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Abstract

We study the production and decay of heavy selectrons in the e−γ mode of a linear
collider of the next generation. The standard model backgrounds can be substan-
tially reduced by appropriate kinematical cuts. As a consequence, selectrons far
heavier than the kinematical threshold for pair production are shown to be easily
discoverable for large portions of the supersymmetry parameter space. We also de-
scribe a model-independent kinematical measurement of the mass of the lightest
neutralino.
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1 Introduction

One of the most promising ideas that take us beyond the standard model is
supersymmetry [1]. However, while it cures many of the ills that plague the
standard model, it has its own attendant problems, not the least of which
is the fact that, till date, we have seen no evidence for its existence. This
naturally sets a minimum scale for the breaking of this symmetry. A second
problem deals with the proliferation of parameters in such a theory, especially
in the context of the soft supersymmetry breaking terms that must be intro-
duced. Though several attempts [2] have been made to constrain the parameter
space by demanding consistency with the experimentally measured rates for
low–energy processes, such bounds are most often easily evaded if the mass
splittings between supersymmetric particles of a given kind are comparatively
small. In addition, such constraints have the drawback of being of an indirect
nature and hence dependent on cancellations (or lack thereof) between the
contributions from various diagrams with different virtual exchanges.

A complementary (or even better) method would be to look for an actual
production of the superpartners in high energy collisions. Of course, the direct
production of new particles is only possible provided the latter are sufficiently
light. Typically, a collider facility requires a center of mass energy comfortably
in excess of twice the mass of the particles to be discovered to permit their
pair-production. Consequently, the tightest bounds on the weakly interacting
supersymmetric sector are at present given by the LEP experiments and come
close to mZ/2.

In this article, we aim to perform an analysis in the context of the linear
colliders which are currently being planned, such as CLIC, JLC, NLC, TESLA,
VLEPP, etc.. To be specific, we concentrate on the “canonical” design with a
center of mass energy

√
s = 500 GeV, an electron beam polarization of 90%

and an integrated luminosity of 10 fb−1. Though most often these machines
are thought of in terms of e+e− facilities, they can also be transformed to
function in the e−e−, γγ and e−γ modes. The last-mentioned is the one which
is most suitable for our purpose as it lends itself to single selectron production,
circumventing in this way the kinematic bound that pair production entails
in e+e−, e−e− and γγ collisions.

The production of a single selectron in association with a neutralino was ana-
lyzed in Refs [3,4]. We improve these studies here by taking fully into account
the gaugino mixings, considering polarized electron and photon beams and
performing a detailed analysis of the differential cross sections of the signal
and its standard model backgrounds. The latter allows us to devise very effi-
cient kinematical cuts which dramatically enhance the signal to background
ratio. As a result, the supersymmetry parameter space can be explored much

1



deeper than previously expected [3].

In the next Section we describe the production and decay of a selectron in e−γ
scattering, as well as the dominant standard model backgrounds. In Section 3
we explain how photon beams can be obtained at a linear collider. We study
in the following Section the kinematical characteristics of the event distribu-
tions for the signal and background reactions. Armed with this knowlegde,
we analyze in Section 5 which regions of the supersymmetry parameter space
can be explored with the machine described above. Finally, we summarize our
results in the Conclusion.

2 Signal and Backgrounds

We restrict ourselves to the minimal supersymmetric standard model with
unbroken R–parity. In most realistic scenarios, the lightest supersymmetric
particle is the lightest neutralino χ̃0

1, which is stable and hence escapes detec-
tion. We concentrate here on the reaction

e−γ −→ ẽ−χ̃0
1 , (1)

and the subsequent selectron decay

ẽ− −→ e−χ̃0
1 . (2)

The branching ratio for this decay can be as high as nearly 100%, but it can
also be substantially lower if other two body decay modes are kinematically
allowed:

ẽ− −→ e−χ̃0
i (i = 2, 3, 4) , (3)

ẽ− −→ νeχ̃
−

i (i = 1, 2) , (4)

where the χ̃0
i and χ̃−

i are any of the neutralinos or charginos in the theory.

Obviously both the cross section (1) and the partial decay rate (2) depend
on the details of the supersymmetric extension, particularly the masses and
the mixing angles in the chargino and neutralino sectors. These receive con-
tributions not only from terms originating in the naive supersymmetrization
of the standard model lagrangian, but also from soft supersymmetry breaking
terms. The chargino mass matrix, in the (W̃− h̃−) basis is given by [1]

M
−

=
(

M2

√
2MW cβ√

2MW sβ µ

)

, (5)
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whereas the neutralino mass matrix, in the (γ̃0 Z̃0 h̃0
1 h̃0

2) basis, is

M0 =











M1c
2
w + M2s

2
w (M1 − M2)cwsw 0 0

(M1 − M2)cwsw M1s
2
w + M2c

2
w mZsβ −mZcβ

0 mZsβ 0 −µ
0 −mZcβ −µ 0











. (6)

Here M1,2 are the soft U(1)Y and SU(2)L supersymmetry breaking masses
which parametrize direct gaugino mass terms, whereas µ is the higgsino mixing

mass. Furthermore, sw =
√

1 − c2
w = sin θw and sβ =

√

1 − c2
β = sin θβ where

θw is the weak mixing angle and tan β = v1/v2 is the ratio of the vacuum
expectation values of the two Higgs fields. We assume the GUT relation

M1 =
5

3
M2 tan2 θw , (7)

thus leaving us with three parameters namely µ, M2, tanβ. The exact eigen-
system has been computed in Ref. [5]. We confirm these results and use them
in our calculations.

One further question remains unsettled, though. It concerns possible mixings
between the various charged lepton states. However, both constraints from low
energy experiments [6] and theoretical studies [7] suggest that such mixings
are very small. We shall thus assume these to be absent. Also, for simplicity,
we regard ẽ−L and ẽ−R to be degenerate, with mass mẽ.

The signal we focus on is thus a final state comprising just a single electron
associated with missing energy and momentum:

e−γ −→ ẽ−χ̃0
1 −→ e−χ̃0

1χ̃
0
1 . (8)

A considerable background exists, though, on account of the standard model
resonant processes

e−γ −→ e−Z0 −→ e−νiν̄i (9)

and

e−γ −→ W−νe −→ e−νeν̄e . (10)

We neglect non-resonant processes which also contribute to the same observ-
able signature

e− + γ −→ e− + νi + ν̄i . (11)

3



where i is a generation index. This is an excellent approximation [8] which
provides a clear picture of the kinematic distribution of the final state. We
can safely use the narrow width approximation to compute the total and
differential cross sections of the processes (8,9), since the decaying particle is
either a scalar or it decays invisibly. The subprocess cross sections for these
reactions have been first calculated by Renard [9]. They were also calculated
for particular helicity combinations in Ref. [10]. The expressions in Ref. [4]
carry some minor errors.

For the process (10), though, the spin-angle correlations have to be taken
carefully into account, because the final state electron originates from the
decay of a vector boson. To do this, we have treated this reaction as a resonant
2 → 3 process. The analytic expressions for the differential cross sections are
too long to be displayed here.

Before embarking on further calculations, it is worth noting that the back-
ground process (10) can of course be very simply reduced with polarized elec-
tron beams. Unless stated otherwise, we shall consider in the following a 90%
right-polarized electron beam.

3 Photon Beams

High energy photon beams can be obtained by back-scattering a laser ray off a
high energy electron beam [11]. The result of this Compton scattering is that
the electrons are deflected and dumped while the photons are boosted into a
hard collimated beam. If the laser is sufficiently intense, all electrons have a
chance to interact, so that there is no loss in luminosity.

Consider laser photons of energy El (O(1) eV) and circular polarization Pl

scattering with electrons of energy Eb (O(1011) eV) and longitudinal polariza-
tion Pb. (In the next sections we will also need to define the polarization Pe of
the the other electron beam, which is not Compton-converted.) If the angle be-
tween the laser and electron beams be θbl, the scattering may be parametrized
in terms of

z =
4EbEl

m2
e

cos2 θbl

2
, (12)

where me is the mass of the electron. For large z, multiple scattering ( e.g. ,
pair creation in conjunction with a laser photon) becomes important [12] and
this results in a depletion of the high energy end of the spectrum. To prevent
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this, one needs to ensure that

z ≤ 2(1 +
√

2) . (13)

In the following we shall assume the equality in the above expression. The
resultant photon normalized energy spectrum n(x) and polarization Pγ(x) are
depicted in Figs 1 as functions of the fraction x = Eγ/Eb of the electron energy
carried by the photon. The underlying analytic expressions are [11]

dn(x)

dx
=

1

N

{

1 − x +
1

1 − x
− 4x

z(1 − x)
+

4x2

z2(1 − x)2

+PbPl

x(2 − x)

1 − x

[

2x

z(1 − x)
− 1

]}

, (14)

Pγ(x) =
Plζ(2 − 2x + x2) + Pbx(1 + ζ2)

(1 − x)(2 − 2x + x2) − 4x(z − zx − x)/z2 − PbPlζx(2 − x)
, (15)

where

0 ≤ x ≤ z

z + 1
, (16)

N =
z3 + 18z2 + 24z + 8

2z(z + 1)2
+
(

1 − 4

z
− 8

z2

)

ln(1 + z)

+ PbPl

[

2 − z2

(z + 1)2
−
(

1 +
2

z

)

ln(1 + z)

]

, (17)

ζ = 1 − x(1 + 1/z) . (18)

By design, the energy of the photons can never reach the beam energy since
their spectrum is limited by Eq. (13,16). Furthermore, in practice the low
energy tail of the photon spectrum cannot participate in any reaction either.
Indeed, as is displayed in the last of Figs 1, there is a one to one relationship
between the energy of the back-scattered photons and their angle with respect
to the direction of the initial electron: harder photons are emitted at smaller
angles whereas softer photons are emitted at larger angles. For small deflection
angles from the beam direction we have

θγ(x) ≃ me

Eb

√

z

x
− z − 1 (19)

5



Clearly, the photons will be distributed according to an effective spectrum,
which effectively throws out the low energy photons, these being produced at
too wide an angle to contribute significantly to any reaction. The exact profile
of this effective spectrum depends somewhat on the shape of the electron
beam. In the absence of a detailed (and machine specific) study of this effect,
we approximate this effect by a sharp cut. The position of this cut depends
of course crucially on the conversion distance, i.e. the distance between the
interaction point and the point where the laser photons are back-scattered.
For example, if we assume a conversion distance of 5 cm and an interaction
spot of 500 nm diameter, then photons scattered at more than 5 µrd are lost.
The lowest energy photons would then have xmin ≈ .4, as can be read from
the last of Figs 1. In the following we use (cf. Eq. (13))

xmin = .5 xmax =
2 + 2

√
2

3 + 2
√

2
≈ 0.8284 . (20)

We have checked that our final results are not very sensitive to the choice of
the first of these two machine parameters. Any cross section is obtained by
convoluting the fixed energy scattering cross section with the photon spectrum
(14):

dσ(s) =

xmax
∫

xmin

dx
dn

dx
dσ(xs) θ



x − 1

s

(

∑

i

mi

)2


 , (21)

where the sum runs over the masses of the final state particles.

4 Kinematical Cuts

In the absence of linear polarization, the final state electrons in either the
signal or the background processes are characterized by only two indepen-
dent kinematical variables, say the cosine of their polar angle (cos θe) and
their energy (Ee). As it turns out, the distribution of events in this plane is
very different for the three processes (8–10). We now proceed to study the
boundaries of these distributions in order of increasing complexity.

4.1 e−γ → e−Z0

Were the initial state photons monochromatic (Eγ =
√

s/2), the final state
electrons would be distributed in the (cos θe, Ee) plane along the line of con-
stant energy Ee = (s−m2

Z)/2
√

s. Since the energy of the initial state photon
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is actually spread between xmin

√
s/2 ≤ Eγ ≤ xmax

√
s/2 (20), the final state

electrons are distributed in phase space region

cos θe =
(1 + x)

√
sEe − xs + m2

Z

(1 − x)
√

sEe

xmin ≤ x ≤ xmax . (22)

The two boundary curves are displayed in Figs 2 and 3. They confine all the
Z0 events, and will be used as kinematical cuts in the subsequent numerical
analysis to entirely eliminate the Z0 background (9).

4.2 e−γ → ẽ−χ̃0
1 → e−χ̃0

1χ̃
0
1

The electrons emerging from the decay of the selectron are distributed within
the phase space region

Ee =
m2

ẽ − m2
χ̃

2 [Eẽ − kẽ cos (θẽ − θe)]
, (23)

where kẽ =
√

E2
ẽ − m2

ẽ is the momentum of the selectrons, whose energy
spreads within the region

cos θẽ =
(1 + x)

√
sEẽ − xs − m2

ẽ + m2
χ̃

(1 − x)
√

skẽ

xmin ≤ x ≤ xmax . (24)

Since the (heavy) selectrons are produced rather isotropically [3], the cosine
on the left hand side of Eq. (24) can take any value between −1 and 1. As a
consequence, the highest energy of the selectrons is given by

Emax
ẽ =

1

4xmax

√
s

[

(1 + xmax)
(

xmaxs + m2
ẽ − m2

χ̃

)

+ (1 − xmax)

√

(

xmaxs + m2
ẽ − m2

χ̃

)2 − 4xmaxsm2
ẽ

]

(25)

and the energy of the decay electrons is confined within

m2
ẽ − m2

χ̃

2 (Emax
ẽ + kmax

ẽ )
≤ Ee ≤

m2
ẽ − m2

χ̃

2 (Emax
ẽ − kmax

ẽ )
. (26)

The two boundary lines are displayed in Figs 2 and 3 for a selectron of mass
mẽ = 250 GeV and the particular set of supersymmetry parameters µ = 500
GeV, M2 = 400 GeV and tan β = 4. For this choice, the mass of the lightest
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neutralino is mχ̃0

1
= 193 GeV. The available phase space is thus small because

the sum of the produced masses mẽ + mχ̃0

1

= 443 GeV is so close to the
available center of mass energy

√
xmaxs = 455 GeV.

Note that the values of the two energy boundaries (26) depend solely on the
center of mass energy, the mass of the selectron and the mass of the neutralino.
Therefore, a measurement of these two limiting energies provides a direct
kinematical determination of the mass of the neutralino. A similar model
independent measurement of the neutralino mass can otherwise be performed
only in a polarized e−e− experiment, if the selectron is light enough to be
pair-produced [13].

4.3 e−γ → W−νe → e−ν̄eνe

Here the situation is more subtle. At first glance one might expect the decay
electrons of the W− to be subjected to similar kinematical bounds as the
decay electrons of the selectrons. Indeed, proceeding with the replacements
mẽ ↔ mW and mχ̃ ↔ mν = 0 in Eqs (23,26), the energy of the W− decay
electrons is in principle only bound by

m2
W

2
√

s
≤ Ee ≤

√
s

2
. (27)

This range covers almost the entire phase space. However, some improvement
can be achieved by identifying the dense regions in phase space. Since the W−

production cross section is very much peaked backwards with respect to the
initial electron beam [3], it is a good approximation to set cos θW = −1 in
Eqs (23,24). Hence, the most probable energy of the W− is

EW =
x2s + m2

W

2x
√

s
xmin ≤ x ≤ xmax , (28)

and the bulk of the electrons is produced within the phase space region

Ee ≤
m2

W

2 (EW + kW cos θe)
. (29)

Since the W− production cross section increases monotonically with the center
of mass energy [3,14], more events occur for larger values of x. In Figs 2 and
3, we have thus displayed the curve corresponding to x = xmax in Eqs (28,29).
Clearly, a large portion of the W− events is confined below this curve. It will
therefore be used as a kinematical cut alongwith Eq. (22) in the subsequent
numerical analysis.
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It should be borne in mind that events which do not satisfy this bound are also
kinematically allowed. However, the corresponding rate is strongly suppressd
by the dynamics of the W− production mechanism. One effect of the dynamics
can be seen by comparing the density of events plotted on Figs 2 and 3. The
only difference consists of different initial state polarizations. Although the
choice of Fig 3 confines the W− events better within the bounds (28,29), far
fewer selectrons are produced and the signal to background ratio is worse.
This is why we concentrate in the next section on the choice of polarizations
used in Fig 2.

5 Results

In addition to the kinematical cuts (22,29) discussed above and depicted in
Figs 2 and 3, the signal to background ratio can be further enhanced by divid-
ing the (cos θe, Ee) phase space into N bins (of equal size, here). The number
of events in each bin is then compared with the standard model expectation.
This procedure takes automatically into account the information contained in
Eq. (26). The significance of the deviation is given by the χ2 test

χ2 =
N
∑

i

(

nexp − nSM

∆nexp

)2

, (30)

where nSM is the number of events expected for the standard model, nexp =
n(µ, M2, tan β, mẽ) is the corresponding observed number of events (if super-
symmetry is to explain the deviation) and the error ∆n is the quadratic com-
bination of statistical and systematic errors on the observed number of events

∆n =
√

n + (ǫn)2 . (31)

The relative systematic error ǫ is essentially due to the luminosity measure-
ment (the uncertainty on the electrons’ energies and angles is negligible) and
is set to 1% in the following.

Clearly, if less than five events are contained in a bin, the probabilistic inter-
pretation of the χ2 test becomes unreliable. Indeed, with so few events the
underlying Poisson distribution does not resemble enough a gaussian shape to
warrant the sum (30) to be distributed according to a χ2. For this reason, we
ignore alltogether any bin with less than five events.

Instead of attempting to explore at one go the four-dimensional parameter
space viz. (µ, M2, tanβ, mẽ), we choose to present our results in the form of
2-dimensional χ2 contour plots in the (µ, M2) plane for different values of mẽ
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and tan β. We also exhibit the dependence on the polarization of the electron
beams Pb and Pe, and on the number of bins N . To obtain the explorable
regions at the 95% confidence level we set χ2 = 6 in Eq. (30).

Unless stated otherwise we use in the following

mẽ = 250 GeV tanβ = 4 , (32)

Pl = −1 ≡ 100% left Pb = .9 ≡ 90% right Pe = .9 ≡ 90% right , (33)

N = 3 × 3 . (34)

Since we consider a machine operating with a e+e− center of mass energy√
smax = 500 GeV, selectrons with a mass up to 250 GeV can in principle be

pair-produced and detected in the e+e− or e−e− colliding modes. We there-
fore display in Fig. 4 observability contours for mẽ ≥ 250 GeV, i.e. beyond

the kinematical limit of the parent collider. As expected, the explorable area
shrinks with increasing selectron mass. The sharp drop for small µ can easily
be understood as for such values, the lightest supersymmetric particle is pri-
marily a higgsino and (almost) does not couple to the electron. This part of
the parameter space can be better explored using the e+e− mode to observe
chargino pair-production. The regions of parameter space located between the
dotted lines are those which could be explored this way at the same collider
(or have already been clearly excluded by the LEP experiments) assuming
charginos can be observed up to the very threshold for their pair-production.
If this limit can indeed be reached in practice, the e−γ mode has a chance of
discovering supersymmetry where the e+e− mode cannot, only if the selectron
mass is comprised within 250 < mẽ < 325 GeV, and this in a marginal portion
of the supersymmetry parameter space. Still, even if supersymmetry has been
discovered before, for a 500 GeV machine, the e−γ collider operating mode
is the only one susceptible of discovering a selectron heavier than 250 GeV.
Even a selectron as heavy as 400 GeV can be observed and studied.

In Fig. 5 we display the tanβ dependence. As is easily evinced, the contours
tend to become more symmetric for progressively larger values of tanβ. The
reason can be understood by examining the characteristic equation of the
matrix (6). In the limit where tanβ = ∞ there remains only a µ2 dependence.
Similarly, for |µ| ≫ mZ the dependence on tanβ should vanish. This fact is
indeed reflected by the convergence of the contours for large values of |µ|.

Some portion of the W background (10) being irreducible, it is important
to reduce it as much as possible by polarizing the initial electron beam. As
can be inferred from Fig. 6 the incidence of a poor polarization is particularly
dramatic in the region 50GeV<∼µ<∼200GeV, where the supersymmetric signal
(8) is small on account of the lightest supersymmetric particle being primarily

10



a higgsino. Nevertheless, improving the polarization beyond 90% only yields
marginal improvements. This is because even though the background is further
decreased, the signal remains at the limit of observability. The erratic features
of the curve at 95% polarization reflect our rejection of bins containing less
than five events.

Finally, in Fig. 7 we turn to the dependence of our results on the binning,
more specifically on the number of bins. Since coarser binning loses infor-
mation about the differential distribution, the improvement in the bounds
with better energy and angular resolution is not unexpected 1 . It should be
noted, though, that increasing the number of bins results only in a modest
increase in sensitivity. This is a direct consequence of the efficient kinematic
cuts Eqs (22,29).

The variation of this improvement with µ can again be traced to the neutralino
mass matrix (6). For small |µ|, the lightest neutralino has a large higgsino com-
ponent. As a result, its coupling to the electron and hence both the production
cross section (eqn. 1) and the partial decay width (eqn. 2) are suppressed. This
leads to a comparatively smaller signal to noise ratio. To offset this loss, ad-
ditional information as obtained from binning is useful. For large values of |µ|
though, the higgsinos tend to decouple and the lightest neutralino is primarily
a gaugino. The signal to background ratio on imposition of the kinematic cuts
(22,29) is sufficiently large to render binning almost inconsequential.

6 Conclusions

We have studied the production and decay of heavy selectrons at a linear
collider of the next generation operated in its e−γ mode in the context of the
minimal supersymmetric standard model. While the other modes (e+e−, e−e−

and γγ) are limited by the kinematical limit of mẽ <
√

s/2 = 250 GeV, the
e−γ option can discover selectrons which are much heavier, up to 400 GeV.
The standard model background can be controlled by a judicious choice of
beam polarizations and kinematical cuts.

The phase space distribution of the signal final state electrons stands out
significantly from the background. This allows to infer in a model-independent
way the mass of the selectron as well as that of the invisible lightest neutralino,
the lightest supersymmetric particle.

1 This improvement is not a monotonic function of bin cardinality, as very fine
binning would leave too few events in each, thus disqualifying them from contribut-
ing to the χ2 function. As a matter of fact, a 4 × 4 binning already degrades the
resolution!
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Fig. 1. Back-scattered photon energy spectrum, polarization and polar angle as
functions of x = Eγ/Eb for three different combinations of beam polarizations.
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trons emanating from the processes (8,9,10). Assuming an integrated luminos-
ity of 10 fb−1 each points corresponds to one event. The curves show the ex-
act (Z0, ẽ−) or approximate (W−) kinematically allowed ranges. The laser pho-
tons are 100% left polarized whereas both electron beams are 90% right polarized
(Pl = −1 Pb = +.9 Pe = +.9).
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Fig. 3. Same as Fig. 2, except for the laser and Compton-converted electron beams
which have now opposite polarizations (Pl = +1 Pb = −.9 Pe = +.9).
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Fig. 4. Contours of χ2 = 6 for selectron masses mẽ = 250, 300, 350, 400 GeV (from
upper to lower curves). All other parameters are specified in Eqs (32–34). The areas
below the plain curves can be explored with 95% confidence. The dotted curves
delimit the region already excluded by LEP I (lower curves) and the region below
which charginos can be pair-produced at the same linear collider run in the e+e−

mode (upper curves).
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Fig. 5. Contours of χ2 = 6 for tan β = 1, 4, 50. All other parameters are specified in
Eqs (32–34). The areas below the curves can be explored with 95% confidence.
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Fig. 6. Contours of χ2 = 6 for electron beam polarizations Pb = Pe = 0, 50, 90, 95%
(from lower to upper curves). All other parameters are specified in Eqs (32–34).
The areas below the curves can be explored with 95% confidence. The dotted curves
depict the kinematical limit of the supersymmetric reaction (8).
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Fig. 7. Contours of χ2 = 6 for a number of bins N = 1 × 1, 2 × 2, 3 × 3 (from
lower to upper curves). All other parameters are specified in Eqs (32–34). The areas
below the curves can be explored with 95% confidence. The dotted curves depict
the kinematical limit of the supersymmetric reaction (8).
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