1047 +22 5 4y 125
LHS. < I3 i = 20- s 40247 ~1) = TS
This completes the proof of the lemma.
Thus Theorem B follows from Lemmas 13-16 and Theorem 1 is proved.
5. PROOF oF THEOREM 2
o(x,y,2,t) = ~x% — xz2 — y% — yz — 22 4 2zt
=—x+3P -+ -1 -2)p+ 22

is an indefinite quaternary quadratic form of the type (1, 3) and determinant D =— 1.

It can be easily verified that the inequality
0< O,y 2,t +3)=—x>—xz2 — y* — yz — 22 4 z(2t - 1)
<2=(16|D )"

has no solution in integers x, y, z, and .
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