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ABSTRACT

The addition of m singlet right-handed neutrinos to the Standard Model leads to radiatively

generated mass corrections for the SU(2)L doublet neutrinos. For those neutrinos which

are massless at the tree level after this addition, this implies a small mass generated at the

two-loop level via W± exchange. We calculate these mass corrections exactly by obtaining

an analytic form for the general case of n doublets and m singlets. As a phenomenological

application, we consider the m = 1 case and examine the masses and mixings of the doublet

neutrinos which arise as a result of the two-loop correction in the light of experimental data

from two sources which may shed light on the question of neutrino masses. These are (a)

the neutrino detectors reporting a solar neutrino deficit (and its resolution via Mikheyev-

Smirnov-Wolfenstein matter oscillations), and (b) the COBE satellite data on the non-zero

angular variations of the cosmic microwave background temperature (and its possible impli-

cations for hot dark matter). Within the framework of the extension considered here, which

leaves the gauge group structure of the Standard Model intact, we show that it is possible for

neutrinos to acquire small masses naturally, with values which are compatible with current

theoretical bias and experimental data.



1 Introduction

It is fair to say that the problem of understanding the origin of fermion masses is one of

the most perplexing questions facing particle physics today. The Standard model [1] can

reproduce the observed fermion masses via electroweak symmetry breaking and the Higgs

mechanism, but provides no explanation for their values. When such an understanding is

obtained, one of the issues that it must clarify is the smallness of neutrino masses (if, indeed,

neutrinos are massive) relative to those of the other fermions. An attractive explanation

for this observed feature of the fermion mass spectrum is the see-saw mechanism [2]. It

postulates the existence of right-handed neutrinos with masses of the order of the next

energy threshold and uses this in combination with the Higgs mechanism to generate light

(Majorana) neutrino masses via an effective dimension five operator.

Given our present ignorance of the origins of mass and the lack of experimental pointers

towards any particular mechanism, it is important to keep an open mind on the smallness

of neutrino mass. In this paper, we explore, via detailed calculation, the issue of radiatively

generated neutrino masses, since this is also a natural way in which masses small compared

to those of other fermions may be generated.

Any such effort needs to invoke physics beyond the Standard model. In view of the

extraordinary and demonstrated robustness of the model to experimental tests over the last

twenty years, we have thought it reasonable to make the simplest possible extension to

the standard theory and study its effect on neutrino masses via radiative corrections, i.e.

the addition of m SU(2)L
⊗

U(1)Y singlet right-handed neutrinos. A priori, there is no

connection between their number and that of the doublet neutrinos, hence the simplest case

corresponds to m = 1, i.e. the addition of one right-handed singlet neutrino to the standard

model [3].
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The gauge group structure of the weak sector remains unchanged as a consequence of

this extension, but majorana mass terms incorporating the scale of new physics are now

allowed. We do not speculate on their origin, but only note that it would require invoking

an additional global symmetry (such as a conserved lepton number) to set these to zero.

The doublet neutrinos acquire radiative (and, in some cases, tree-level) masses due to the

presence of the singlets, as we discuss below. The radiative masses arise (via mixing) due to

a two-loop mechanism [4, 5] involving the exchange of W± bosons. In Sections II and the

Appendix, we calculate, exactly and in analytic form, the two-loop masses accquired by the

initially massless doublet neutrinos. Our calculation is general and valid for any number of

doublet and singlet neutrinos, but in order to obtain phenomenologically useful information,

we focus, in Section III, on the m = 1 case. Even this simplest extension of the Standard

model introduces four new parameters into the theory. On the issue of neutrino masses, it

is non-accelerator experiments that provide information on the cutting edge. Hence we have

chosen to examine the results for the m = 1 case in the light of (a) the MSW [6] solution to

the solar neutrino deficit seen by the Kamiokande [7], GALLEX [8], SAGE [9] and Homestake

[10] neutrino detectors and (b) the implications for hot dark matter (neutrinos) from the

recent COBE observations on the anisotropy of the microwave background [11]. Invoking

this experimental information restricts the parameter space and consequently, in the context

considered in this paper, permits a handle on the range of the mass scale characterizing

physics beyond the standard model. We show that doublet neutrino masses compatible with

both (a) and (b) above can result naturally from such physics at the several hundred GeV

scale.
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2 Radiative Generation of Neutrino Masses

In this section we give a description of an exact general procedure for calculating two-loop

neutrino masses applicable to any extension of the Standard model which incorporates singlet

right-handed neutrinos. (We remark below on the reason why a one-loop mass does not arise

in the sitiuation considered here, where only right-handed handed neutrinos are added to the

existing particle spectrum. ) After setting up the generic integral that needs to be calculated

we describe the procedure for evaluating it exactly in the Appendix.

The lepton sector of the extension considered here has, in general, n (≥ 3) doublet fields

[ν ′
iL liL]T and m singlet fields (ν ′

AL)c = (ν ′c
A)R. ( Here i = 1....n, A = 1....m and νc ≡ Cν̄T

is the charge conjugate spinor.) In addition, one has the charged lepton SU(2)L singlet

fields liR. The primes on the neutrino fields denote weak eigenstates as opposed to physical

particle states. Without any loss of generality, we have assumed that the weak eigenstates

li are the same as the corresponding mass eigenstates, i.e. the charged lepton mass matrix

is diagonal.

As noted in the Introduction, in addition to the Dirac mass terms, the most general

Lagrangian consistent with the gauge symmetry of the Standard model also contains possible

Majorana mass terms for neutrinos of the form mAB(ν ′
AL)cν ′

BL. In the minimal model under

consideration here, such terms must be bare mass terms, but in a more involved model they

could arise, for instance, due to the vacuum expectation value of a singlet higgs. To facilitate

discussion, we combine all the left handed neutrinos into a (n + m)–dimensional vector in

the flavour space denoting it by ν ′
αL. The most general mass term is thus given by

Lm =
n∑

i=1

µil̄iLliR +
n+m∑

α,β=1

(ν ′
αL)cMαβν ′

βL + h.c (2.1)
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Here M is a complex symmetric 1 (n + m) × (n + m) matrix of the form

M =




0n×n Dn×m

DT
m×n Mm×m



 (2.2)

with D and M denoting the Dirac and the Majorana mass terms respectively. The first

block is identically zero in the absence of a non–trivial vacuum expectation value for a

SU(2)L–triplet higgs field. (This restriction is imposed not only by our philosophy of minimal

extension, but more importantly, by mW /mZ — the observed ratio of the gauge boson

masses.) M can be diagonalized by a biunitary transformation of the form

V TMV = M̂ = diagonal(mα) (2.3)

The mass eigenstates ( να) are then easily identified to be

νL = V †ν ′
L (2.4)

The relevant piece of the weak Lagrangian is then given by

Lwk = JµW
µ (2.5)

where

J+
µ =

ig√
2

n∑

i=1

l̄iγµPLν ′
i =

ig√
2

n∑

i=1

n+m∑

α=1

Kiαl̄iγµPLνi

J3
µ =

ig

2cW

n∑

i=1

(
l̄iγµPLli + ν̄ ′

iγµPLν ′
i

)

=
ig

2cW




n∑

i=1

l̄iγµPLli +
n+m∑

α,β=1

(K†K)αβ ν̄αγµPLνβ





(2.6)

Here cW ≡ cos θW , where θW is the Weinberg angle, g = e/ sin θW , PL ≡ (1 − γ5)/2 and

K =




In×n 0

0 0



V (2.7)

1That M has to be symmetric is evident from the charge conjugation property of fermion bilinears.
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is the (n+m)–dimensional analog of the quark sector Cabibbo–Kobayashi–Maskawa matrix.

Note that though KK† = diag(In×n, 0), (K†K)αβ 6= δαβ. Thus we do indeed have flavour

changing neutral currents (FCNC) in the neutrino sector.

Having set up the general formalism, let us now concentrate on the case where n > m.

There exist then n−m neutrinos that are strictly massless at the tree level. We now calculate

the changes to such a spectrum accruing from quantum corrections.

Before proceeding, in view of the fact there exist massive neutrinos and also FCNC’s in

the neutrino sector, it is appropriate at this point to remark on the possibility of one–loop

graphs with a Z or a Higgs exchange introducing a non–trivial correction to the neutrino mass

matrix. However, it can be easily seen that it is possible to rotate the neutrino states such

that only m of them have Yukawa couplings to the Higgs. Thus, only those doublet states

that are massive at tree level obtain a Higgs induced mass at the one-loop level. In addition,

since the flavor-changing Z couplings have the same mixing parameters as the flavor-changing

Yukawa couplings, the one-loop Z exchange diagrams do not contribute to the masses of the

n −m neutrinos which are massless at the tree level. This reasoning applies at all orders to

any diagram where all virtual particles are neutral. Hence the relevant diagram to compute

is that given in Fig.(1).

We shall work in the weak interaction basis for the external neutrinos and the mass basis

for all the virtual particles. Furthermore, we shall concentrate only on the first n × n block

of M, i.e. on the generation of Majorana mass terms for the doublet neutrinos. In the

unitary gauge, the correction to the neutrino propagator is then given by

iΣ
(2)
ij (p) =

(
ig√
2

)4 n+m∑

α=1

∫
d4k

(2π)4

d4q

(2π)4
γµPR

i

p/ + q/ − µi
K†

αiγνPR

i

p/ + q/ + k/ − mα
K†

αjγσPL
i

p/ + k/ − µj
γλPL

−i (gµσ − qµqσ/m2
W )

q2 − m2
W

−i
(
gνλ − kνkλ/m2

W

)

k2 − m2
W

(2.8)
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The mass correction is of course given by M(2)
ij = Σ

(2)
ij (p = 0), and after some algebra this

leads to

M(2)
ij =

g4

4

n+m∑

α=1

mαK†
αjK

†
αi

∫
d4k

(2π)4

d4q

(2π)4

(k + q)2 k · q
Dij;α

[(
4 +

k2q2

m4
W

)
− 4

q2 + k2

m2
W

] (2.9)

where

Dij;α = (k + q)2
{
(k + q)2 − m2

α

}
(q2 − µ2

i )(q
2 − m2

W )(k2 − m2
W )(k2 − µ2

j) (2.10)

We see that the mass corrections would be identically zero if mα = 0, ∀α. This ought to be

so as any mass renormalization must be proportional to the bare mass terms. The integral

above has a naive degree of divergence of 4. However, note that

n+m∑

α=1

mαK†
αjK

†
αi = Mij = 0 (2.11)

and hence
n+m∑

α=1

mαK†
αiK

†
αj

(k + q)2

(k + q)2 − m2
α

=
n+m∑

α=1

K†
αiK

†
αjm

3
α

(k + q)2 − m2
α

(2.12)

This clearly is analogous to the GIM mechanism in the quark sector. Even on substitution

of eqn(2.12) in eqn(2.9), the integral in the latter is still formally divergent. Notice, however,

that this is but an artifact of the unitary gauge and is not a real divergence [12]. In fact, by

invoking identities similar to eqn(2.12) or equivalently, by working in the Feynman gauge,

one obtains 2

M(2)
ij = g4

n+m∑

α=1

m3
αK†

αjK
†
αi

[
4 + 4

µ2
i + µ2

j

m2
W

+
µ2

i µ
2
j

m4
W

]
Λ(µ2

i , m
2
W , m2

α, 0, µ2
l , m

2
W ) (2.13)

where

Λ(m2
1, m

2
2, m

2
3, m

2
4, m

2
5, m

2
6) ≡

2This has often been cited in the literature as a GIM-like cancellation, but in our view the two are quite

different.
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∫
d4k d4q k · q

(q2 + m2
1)(q

2 + m2
2) {(k + q)2 + m2

3} {(k + q)2 + m2
4} (k2 + m2

5)(k
2 + m2

6)

(2.14)

is an Euclidean integral evaluated in the Appendix.

The expression in eqn(2.13) thus represents the Majorana mass generated for the doublet

neutrino at the two–loop level. In operator language, it arises from terms of the form

(LiL)cLjLφφS (2.15)

where LiL represent the doublet lepton fields, φ is the usual higgs field and S represents the

lepton number violating operator (whether a singlet higgs or a bare mass term). We note

that this five dimensional effective operator for the radiative masses is the same as that for

the conventional see-saw mechanism. The difference between the two resides in the scale

of mass generation. Two-loop radiative masses compatible with the solar and COBE data

can arise from right-handed neutrinos at the several hundred GeV scale, as we show below,

whereas the see-saw mechanism generates similar valued masses via heavy neutrinos at the

grand unified scale.

We also note that though the corrections ostensibly are proportional to m3
α (eqn.(2.13)),

the actual dependence is linear (apart from logarithmic corrections) due to suppressions

hidden in Λ. As mα becomes larger and terms of the order of (µi/mα)2 become negligible,

the correction goes as ΣαK†
αiK

†
αjmα, which is simply the (ij)th element of the tree-level mass

matrix, and hence zero for the cases of interest here.

Finally, we remark that a complex M in eqn.(2.1) obviously leads to a complex digonal-

izing matrix V and hence possibly to CP–violating processes. However, since there is no

evidence as yet of any such non-conservation in the leptonic sector, we have, in the interests

of simplicity, chosen to perform all numerical calculations assuming a real neutrino mass

matrix.
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3 Application: The Solar Neutrino Deficit and COBE

Data

In order to make a connection to experiment and phenomenology, we now specialize to the

n = 3 and m = 1 case and examine the two loop mass corrections in the context of (a) the

MSW solution [6] to the solar neutrino deficit reported by various detectors [7, 8, 9, 10] and

(b) recent COBE [11] data and its implications for neutrinos as dark matter.

The solar deficit is the only long-standing possible evidence for physics beyond the Stan-

dard model, and the MSW mechanism is its most popular resolution. In its essence, the

mechanism requires neutrinos to be massive (and non-degenerate), allowing the interaction

eigenstate νe (assumed to comprise predominantly of the lightest mass eigenstate) to oscillate

to νµ or ντ due to the difference in the forward scattering potential seen by the two states

in their passage through solar matter. It thus identifies a range of vacuum mixing angle and

mass squared difference values which are compatible with the deficit observed by the various

detectors. Figure 2, excluding curves labelled (a), (b) and (c), is taken from Ref. [13] and

shows the familiar two-flavor mixing MSW solution space, where θ is the Cabibbo mixing

angle and ∆m2 is the difference of the squares of the two neutrino masses, which, in the

present context, are acquired at the two-loop level.

COBE data on the anisotropy of the microwave background, while not making a definitive

statement on the nature of dark matter, seem to suggest that it may have both hot and cold

components, with the former being a neutrino (since it is the only known hot dark matter

candidate) with a mass of ≈ 10 eV.

We use both of the above considerations to restrict the rather large parameter space

available to us.

In the scenario with one additional singlet, we have two massive and two massless neu-
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trinos at tree-level. The two massive ones acquire both one-loop and two-loop corrections,

which we neglect, and the massless states acquire small masses at the two-loop level. The

two tree-level masses and all the radiative corrections are expressible in terms of four in-

put mass parameters for the matrix M. For various plausible (fixed) values of mα, (the

singlet mass, signifying the scale of new physics) and the added constraint that the other

neutrino with a tree level mass lie in the 10 eV range, we obtain a one parameter set of

curves (see Fig. 2) which denotes the intersection of the ”two-loop space” with the MSW

solution space. Note that restricting ourslves to the two dimensional MSW space imposes

a third constraint, i.e. that the νe mixes predominantly with only one other state. Curve

(a) in Figure 2 corresponds to a singlet mass of 100 GeV and a ντ mass of ≈ 8.6 eV. The

two-loop masses and mixings of νe and νµ are then such that they span the MSW space as

shown. Curve (b) corresponds to a singlet mass of 400 GeV and a νµ mass of ≈ 7 eV. ντ

and νe then acquire radiative masses and mixings that span the solution space as shown.

For sin22θ greater than ≈ 3× 10−1, ντ becomes lighter than νe, and MSW oscillations occur

between anti-neutrino rather than neutrino states, and are thus not relevant. We note that

(b) passes through the (small-angle, non-adiabatic) MSW region that is compatible with all

detectors and also represents a value of mνµ
(7 eV) that provides a very good fit to COBE

data in the context of a hot plus cold dark matter scenario. Finally, curve (c) represents a

singlet mass of 1 TeV and a νµ mass of ≈ 9.8 eV, and terminates where it does because for

larger mixing angles the νe becomes heavier than the ντ . Note that the determination of

which flavor the νe oscillates to is made by examining the mixing (diagonalizing) matrix of

the full ( i.e. tree + loop ) mass matrix. A (reasonable) assumption built into the results is

that νe is the lightest state.

We stress that these curves represent a phenomenological exercise more than anything

else to demonstrate that our calculations can make connection with experiment when the full
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parameter space, which is quite large, is constrained by imposing physically and empirically

well-motivated restrictions.

We note that the singlet mass values chosen by us (100 GeV, 400 GeV and 1 TeV) are

not in conflict with accelerator [14] or cosmological [15] bounds on these particles.

Finally, we remark that a disparity between the mass scales of the νe, νµ(ντ ) and that

of the ντ (νµ) seems to be required if we take both the solar and COBE implications for

neutrino masses seriously. In the simple model under consideration here, such a disparity

arises naturally since the neutrino which contributes to dark matter has a tree level mass

while the other two have loop masses.

4 Conclusions

We have explicitly obtained an analytic form for the radiative two-loop masses acquired by

doublet neutrinos in models where right-handed singlets are present. We have made an effort

to keep our calculation general and the expression for the mass correction that we obtain

may have applications in other models with right-handed neutrinos. We have calculated

these masses (for the one singlet case) in the light of experimental data from solar neutrino

detectors and from COBE, within the confines of the MSW solution to the solar deficit.

By doing so we have made an effort to demonstrate that intermediate scale physics ( i.e.

physics at ≤ 1 TeV) can lead, in a simple way, to naturally small masses for neutrinos which

have physically meaningful values, without requiring drastic changes in the presently known

particle spectrum or gauge group structure.

10



A Appendix: Evaluation of Λ123456

In this section we discuss the exact evaluation of the fundamental finite two loop four di-

mensional integral underlying the mechanism. As a first step, though, we consider the more

general two loop Euclidean space integral, Λ123456, defined by

Λ123456 =
∫

p q

p · q
(p2 + m2

1)(p
2 + m2

2)((p + q)2 + m2
3)((p + q)2 + m2

4)(q
2 + m2

5)(q
2 + m2

6)
(A.1)

which we will evaluate analytically and then specialize to the case we are concerned with.

For reasons which we explain below we choose to calculate eqn (A.1) in d-dimensions where

∫

k
=

µ4−d

(2π)d

∫
ddk (A.2)

and µ is an arbitrary mass parameter introduced to ensure the coupling constant remains

dimensionless in our d-dimensional manipulations. The subscripts on Λ123456 correspond to

the masses m2
i of the integral and we note that the function has certain obvious symmetries,

Λ123456 = Λ213456 = Λ563412, which ought to be preserved in the final expression. The strategy

to evaluate eqn (A.1) is to use partial fractions to obtain a sum of 2-loop integrals with three

propagators and then to substitute for the value of each of these sub-integrals, which have

been considered by other authors in different contexts before, [16, 17, 18, 19]. For instance,

if we define

Jijk =
∫

p

∫

q

p · q
(p2 + m2

i )(q
2 + m2

j )((p + q)2 + m2
k)

(A.3)

then eqn (A.1) is built out of a sum of eight such integrals where its only symmetry is Jijk

= Jjik. Rewriting the numerator of eqn (A.3) one finds

Jijk = 1
2 [IiIj − IjIk − IkIi − (m2

k − m2
i − m2

j )Iijk] (A.4)

where

Ii =
∫

p

1

(p2 + m2
i )

(A.5)
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Iijk =
∫

p

∫

q

1

(p2 + m2
i )((p + q)2 + m2

j )(q
2 + m2

k)
(A.6)

and the latter function is totally symmetric, corresponding to a two loop vacuum graph

(ie zero external momentum). The integral Iijk has been considered in [16, 17] and a single

integral representation of it exists, [18, 19, 20]. For our purposes, however, we have chosen to

use the elegant formula given in [20] since it is explictly symmetric in the masses. Although

Λ123456 is itself ultraviolet finite the sub-integrals, eqns (A.3) and (A.4), are divergent and

therefore require regularization. In [19, 20] dimensional regularization was introduced to

control these infinities, which is why we choose to calculate eqn (A.1) in d-dimensions, so

that Iijk involves double and simple poles in ǫ where d = 4 − 2ǫ. Therefore in the final result

these must cancel for all m2
i . As a first step, it is trivial to observe that in the partial fraction

decomposition of eqn (A.1) the IiIj type terms, which are also divergent, formally cancel to

leave only the Iijk terms. To proceed we recall the important properties of Iijk which have

been discussed in more detail in [20]. In d-dimensions the exact value, for arbitrary (mass)2,

x, y and z, is

I(x, y, z) = I(2a, 0, 0) + Γ′[F (1
2c − y) + F (1

2c − z) − F (x − 1
2c)] (A.7)

where

Iijk = I(m2
i , m

2
j , m

2
k)

Γ′ =
(µ2)4−d

(4π)d
Γ(2 − 1

2d)Γ(1 − 1
2d)

a = 1
2 [x

2 + y2 + z2 − 2xy − 2yz − 2zx]1/2

c = x + y + z (A.8)

and

F (w) =
∫ w

a
ds

1

(s2 − a2)(4−d)/2
(A.9)
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The result (A.7) is valid in the region of (x, y, z) space where a2 ≥ 0. For the case when a2

< 0, then the solution is, with b2 = − a2,

I(x, y, z) = − I(2b, 0, 0) sin(1
2πd)

+ Γ′[G(1
2c − x) + G(1

2c − y) + G(1
2c − z)] (A.10)

where

G(w) =
∫ w

0
ds

1

(s2 + b2)(4−d)/2
(A.11)

and, for example,

I(x, 0, 0) =
Γ(2 − 1

2d)Γ(3 − d)Γ2(1
2d − 1)xd−3

(4π)dΓ(1
2d)(µ2)d−4

(A.12)

which is clearly singular in four dimensions. To obtain the finite part of Λ123456 each part of

I(x, y, z) needs to be expanded in powers of ǫ to the O(1) term and the poles in ǫ cancelled.

The non-trivial part of this exercise is the ǫ-expansion of the F (w) and G(w) integrals. These

have been given in [20] and we record that to the ǫ-finite term,

(4π)4I(x, y, z) = − c

2ǫ2
− 1

ǫ

[
3c

2
− L1

]
− 1

2 [L2 − 6L1 + ξ(x, y, z)

+ c(7 + ζ(2)) + (y + z − x)lnylnz

+ (z + x − y)lnzlnx + (y + x − z)lnylnx] (A.13)

where ζ(n) is the Riemann zeta function, Li = xln
i
x + yln

i
y + zln

i
z, lnx = ln(x/µ̂2), µ̂2 =

4πe−γµ2 and γ is Euler’s constant, and for a2 > 0,

ξ(x, y, z) = 8a[M(φz) + M(φy) − M(−φx)] (A.14)

where

M(t) = −
∫ t

0
dφ ln sinh φ (A.15)

and the angles φx are defined by

φx = coth−1

[
1
2c − x

a

]
(A.16)
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For a2 < 0, then

ξ(x, y, z) = 8b[L(θx) + L(θy) + L(θz) − 1
2π ln 2] (A.17)

where the θx angles are given by

θx = tan−1

[
1
2c − x

b

]
(A.18)

and L(t) is the Lobachevskij function,

L(t) = −
∫ t

0
dθ ln cos θ (A.19)

Equation (A.17) can also be rewritten as

ξ(x, y, z) = 8b[L̃(θz) + L̃(θy) − L̃(−θx)] (A.20)

where L̃(t) =
∫ π/2
t dθ ln cos θ in order to make the obvious analytic continuation across a2 =

0 more apparent. It is worth noting that essentially eqn (A.1) has been reduced to a single

simple function, eqn (A.19), whose properties are well known. We have used the following

identities in order to write an efficient programme to calculate Λ123456 for a range of physical

mass values. For instance, [21],

L(t) = −L(−t) for − 1
2π ≤ t ≤ 1

2π

L(t) = L(1
2π − t) + (t − 1

4π) ln 2 − 1
2L(1

2π − 2t) for 0 ≤ t ≤ 1
4π

L(t) = ±L(π ± t) ∓ π ln 2 (A.21)

Therefore, when the argument of the Lobachevskij function is known, the identities of eqn

(A.21) mean that one need only write a routine to evaluate L(t) numerically in the range

[0, 1
2π). For example, if 0 ≤ λ < 2π then for any integer n

L(2πn + λ) = 2πn ln 2 + L(λ) (A.22)

and so on.
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Returning to the partial fraction form of Λ123456 with the result for Iijk, the c and Li terms

of the ǫ expansion cancel in the final expression and we can therefore take the limit back to

four dimensions, ǫ → 0. Consequently, we end up with the following analytic expression:

Λ123456 = − 1

4(4π)4(m2
1 − m2

2)(m
2
3 − m2

4)(m
2
5 − m2

6)

×
[
(m2

3 − m2
1 − m2

5)

[
ξ135 − m2

1 ln

(
m2

1

m2
3

)
ln

(
m2

1

m2
5

)

− m2
3 ln

(
m2

3

m2
1

)
ln

(
m2

3

m2
5

)
− m2

5 ln

(
m2

5

m2
1

)
ln

(
m2

5

m2
3

)]

− (m2
3 − m2

1 − m2
6)

[
ξ136 − m2

1 ln

(
m2

1

m2
3

)
ln

(
m2

1

m2
6

)

− m2
3 ln

(
m2

3

m2
1

)
ln

(
m2

3

m2
6

)
− m2

6 ln

(
m2

6

m2
1

)
ln

(
m2

6

m2
3

)]

− (m2
4 − m2

1 − m2
5)

[
ξ145 − m2

1 ln

(
m2

1

m2
4

)
ln

(
m2

1

m2
5

)

− m2
4 ln

(
m2

4

m2
1

)
ln

(
m2

4

m2
5

)
− m2

5 ln

(
m2

5

m2
1

)
ln

(
m2

5

m2
4

)]

+ (m2
4 − m2

1 − m2
6)

[
ξ146 − m2

1 ln

(
m2

1

m2
4

)
ln

(
m2

1

m2
6

)

− m2
4 ln

(
m2

4

m2
1

)
ln

(
m2

4

m2
6

)
− m2

6 ln

(
m2

6

m2
1

)
ln

(
m2

6

m2
4

)]

− (m2
3 − m2

2 − m2
5)

[
ξ235 − m2

2 ln

(
m2

2

m2
3

)
ln

(
m2

2

m2
5

)

− m2
3 ln

(
m2

3

m2
2

)
ln

(
m2

3

m2
5

)
+ m2

5 ln

(
m2

5

m2
2

)
ln

(
m2

5

m2
3

)]

+ (m2
3 − m2

2 − m2
6)

[
ξ236 − m2

2 ln

(
m2

2

m2
3

)
ln

(
m2

2

m2
6

)

− m2
3 ln

(
m2

3

m2
2

)
ln

(
m2

3

m2
6

)
− m2

6 ln

(
m2

6

m2
2

)
ln

(
m2

6

m2
3

)]

+ (m2
4 − m2

2 − m2
5)

[
ξ245 − m2

2 ln

(
m2

2

m2
4

)
ln

(
m2

2

m2
5

)

− m2
4 ln

(
m2

4

m2
2

)
ln

(
m2

4

m2
5

)
− m2

5 ln

(
m2

5

m2
2

)
ln

(
m2

5

m2
4

)]

− (m2
4 − m2

2 − m2
6)

[
ξ246 − m2

2 ln

(
m2

2

m2
4

)
ln

(
m2

2

m2
6

)
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− m2
4 ln

(
m2

4

m2
2

)
ln

(
m2

4

m2
6

)
− m2

6 ln

(
m2

6

m2
2

)
ln

(
m2

6

m2
4

)]]
(A.23)

where ξijk = ξ(m2
i , m

2
j , m

2
k) and it is evaluated according to eqns (A.14) or (A.17) depending

on whether the particular a2 is positive or negative. A further check on our manipulations to

obtain eqn (A.23) is the absence of the arbitrary mass µ which was required at intermediate

steps to have logarithms whose arguments were dimensionless quantities.

Although it may appear that the final result is singular in certain cases through denom-

inator factors like (m2
1 −m2

2) when m2
1 = m2

2, the expression within the square brackets also

vanishes. Moreover, if one sets m2
2 = m2

1 + δ, where δ is small, and expands in powers

of δ then in the limit as δ → 0 a non-zero non-singular function of the independent mass

remains. Further, there is no difficulty with singularities when one or more masses is zero.

To illustrate this point explicitly we consider the integral Λ123056 where the zero subscript

means the corresponding mass of eqn (A.1) is zero. Its form can readily be deduced from

eqn (A.23) by taking the m2
4 → 0 limit. However, to do this the behaviour of ξ(x, y, z) in the

z → 0 limit is required since eqn (A.23) has terms like ln m2
4 which are potentially infinite

in the limit we require. It is is easy to deduce from the explicit representation, eqn (A.14),

that

ξ(x, y, z) ∼ (x − y)

[
2Li2

(
1 − y

x

)
+ ln

(
x

y

)
ln
(

x

z

)]
(A.24)

as z → 0. Thus a little algebra leads to the compact expression,

Λ123056 = − 1

4(4π)4(m2
1 − m2

2)m
2
3(m

2
5 − m2

6)

×
[
(m2

3 − m2
1 − m2

5)ξ135 − (m2
3 − m2

1 − m2
6)ξ136

− (m2
3 − m2

2 − m2
5)ξ235 + (m2

3 − m2
2 − m2

6)ξ236

− ρ(m2
3, m

2
1, m

2
5) + ρ(m2

3, m
2
1, m

2
6)

+ ρ(m2
3, m

2
2, m

2
5) − ρ(m2

3, m
2
2, m

2
6)
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+ λ(m2
1, m

2
5) − λ(m2

1, m
2
6) − λ(m2

1, m
2
5) + λ(m2

2, m
2
6)
]

(A.25)

with

ρ(x, y, z) = (x − y − z)

[
x ln

(
x

y

)
ln
(

x

z

)
+ y ln

(
y

x

)
ln
(

y

z

)

+ z ln
(

z

x

)
ln

(
z

y

)]
(A.26)

and

λ(x, y) = (x + y)

[
2(x − y)Li2

(
1 − y

x

)
− y ln

(
x

y

)]
(A.27)

where Li2(t) is the dilogarithm function. Its properties have been discussed extensively in

[22] but we make use of the following ones here

Li2(−t) + Li2(−1/t) = − ζ(2) − 1
2 ln2 t for t > 0

Li2(t) + Li2(1 − t) = ζ(2) − ln t ln(1 − t) (A.28)

and its integral representation is, [22],

Li2(t) = −
∫ t

0

ds

s
ln(1 − s) (A.29)

where Li2(1) = ζ(2) = π2/6.

Finally, another check on our overall expression eqn (A.23) is the comparison with the

earlier result of [5] where only m2
3 and m2

4 are non-zero, ie Λ003400, which was evaluated by

an independent method. We can easily deduce an expression for Λ003400 from eqn (A.25) by

using the relation (A.24) or by returning to the Iijk representation of eqn (A.1) and taking

the appropriate limits in that case. Useful for the former approach are the properties of the

dilogarithm function, [22]. Whilst in the latter instance we made use of the Tyalor expansion

of the Iijk about zero mass and in particular,

∂2I(x, y, z)

∂y∂z

∣∣∣∣∣
y = z = 0

=
Γ2(1

2d − 2)Γ(4 − 1
2d)Γ(5 − d)xd−5

(4π)d(µ2)d−4Γ(1
2d)

(A.30)
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whose ǫ expansion is easy to determine. Consequently, we find

Λ003400 = − 1

(4π)4(m2
3 − m2

4)
ln

(
m2

3

m2
4

)
(A.31)

This is in total agreement with the explicit calculation of [5] and is a necessary non-trivial

check that we have the overall normalization of our integral correct, in terms of signs and

factors of 2π.
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Figure Captions

Figure 1: The two-loop diagram which gives rise to the mass corrections considered in this

paper.

Figure 2: The MSW solution space for the solar neutrino deficit, from Ref. [13]. Superposed

on it are the 3 curves (a), (b) and (c) which represent sample calculations using our results.

Each curve shows the mass squared differences and mixings for the two light neutrinos which

acquire masses radiatively, for fixed values of the masses of the other two neutrinos which

are massive at tree level. Curve (a) in Figure 2 corresponds to a singlet mass of 100 GeV

and a ντ mass of ≈ 8.6 eV. Curve (b) corresponds to a singlet mass of 400 GeV and a νµ

mass of 7 eV. Finally, curve (c) represents a singlet mass of 1TeV and a νµ mass of ≈ 9.8

eV.
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