
ar
X

iv
:h

ep
-p

h/
94

04
36

2v
1 

 2
 M

ay
 1

99
4

MPI-Ph/94-23
LMU-04/94

hep-ph/9404362

Model-Independent Z ′ Limits

from Electron-Electron Collisions

Debajyoti Choudhury, Frank Cuypers
Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, D-80805 München, Germany

Emails: debchou,cuypers@iws166.mppmu.mpg.de

Arnd Leike∗

Sektion Physik der LMU München, Theresienstr. 37, D-80333 München, Germany

Email: leike@cernvm.cern.ch

February 7, 2008

Abstract

Model independent constraints on the mass of an extra neutral gauge boson and
its couplings to charged leptons are given for the e

−
e
− option of a future linear

collider. Analytic exclusion limits are derived in the Born approximation. The
results are compared with those of the e

+
e
− mode. The influence of radiative

corrections is discussed.
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Electron colliders are usually assumed to be electron-positron colliders. However, this
need not necessarily be the case at one of the projected linear colliders such as CLIC,
JLC, TESLA, VLEPP, etc.. Indeed, a linear collider can also be operated with two
colliding electron beams. Such an operation mode has two important advantages: (i)
both beams can now be polarized to virtually 100%; (ii) since QCD enters the game only
at the two-loop level, e−e− collisions provide a very clean environment for detecting slight
deviations from the expectations of the electro-weak sector of the standard model. Of the
many new possibilities [1, 2, 3, 4], not the least is a search for an extended electro-weak
gauge sector.

Model independent constraints on an extra neutral gauge boson Z ′ have been obtained
previously for e+e− collisions in Refs [5, 6]. Here, we provide similar bounds for e−e−

collisions and compare the results with those obtained in e+e− collisions. For this we
concentrate on a typical linear collider design of the next generation, assuming a center of
mass energy

√
s = 500 GeV and an integrated luminosity L = 10 fb−1. These values can

anyway be modified trivially. Since very high degrees of longitudinal polarization should
be available at future linear colliders, we also assume 100% polarization in the following.
The effects of dilution can be easily incorporated, though.

With the introduction of a Z ′, the Lagrangian for the relevant sector of the theory becomes

L = e
(

AµJ
µ
γ + ZµJ

µ
Z + Z ′

µJ
µ
Z′

)

, (1)

where e is the electric charge and Aµ, Zµ and Z ′

µ represent the photon, the Z-boson and
the Z ′. The neutral currents are conveniently parametrized as

Jµ
i = ψ̄eγ

µ [RiPR + LiPL]ψe (i = γ, Z, Z ′) , (2)

where the left and right projection operators are defined as PR,L ≡ (1 ± γ5)/2. The
standard model left- and right-handed couplings Li and Ri of the vector boson i to
electrons are

Lγ = Rγ = −1, LZ = tan θW , RZ = tan θW − 1

2 cos θW sin θW

, (3)

where θW is the electro-weak mixing angle. The objective is now to obtain constraints on
the couplings LZ′ and RZ′ as a function of mZ′ .

At the Born level, the scattering e−(k1)e
−(k2) → e−(p1)e

−(p2) is described by the ex-
change of neutral gauge bosons in the t– and/or u–channels, depending on the polarization
of the electron beams. As the polarization of the final state electrons is as yet impossible
to determine experimentally, the only observable is their angular distribution. We denote
the cosine of this angle

x = cos θ (4)

and define

xi = 1 + 2
m2

i

s
(i = γ, Z, Z ′) . (5)
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Neglecting the electron mass and the widths of the gauge bosons, we have for the three
possible combinations of beam polarizations

dσLL

dx
=

16πα2

s

∑

i,j=γ,Z,Z′

L2
iL

2
j

[

xixj

(x2
i − x2)(x2

j − x2)

]

dσRR

dx
=

16πα2

s

∑

i,j=γ,Z,Z′

R2
iR

2
j

[

xixj

(x2
i − x2)(x2

j − x2)

]

dσLR

dx
=

πα2

s

∑

i,j=γ,Z,Z′

LiRiLjRj

[

(1 + x)2

(xi − x)(xj − x)
+

(1 − x)2

(xi + x)(xj + x)

]

dσUnp.

dx
=

1

4

(

dσLL

dx
+
dσRR

dx
+ 2

dσLR

dx

)

,

(6)

where α = e2/4π is the fine structure constant. Note that since the polarization of the
final state electrons cannot be measured, one has to sum over their polarizations. This is
why in the LR case the angular distribution remains symmetric.

As expected for Møller scattering, the distribution becomes singular for |x| → 1. Had we
retained the electron mass, it would have regulated this collinear singularity arising from
diagrams with photon exchange. This contribution is nonetheless eliminated naturally by
the experimental acceptance cut on the angle of the emergent electron, |x| < x+.

Before embarking on a more detailed analysis, let us estimate the resolving power of this
reaction in the limit where mZ′ ≫ √

s ≫ mZ , hence neglecting terms of O(M2
Z/s) and

O(s/M2
Z′). The differences between the cross sections expected in the presence and the

absence of a Z ′ become then

∆σLL = L′2 16πα2

s

1

cos2 θW

ln
1 + x+

1 − x+

(7)

∆σRR = R′2 16πα2

s

1

4 sin2 θW cos2 θW

ln
1 + x+

1 − x+

(8)

∆σLR = L′R′
4πα2

s

1

cos2 θW

(

ln
1 + x+

1 − x+

− 3

2
x+

)

, (9)

where we defined the reduced left and right Z ′ couplings

L′ =

√
s

mZ′

LZ′ (10)

R′ =

√
s

mZ′

RZ′ . (11)

Demanding that the difference in the number of events is sufficiently significant, leads to
simple bounds on these reduced coupling. Several features of the analysis are clear:

• The dependence on the Z ′ mass has been absorbed into the definition (10,11) of the
reduced couplings.
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• The LL mode, with both beams left–polarized, is sensitive only to the coupling L′,
and similarly for right polarization. There is thus no correlation between these two
complementary measurements, which yield straight vertical and horizontal bands
for the detectability limits in the (L′, R′) plane.

• In contrast, the experiment with LR beams yields highly correlated information on
the L′ and R′ parameters. The curves delimiting the detectability region are now
hyperbolas.

• In the limit where sin2 θW = 1/4 the LL and RR modes have the same resolving
power. In practice, the RR mode yields only a minute improvement. The LR mode,
however, is much less sensitive.

All these features remain accurate in the more precise analysis which is to follow now.

To take advantage of the angular information contained in Eqs (6), we consider a moderate
number N of bins in x = cos θ and compare the observed number of events ni in each
with the standard model expectations nSM

i . Denoting the fraction of events in each bin
by

Xi =
ni

n
(12)

where n =
N
∑

i=1

ni, a χ2 test for the deviation can be devised as

χ2 =
N
∑

i=1

(

Xi −XSM
i

∆Xi

)2

. (13)

The corresponding statistical error in the bin i is given by

∆X2
i =

ni

n2

(

1 − ni

n

)

. (14)

The second term in Eq. (14) originates from the correlation between the number of events
in one bin and the total number of events. The advantage of using the relative numbers
of events Xi = ni/n resides in the fact that the systematic error due to uncertainties in
the luminosity measurements drops out.

Armed with the above expressions, we can now examine the observabilty of the reduced
Z ′ couplings (10,11). For concreteness we assume a center of mass energy of 500 GeV and
an integrated luminosity of 10 fb−1. We impose the symmetrical angular cut

|x| < x+ = 0.985 (15)

and divide this range into N = 10 equal size bins. Since we deal here with one-sided
bounds the exclusion contours at 95% confidence level in the (L′, R′) plane are identified
by demanding χ2 > 4.61 in Eq. (13). These contours are depicted for mZ′ = 2 TeV in
Fig. 1 for LL, RR and LR beam polarizations. These exclusion regions are indeed bounded
by straight lines and hyperbolas, as expected from the crude analysis based on Eqs (7-9).
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Obviously, unpolarized beams are less sentive. The combined fit χ2 = χ2
LL+χ2

RR+χ2
LR does

not yield very much additional information, since the two most sensitive measurements
(LL and RR) already provide uncorrelated results.

While the results in Fig 1 are strictly speaking valid only for the particular value 2 TeV
of the Z ′ mass, the generic features prevail for other masses too. Indeed, the limits of
detectability of L′ and R′ in the LL and RR experiments, depend very little on the details
of the analysis. This can be infered from the plots in Figs 2, 3 and 4, where the smallest
detectable value of R′ with 95% confidence (since the value taken by L′ is irrelevant, this
is only a one-parameter fit, hence χ2 = 2.71), is plotted respectively as a function of the
cut x+, the number of bins N , and the mass mZ′ of the Z ′. The reduced coupling L′ yields
nearly undistinguishable results (which would actually be identical for sin2 θW = 1/4).

In Fig. 4 we have also plotted the discovery limits which can be achieved by a LR asym-
metry measurement1 in e+e− collisions, under the same conditions. Clearly, on the Z ′

peak (here at 500 GeV) e+e− collisions provide almost unlimited precision. However, if
the Z ′ mass exceeds the center of mass energy by as little as 20%, the e−e− mode with
both beams polarized provides already more accurate bounds. Asymptotically, roughly a
factor of 1.6 can be achieved.

Finally, we want to comment on radiative corrections. The considered reaction has no
resonating behaviour with the center of mass energy

√
s. However, the cross section has

a very singular angular dependence keeping most of the outgoing electrons at very small
angles in the beam pipe. The radiation of hard photons could kick an electron from the
beam pipe into the detector. Nevertheless, the corresponding hard photon can of course
be vetoed. The radiation of collinear hard photons from the initial state reduces the
effective energy of the colliding electrons giving a lower sensitivity to a Z ′. However, such
events can also be removed by demanding that the energy of the scattered electrons be
close to the beam energy. To summarize, radiative corrections are not expected to induce
sizable changes to our model independent Z ′ limits obtained at the Born level.

To conclude, we have demonstrated the excellent potential of e−e− collisions in con-
straining Z ′ physics. Model independent limits have been derived, which are much more
stringent than those that could be obtained in e+e− collisions.

Acknowledgement

One of us (A.L.) would like to thank T. Riemann and M. Bilenky for usefull discussions.
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Figure Captions

Fig. 1 Contours of Eq. (13) for χ2 = 4.61 in the plane of the reduced Z ′ couplings (L′, R′)
(10,11), for different combinations of beam polarizations. The combined fit of the
LL, RR and LR polarizations is also shown.

Fig. 2 Dependence of the smallest observable value of the reduced coupling R′ (11) with
95% confidence, as a function of the angular cut (15).

Fig. 3 Dependence of the smallest observable value of the reduced coupling R′ (11) with
95% confidence, as a function of the number of bins in Eq. (13).

Fig. 4 Dependence of the smallest observable value of the reduced coupling R′ (11) with
95% confidence, as a function of the mass of the Z ′.
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