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Abstract

We analyze the influence of anomalous gauge couplings in the reaction e−e− −→ e−W−νe

at a 500 GeV linear collider. The limits imposed by this process on deviations from the

standard model of electro-weak interaction, are competitive with those inferred from other

high energy experiments. Furthermore, the allowed domain in the parameter space is quite

different, and hence such an experiment would more than complement the other direct

searches.
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The success of the LEP experiments in measuring the Z-boson mass and its couplings

to fermions to an accuracy level of better than 1% has led to a dramatic confirmation of

the predictions of the SU(2)L ⊗ U(1)Y theory of electroweak interactions as embedded

in the standard model (SM). A measure of this success is reflected in the recent effort to

further probe the SM in the gauge sector so as to be able to experimentally establish it

as ruled by a gauge principle. Indeed, some progress has already been achieved through

the observation of the process pp̄ → eνγX at the Collider Detector at Fermilab (CDF)

[1] and at UA2 at CERN [2]. Interpreting this to be a signal of Wγ production and

subsequent decay of the W , limits were put on possible deviations of the WWγ vertex

from its SM structure [3]. These limits are very weak though, especially when compared

with the contributions from the one-loop corrections in the SM [4]. Recently, this has led

to a lot of work in identifying better signals for such deviations especially in the context

of LEP-200, LHC and SSC [5, 6] as well as as HERA [7]. Several studies have also been

performed for the case of linear e+e− colliders [8, 9] as well as for eγ and γγ colliders [9],

where a high energy photon beam is obtained by back-scattering an intense laser ray off

a electron beam at a linear collider.

In this Letter, we advocate the use of electron-electron collisions to probe the gauge sector

of the SM. Such beams can in principle be easily obtained at a linear collider of the next

generation (CLIC, JLC, NLC, TESLA, VLEPP, . . . ). We concentrate here on a machine

operating at 500 GeV and able to accumulate 1 to 10 fb−1 of integrated luminosity.

In principle, any deviation of a gauge coupling from its SM value would contribute signif-

icantly in the estimation of quantum corrections. This argument was used to constrain

these couplings using LEP data as well as other low energy measurements [4, 6, 10]. How-

ever, it was pointed out [11] that most of these calculations made an improper use of the

cut-off procedure and as a result had grossly overestimated such constraints. Subsequently,

a number of studies were made both in the context of a decoupling Lagrangian [12] as well

as the case of a non-linearly realized SU(2)L⊗U(1)Y symmetry with an unspecified Higgs

sector [13], to obtain various constraints. All such efforts suffer though from one of two



pitfalls: either a model dependence or crucial assumptions about the relative magnitudes

of various effects, and hence are no substitute for direct measurements.

The most general triple electroweak vector boson (TEVB) coupling can be parametrised

in the form of an effective Lagrangian with seven parameters for each of the neutral

vector bosons [14]. We shall be more restrictive, though. Since the upper limit on the

neutron electric dipole moment restrict (barring large cancellations between different con-

tributions) the CP violating parameters to be less than O(10−4), we choose to neglect

them altogether. Furthermore, we demand individual C and P invariance for the TEVB

vertices. The Lagrangian for the WWV (V = γ/Z) vertex can then be expressed as

LV
eff = −igV

[

gV
1

(

W †
αβW α − W †αWαβ

)

V β + κV W †
αWβV

αβ +
λV

M2
W

W †
αβW β

σV
σα

]

(1)

where Vαβ = ∂αVβ − ∂βVα and Wαβ = ∂αWβ − ∂βWα. In (1), gV measures the WWV

coupling strength in the SM with gγ = e and gZ = e cot θW . Whereas electromagnetic

gauge invariance forces gγ
1 = 1, the other couplings are model dependent and the tree

level SM values are gZ
1 = κγ = κZ = 1 and λγ = λZ = 0.

Much criticism has been levelled at the lagrangian (1) for its apparent lack of gauge

invariance. It has been shown recently [11], however, that any Lorentz and U(1)em gauge

invariant Lagrangian, containing W ′s and Z ′s, automatically obeys SU(2)L⊗U(1)Y gauge

invariance, realized nonlinearly in general. Though the deviations of the above parameters

from their SM values, as viewed in the context of effective field theories, are expected to

be tiny, in some scenarios they can be very large indeed [15]. We shall not comment on

the possible source of such deviations, but rather concentrate on their measurability. Note

that the use of (1), rather than the equivalent full chiral lagrangian [16] is well-justified

in such a phenomenological study.

Having established the formalism, we now turn to the laboratory. The process we consider

here is

e− e− −→ e− W− νe . (2)

The final state is thus exceedingly simple: an electron, a W− boson and missing momen-



tum. Note that unlike in most signals in hadronic or e+e− collisions, there is no s-channel

process here. At tree level the contributing diagrams, shown in Fig. 1, are of two types :

(i) a t or u-channel exchange of a vector boson with a “W -Bremsstrahlung” off one of the

four fermions, or (ii) those involving a trilinear coupling. Only the diagrams pertaining

to the second class are of course sensitive to anomalous couplings.

The analytical expressions for the matrix elements were obtained as a function of the

five anomalous parameters gZ
1 , κγ, κZ , λγ and λZ , with the aid of the software system

COMPHEP [17] and by an independent helicity-amplitude calculation. The Monte-Carlo

routine VEGAS [18] was used for the numerical integration over phase space.

For the electron to be visible, we required that its transverse momentum be greater than 5

GeV and that its absolute rapidity should not exceed 3. These requirements also eliminate

a very large fraction of the contributions originating from the W -Bremsstrahlung diagrams

alone, thus enriching the signal to background ratio. In addition, the rapidity cut ensures

that the internal photon never comes close to mass shell and hence provides an easily

integrable matrix element squared. Because the W boson undergoes a further decay we

have imposed no kinematical cut on its momentum. Explicit computations show though

that similar cuts on the W–momentum have only a marginal effect. Since a e−e− machine

suffers very little background hadronic activity, the reconstruction of a single W should

thus be straightforward and we shall assume, in this study, an efficiency of 100%. In the

SM limit the total cross-section amounts to σSM = 1.49 pb [19].

An effort to deal simultanously with all five parameters in of the lagrangian (1) is bound to

lead to a great deal of confusion. We therefore first present in Fig. 2 the dependence of the

difference between the SM and anomalous cross-sections on each of the five parameters

with the others assuming their tree-level SM values. This yields some idea about the

detectability of the TEVB couplings at such a collider. In addition it offers a check of our

calculations in that the dependence on κγ and λγ is similar to that obtained in ref. [7] for

the analogous process ep → eW± jets at HERA.



The dependence on the WWγ couplings is much more pronounced than that on the WWZ

coupling. This is easily traced back to the ratio of the γ- and the Z-couplings both to

the fermions and the W and is in marked contrast to the case of their contributions to

the precison electroweak parameters [12, 13]. The different sensitivity there arises from

the fact that the most accurate electroweak measurements are those dealing with the

properties of the Z. Furthermore, the dependence on λγ,Z is weaker than that on κγ,Z .

However, since λγ,Z represent interaction terms of dimension 6 or higher, the sensitivity

to these parameters grows faster with the interaction energy and hence they would be

more easily detectable at machines operating at a higher energy, e.g. the LHC.

To assess the resolving power of the process (2), we require the absolute difference between

the SM and anomalous cross-sections ∆σ = |σSM − σanom| to be large enough to provide

a deviation from the SM prediction exceeding the Poisson fluctuations by N standard

deviations i.e. , the event numbers (n = luminosity × σ) should satisfy the relation

∆n > N
√

nSM. The required luminosity L to reach this goal is then

L >
N2σSM

∆σ2
. (3)

To compare the resolving power of this reaction with the projections for conventional

linear colliders, we present the 90% C.L. (N = 1.64 in Eq. (3)) limits to which it can

constrain these parameters for an integrated luminosity of 10 fb−1. Under the similar

assumption that only one of the parameters may be non–zero, these are then

κγ : (0.982, 1.018) κZ : (0.89, 1.09)

λγ : (−0.08, 0.09) λZ : (−0.13, 0.15)

g1
Z : (0.90, 1.075)

(4)

These results are comparable to those obtained in Refs [6, 8, 9]. The slightly tighter

constraints these authors obtain for some of the parameters, can be traced back to a more

detailed analysis of the angular distributions, which goes beyond the scope of this Letter.

Without such an analysis ( e.g. Kalyniak et al. in [8]), the limits are weaker than what

we achieve from a straightforward comparison of the total cross sections.

Although this analysis provides us with grounds for optimism, yet some circumspection is



called for. Indeed, it is rather unlikely that, if at all, then only one parameter assume an

anomalous value while all other remain at their SM values. Even if one were to neglect the

effects of interference between the different contributions on grounds of their representing

operators of higher dimension (though such an argument is invalid in a phenomenological

analysis such as the present), we still would have to worry about incoherent addition. The

best approach then is to obtain contour plots. As we are still plagued by the plethora

of parameters, we choose to present only two combinations (in each of which the other

parameters are assumed to have their SM values).

Assuming only κγ − 1 and κZ − 1 to be non-zero, Fig. 3 shows the 3σ band (according

to Eq. (3), with N = 3) to which these parameters can be restricted to with a total

integrated luminosity of 1 fb−1. Clearly, the interference between the κγ and the κZ

contributions can be large, thus rendering even a large value of either unobservable. An

increase in luminosity would not change this fact in any way, for we would still have a

band of the same average dimensions, albeit narrower. One may argue however, that from

a theoretical standpoint, such large cancellation are unlikely. We have hence concentrated

more on the region around the SM point (Fig. 4) and show the reachability for a integrated

luminosity of both 1 and 10 fb−1. In Fig. 5, we show similar contours for the λγ − λZ

pair of parameters. Unlike the κ-case, here we do not observe a “mexican hat” band but

a simple well centered around the SM values 0. As expected, the sensitivity to the λ’s is

much weaker than that to the κ’s.

To conclude, we demonstrate the considerable power of a e−e− collider as a tool for un-

ravelling the self-interactions of the electroweak gauge bosons. In fact, the limits that

can be obtained from a simple minded analysis of the total cross-sections alone compares

quite favourably with those deduced from a sophisticated analysis of the decay distribu-

tions in a more conventional collider. However, what accords even greater value to such

an experiment is the significant difference in the region of the parameter space that it

would probe. We believe, hence, that it would prove to be of great import when used in

conjunction with the other experiments.
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Figure Captions

1. Lowest order Feynman diagrams contributing to the process in Eq. (2).

2. Difference in cross-sections of the SM and anomalous processes of Eq. (2) as a

function of each of the five anomalous couplings in Eq. (1), when all others assume

their SM values. The SM cross-section amounts to 1.49 pb.

3. Contours of detectability at the 3σ level (N = 3 in Eq. (3)) of the κγ and κZ

parameters for an integrated luminosity of 1 fb−1. All other parameters assume

their SM value.

4. Blowup of Fig. 3 in the neighbourhood of the SM values. The contours for 10 fb−1

are also shown.

5. Same as Fig. 4 for the λγ and λZ parameters.
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