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Abstract

We investigate the possible role that baryon number violating Yukawa interac-
tions may take in the inclusive decay B → Xsγ. The constraints, derived using the
experimental results of the CLEO collaboration, turn out, in many cases, to be more
stringent than the existing bounds.

The Standard Model (SM) of the strong, weak and electromagnetic interactions
is in very good agreement with almost all present experimental data, even though
a few important predictions have not yet been tested. Still, most physicists would
readily admit that the SM cannot be the final theory, both on aesthetic grounds as
well as on account of certain well-founded technical objections. As a result, numerous
attempts have been and are being made in the quest of a more fundamental theory.
Experimentally, there have been two main strategies to probe new physics. On the
one hand, we attempt to directly produce, and observe, new particles at high energy
colliders. On the other, we look for virtual effects of such particles and/or interactions
in various low and intermediate energy processes. The decay b → sγ is an excellent
candidate for the latter option [1–14]. Experimentally, the branching ratio for the
inclusive decay B → Xsγ have been measured by CLEO [15] and ALEPH [16] to be

BR(B → Xsγ) =







(3.15 ± 0.93) × 10−4 (CLEO)

(3.11 ± 1.52) × 10−4 (ALEPH) .
(1)

The above are in good agreement with each other and with the SM prediction [17] of
BR(B → Xsγ) = (3.29± 0.33)× 10−4. While a small window for the contribution of
new physics does remain, this agreement can obviously be used to constrain deviations
from the SM.
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In this paper, we investigate the influence that a scalar diquark may have on the
above decay1. Diquarks abound in many grand unified theories (with or without
supersymmetry) and even in composite models [18]. While vector diquarks are con-
strained to be superheavy2 (with masses of the scale of breaking of the additional
gauge symmetry), no such restrictions apply to the masses of scalar diquarks. Con-
sequently, such particles can be as light as the electroweak scale. For example, a
diquark like behaviour can be found even in a low energy theory like the Minimal
Supersymmetric Standard Model (MSSM), albeit in the version with broken R-parity.

Diquark Type Coupling SU(3)c × SU(2)L × U(1)Y

Φ1 h
(1)
ij (Q̄Li)

cQLjΦ1 (6̄, 3, −2
3
)

Φ2 h
(2)
ij (Q̄Li)

cQLjΦ2 (3, 3, −2
3
)

Φ3

[

h
(3)
ij (Q̄Li)

cQLj + h̃
(3)
ij (ūRi)

cdRj

]

Φ3 (6̄, 1, −2
3
)

Φ4

[

h
(4)
ij (Q̄Li)

cQLj + h̃
(4)
ij (ūRi)

cdRj

]

Φ4 (3, 1, −2
3
)

Φ5 h
(5)
ij (ūRi)

cuRjΦ5 (6̄, 1, −8
3
)

Φ6 h
(6)
ij (ūRi)

cuRjΦ6 (3, 1, −8
3
)

Φ7 h
(7)
ij (d̄Ri)

cdRjΦ7 (6̄, 1, 4
3
)

Φ8 h
(8)
ij (d̄Ri)

cdRjΦ8 (3, 1, 4
3
)

Table 1: Gauge Quantum Numbers and Yukawa Couplings of Scalar Diquarks (Qem =
T3 + Y

2
).

A generic diquark is a scalar or vector particle that couples to a quark current
with a net baryon number B = ±2/3. Clearly, this may transform as either a SU(3)c

triplet or sextet. Concentrating on the scalars (for reasons mentioned above), the
generic Yukawa term in the Lagrangian can be expressed as

L(A)
Y = h

(A)
ij q̄c

i PL,RqjΦA + h.c., (2)

where i, j denote quark flavours, A denotes the diquark type and PL,R reflect the
quark chirality. Standard Model gauge invariance demands that a scalar diquark

1A brief discussion on the sensitivity of the branching ratio B → Xsγ to scalar diquark-top
contribution has been presented in [17].

2We do not consider the case of non-gauged vector diquarks as such theories are
nonrenormalizable.
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transform either as a triplet or as a singlet under SU(2)L and that it have a U(1)
hypercharge |Y | = 2

3
, 4

3
, 8

3
. The full list of quantum numbers is presented in Table 1.

It is clear that the couplings h
(1)
ij , h

(4)
ij , h

(5)
ij and h

(7)
ij must be symmetric under the

exchange of i and j while h
(2)
ij , h

(3)
ij , h

(6)
ij and h

(8)
ij must be antisymmetric. For the

other two, viz. h̃
(3)
ij and h̃

(4)
ij , there is no particular symmetry property. Note that

the quantum numbers of Φ2,4,6 allow them to couple to a leptoquark (i.e. a quark-
lepton) current as well. This implies that these particular diquarks could also mediate
lepton-number (L) violating processes. Clearly, such leptoquark couplings need to be
suppressed severely so as to prevent rapid proton decay.

We make a brief interlude here to discuss the MSSM [19]. Whereas B and L are
(accidentally) preserved in the SM (at least in the perturbative context), it is not
so within the MSSM. Supersymmetry and gauge invariance, together with the field
content, allow terms in the superpotential that violate either B or L [20]. Catas-
trophic rates for proton decay can be avoided though by imposing a global Z2 sym-
metry [21] under which the quark and lepton superfields change by a sign, while the
Higgs superfields remain invariant. Representible as R ≡ (−1)3B−L+2S , where S is
the spin of a field, this “R-parity” is positive for the SM fields and negative for all
the supersymmetric partners. However, while this symmetry is useful in prevent-
ing phenomenologically unacceptable terms, it has no theoretical foundation and is
entirely ad hoc in nature. Hence, it is of interest to examine the consequences of
violating this symmetry, not in the least because it plays a crucial role in the search
for supersymmetry. In our study, we shall restrict ourselves to the case where only
the B-violating terms are non-zero. Such scenarios can be motivated from a class of
supersymmetric GUTs as well [22]. The corresponding terms in the superpotential
can be parametrized as

WR/ = λ′′

ijkŪ
i
RD̄j

RD̄k
R (3)

where U i
R and Di

R denote the right-handed up-quark and down-quark superfields
respectively. The couplings λ′′

ijk are antisymmetric under the exchange of the last two
indices. The corresponding Lagrangian can then be written in terms of the component
fields as:

LR/ = λ′′

ijk

(

uc
id

c
jd̃

∗

k + uc
i d̃

∗

jd
c
k + ũ∗

i d
c
jd

c
k

)

+ h.c. (4)

Thus, a single term in the superpotential corresponds to three different diquark in-
teractions, namely two of type h̃

(4)
ij and one of type h

(8)
ij .

The best direct bound on diquark type couplings comes from the analysis of dijet
events by the CDF collaboration [23]. Considering the process qiqj → ΦA → qiqj , an

exclusion curve in the (mΦA
, h

(A)
ij ) plane can be obtained from this data. Two points

need to be noted though. At a pp̄ collider like the Tevatron, the uu and dd fluxes
tend to be small and hence the bounds are relatively weak. This is even more true for
quarks of the second or third generation (which are relevant for the couplings that we
are interested in). Secondly, such an analysis needs to make assumptions regarding
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the branching fraction of ΦA into quark pairs, a point that is of particular importance
in the context of R-parity violating supersymmetric models.

There also exist some constraints derived from low energy processes. Third gener-
ation couplings, for example, can be constrained from the precision electroweak data
at LEP [24] or, to an extent, by demanding perturbative unitarity to a high scale [25].
Couplings involving the first two generations, on the other hand, are constrained3 by
the non-observance of neutron-antineutron oscillations or from an analysis of rare
nucleon and meson decays [26,27]. While many of these individual bounds are weak,
certain of their products are much more severely constrained by the data on neutral
meson mixing and CP–violation in the K–sector [28]. It is our aim, in this article,
to derive analogous but stronger bounds.
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Figure 1: Feynman diagrams that determine the one loop b → sγ decay amplitude.

Within the SM, the quark level transition b → sγ is mediated, at the lowest order,
by electromagnetic penguin diagrams shown in Fig. 1(a–d). While only the top-quark
diagrams have been shown, for consistency’s sake, other charge 2/3 quarks should also
be included. However, these contributions are negligible on two counts: (i) the small
mixing angles and (ii) the corresponding loop integrals being suppressed to a great
extent due to the smallness of the light quark masses. The matrix element for this
process is then governed by the dipole operator:

− 4GF√
2

V ∗

tsVtb(
e

32π2
)CSM

7 (mW )s̄σµνF
µν [mb(1 + γ5)]b. (5)

The QCD corrections to this process are calculated via an operator product expansion

3Although many of these analyses have been done for the case of R-parity violating models,
clearly similar bounds would also apply to nonsupersymmetric diquark couplings as well.
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based on the effective Hamiltonian

Heff = −4GF√
2

V ∗

tsVtb

8
∑

i=1

Ci(µ)Oi(µ) (6)

which is then evolved from the electroweak scale down to µ = µb through renormal-
isation group (RG) equations. A large correction owes itself to the chromomagnetic
operator b → sG (G being a gluon)

− 4GF√
2

V ∗

tsVtb(
gs

32π2
)CSM

8 (mW )s̄ασµνG
µν
αβ [mb(1 + γ5)]bβ , (7)

which arises from the diagrams of Fig. 2(a-c)), The Wilson coefficients CSM
7 (mW )

and CSM
8 (mW ) can be evaluated perturbatively [29–31] at the W scale where the

matching conditions are imposed. The explicit expressions are

CSM
7 (mW ) = x

[

7 − 5x − 8x2

24(x − 1)3
+

x(3x − 2)

4(x − 1)4
ln x

]

,

CSM
8 (mW ) = x

[

2 + 5x − x2

8(x − 1)3
− 3x

4(x − 1)4
ln x

]

,

(8)

where x = m2
t /m

2
W .
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Figure 2: Feynman diagrams that determine the one loop b → sG decay amplitude.

The leading order results for the Wilson coefficients at µb, the B-meson scale, is
given by

C7(µb) = η16/23
[

CSM
7 (mW ) − 8

3
CSM

8 (mW )[1 − η−2/23] +
232

513
[1 − η−19/23]

]

(9)
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with η ≡ αs(mW )/αs(µb), calculated using the leading µ dependence of αs, and the
present world average value of the strong coupling constant viz. αs(mZ) = 0.118 ±
0.005. To this order, then,

Γ(b → sγ) =
αG2

F m5
b

32π4

∣

∣

∣VtbV
∗

tsC
SM
7 (µb)

∣

∣

∣

2
, (10)

where α is the fine structure constant. As the above decay rate suffers from large
uncertainties due to mb and the CKM matrix elements, it is prudent to normalise it
against the measured semileptonic decay rate of the b quark

Γ(b → ceν̄e) =
G2

F m5
b

192π3
κ(z)g(z)|Vcb|2, (11)

where z = m2
c/m

2
b and

g(z) ≡ 1 − 8z + 8z2 − z4 − 12z2 ln z

is the phase space factor. The analytic expression for κ(z), the one loop QCD cor-
rection to the semileptonic decay, can be found in Ref. [32]. The explicit dependence
on m5

b is thus removed, while the ratio of the CKM elements in the scaled decay rate
viz.,

∣

∣

∣

∣

V ∗

tsVtb

Vcb

∣

∣

∣

∣

= 0.976 ± 0.010. (12)

is much better known than the individual elements.
An updated next to leading order (NLO) analysis [32] of the B → Xsγ branching

ratio with QED corrections has been presented in Ref. [17]. Incorporating both the
NLO QCD and the resummed QED corrections, the Wilson coefficient Ceff

7 (µb) in SM
can be expanded as

Ceff
7 (µb) = C7(µb) +

αs(µb)

4π
C

(1)
7 (µb) +

α

αs(µb)
C

(em)
7 (µb) . (13)

For brevity’s sake, we do not give here the expressions for C
(1)
7 (µb) and C

(em)
7 (µb)

as these can be found in Ref. [32] and Ref. [17] respectively. The inclusion of the
NLO and QED corrections in the b → sγ decay rate has significantly reduced the
large uncertainty present in the previous LO calculation. From the quark level b → sγ
decay rate, it is possible to infer the B meson inclusive branching ratio BR(B → Xsγ)
by including the nonperturbative 1/mb and 1/mc corrections. These bound state
corrections also have been taken into account in Ref. [17].

Having delineated the formalism, it now remains to calculate the additional con-
tributions due to the possible presence of non-zero diquark couplings. At the one-loop
level, the only new contributions to b → sγ and b → sG arise from the diagrams of
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Fig. 1(e–h) and Fig. 2(d–g) respectively4. In the generic case, apart from modifica-
tions in the coefficients of O7,8, two additional operators arise. Denoted as

Õ7 =
e

32π2
s̄σµνF

µν [mb(1 − γ5)]b

Õ8 =
gs

32π2
s̄ασµνG

µν
αβ [mb(1 − γ5)]bβ ,

(14)

they differ from their SM counterparts in their chirality structure5.
To keep the analysis simple, we shall assume that only one diquark multiplet is

light and that all the fields within a multiplet are degenerate6. With this simplifying
assumption, the new contributions, at the electroweak scale, are given by

CD
7 (mW ) =

Nc

A

[

{QΦF1(y) + QtF3(y)} lbl
∗

s +
mt

mb
{QtF4(y) − QΦF2(y)} rbl

∗

s

]

,

C̃D
7 (mW ) =

Nc

A

[

{QΦF1(y) + QtF3(y)} rbr
∗

s +
mt

mb
{QtF4(y) − QΦF2(y)} lbr

∗

s

]

,

CD
8 (mW ) = A−1

[

{CΦF1(y) + CtF3(y)} lbl
∗

s +
mt

mb

{CtF4(y) − CΦF2(y)} rbl
∗

s

]

,

C̃D
8 (mW ) = A−1

[

{CΦF1(y) + CtF3(y)} rbr
∗

s +
mt

mb
{CtF4(y) − CΦF2(y)} lbr

∗

s

]

,

A ≡ −4
√

2 GF V ∗

tsVtbm
2
Φ ,

(15)
where

F1(y) =
1

12(y − 1)4

[

6y2 ln y − 2y3 − 3y2 + 6y − 1
]

,

F2(y) =
1

2(y − 1)3

[

1 − y2 + 2y ln y
]

,

F3(y) =
1

12(y − 1)4

[

2 + 3y − 6y2 + y3 + 6y ln y
]

,

F4(y) =
1

2(1 − y)3

[

3 − 4y + y2 + 2 ln y
]

,

(16)

with y = m2
t /m

2
Φ. The color factor Nc is −1 and 2 for triplet and 6̄ scalar respectively.

Qt and QΦ are the charges of top quark and the diquark respectively. The color factors
Ct and CΦ— for the diagrams of Fig.2f and Fig.2g—are given in Table 2.

Note that, once again, we consider only such contributions, as involve the top
quark. As is easy to ascertain from eq.(15), for other quarks in the loop, the cor-
responding integrals are too small to be of any consequence. Thus, any coupling to

4Clearly, to this order, none of Φ5,6 can mediate either of these processes and hence we shall not
consider such fields any further.

5In all of these four operators, contributions proportional to the strange quark mass have been
neglected.

6Large splittings within a multiplet is disfavoured by the electroweak precision data.
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Diquark Type CΦ Ct lb ls rb rs

Φ1 −5/2 1/2 h
(1)
33 /

√
2 h

(1)
32 /

√
2 0 0

Φ2 1/2 1/2 h
(2)
33 /

√
2 h

(2)
32 /

√
2 0 0

Φ3 −5/2 1/2 h
(3)
33 /

√
2 h

(3)
32 /

√
2 h̃

(3)
33 h̃

(3)
32

Φ4 1/2 1/2 h
(4)
33 /

√
2 h

(4)
32 /

√
2 h̃

(4)
33 h̃

(4)
32

Table 2: Values of the coefficients CΦ, Ct, lb, ls, rb, rs for different types of Scalar
Diquarks.

the diquarks Φ7,8, for example, would not be constrained to an appreciable degree by
radiative b decays. In Table 2, we also display the relevant chiral Yukawa couplings
(to the b- and s-quarks) for different choices of the diquark.

In estimating the effects of scalar diqaurk couplings, it is useful to consider the
ratios [17] ξ7,8 with

ξ7 ≡ 1 +
CD

7 (mW )

CSM
7 (mW )

, (17)

and similarly for ξ8. For the new operators Õ7 and Õ8, we define,

ξ̃7 =
C̃D

7 (mW )

CSM
7 (mW )

(18)

and ξ̃8 in an analogous fashion. With these definitions, the B → Xsγ branching ratio
can be written as,

BR(B → Xsγ) = B22(δ) + (ξ2
7 + ξ̃2

7) B77(δ) + (ξ2
8 + ξ̃2

8) B88(δ) + ξ7 B27(δ)

+ ξ8 B28(δ) + (ξ7ξ8 + ξ̃7ξ̃8) B78(δ). (19)

In a parton level analysis, the photon would be monochromatic, with Eγ = Emax
γ =

mb/2. However, once the gluon Bremsstrahlung contribution is included, the photon
spectrum becomes nontrivial and, for experimental purposes, one needs to make an
explicit demand on the photon energy, namely

Eγ > (1 − δ)Emax
γ , (20)

where δ is the fraction of the spectrum above the cut. The values of Bij(δ) are listed in
ref. [17] for different choices of the renormalisation scale µb and the cut off parameter
on the photon energy δ. As is well known, some ambiguities exist in the choice of
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µb which should, typically, lie in the region mb/2 to 2mb. For our analysis, we used
µb = mb and δ = 0.9. We have checked that other values of δ do not change the
bound significantly.

Since the new physics becomes operative only above the electroweak scale, the
additional contributions to the operators O7 and O8 will only serve to change the
Wilson coefficients at mW . Of course, the additional operators Õ7 and Õ8 would
influence the RG equations for C7 and C8 as well. However, since we are primarily
interested in small CD

7,8(mW ), it is safe to neglect any term in the RG equations
involving these coefficients.
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Figure 3: The partial width for B → Xsγ as a function of the product of the diquark
and/or R parity violating couplings for a fixed diquark mass of 100 GeV, The shaded
region represents the 1σ limits of the experimentally observed value. The curves for
h

(3)
33 h

(3)
32 and h

(4)
33 h

(4)
32 are identical to those for h

(1)
33 h

(1)
32 and h

(2)
33 h

(2)
32 respectively.

In the absence of an L-violating coupling, these diquarks clearly do not influence
the semileptonic decay modes of the B-meson. Thus, we may continue to normalize
the radiative b-decay against b → ceν̄e in order to avoid the severe dependence on
mb. In Fig. 3, we plot the branching ratio BR(B → Xsγ) in presence of a diquark
(multiplet) of mass 100GeV. We continue to work under the assumption that only one
pair of couplings are non-zero. Furthermore, we assume the said couplings to be real7.
That the curves should be parabolic in the product of the two couplings in question
is obvious. To appreciate the fact that many of these curves have their minima lying
on the SM value, one needs to consider the chirality structure of the corresponding
diquark couplings (see Table 2). For example, combinations involving either of h̃

(3)
32

or h̃
(4)
32 , imply that there is no left-handed coupling to the strange quark. From

eqs.(15), it is then easy to see that the SM Wilson coefficients C7,8 remain unaffected.

7The extension to complex couplings is straightforward. The imaginary parts, however, can be
better constrained from an analysis of the CP violating decay modes.
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Consequently, the new contribution adds incoherently with the SM amplitude. For
the rest of the combinations, though, the interference term is non-negligible leading
to a shift in the minimum. Hence, unlike those for the first set of combinations (those

involving h̃
(3,4)
32 ), the branching ratios corresponding to these sets are in agreement

with the experimental numbers for two non-contiguous ranges of the product.
In each of eqs.(15), the second term, whenever allowed, is clearly the dominant

piece. This enhancement by the factor of mt/mb comes into play only when the
diquark couplings to the bottom and the strange quarks have pieces with opposite
chirality. In other words, for a diquark of the type Φ3 (or Φ4), the simultaneous
presence of both the allowed types of couplings is severely constrained by the data
on B → Xsγ.

Products Bounds from B → Xsγ
of Couplings 1σ 2σ

h
(1)
33 h

(1)
32 [−1.0,−0.85] [−1.1,−0.74]

or h
(3)
33 h

(3)
32 [−9.3 × 10−2, 5.8 × 10−2] [−0.2, 0.12]

h
(2)
33 h

(2)
32 [−0.16, 0.25] [−0.33, 0.53]

or h
(4)
33 h

(4)
32 [2.6, 3.0] [2.3, 3.2]

h
(3)
33 h̃

(3)
32 [−9.2 × 10−4, 9.2 × 10−4] [−1.4 × 10−3, 1.4 × 10−3]

h̃
(3)
33 h

(3)
32 [−2.2 × 10−4, 3.5 × 10−4] [−4.5 × 10−4, 7.3 × 10−4]

[3.3 × 10−3, 3.9 × 10−3] [2.9 × 10−3, 4.1 × 10−3]

h̃
(3)
33 h̃

(3)
32 [−0.12, 0.12] [−0.18, 0.18]

h
(4)
33 h̃

(4)
32 [−2.5 × 10−3, 2.5 × 10−3] [−3.7 × 10−3, 3.7 × 10−3]

h̃
(4)
33 h

(4)
32 [−1.1 × 10−2,−9.3 × 10−3] [−1.2 × 10−2,−8.3 × 10−3]

[−9.4 × 10−4, 5.9 × 10−4] [−2.0 × 10−3, 1.2 × 10−3]

h̃
(4)
33 h̃

(4)
32 [−0.35, 0.35] [−0.51, 0.51]

Table 3: Limits on the Scalar Diquark Couplings for mΦi
= 100 GeV .

In Table 3, we capture the essence of Fig. 3 in the form of actual limits that can be
set on such products of couplings, for a diquark mass of 100 GeV. Understandably,
the 2σ bounds are weaker than the 1σ ones. Similarly, the color-sextet couplings
are more severely constrained than the color-triplet ones. It should be noted that the
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structure of the interaction terms h
(1)
ij are the same as those for h

(3)
ij . Consequently, the

bounds are exactly the same. A similar story obtains for h
(2)
ij and h

(4)
ij . As discussed

above, for a few of the products there are two non-contiguous bands allowed. For
the combinations h

(2)
33 h

(2)
32 and h

(4)
33 h

(4)
32 , though, the second window (both at the 1σ

and 2σ levels) lies beyond the perturbative limit and, hence, are phenomenologically
uninteresting.

As discussed earlier, h̃
(4)
ij is analogous to the trilinear R-parity violating coupling

λ′′

ijk. Thus the constraints on h̃
(4)
33 h̃

(4)
32 are equivalent to those on the product λ′′

3j2λ
′′

3j3.
For each of these couplings, the best individual bound comes from the precision mea-
surements at the Z pole [24, 33], and amounts to λ′′

3j2 , λ′′

3j3 < 0.50 at the 1σ level.
We thus do not do very well as far as this particular combination is concerned. This
can be attributed to both the chirality and the color structure of the operator, each
of which is “unfavourable” as far the b → sγ decay is concerned. For most of the
other combinations though, we do significantly better than the product of individual
bounds [24].
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Figure 4: The partial width for B → Xsγ as a function of diquark mass. (a) For each
curve, the associated product of diquark and/or R parity violating couplings is held
to be 1, while all other couplings are set to be vanishingly small. The shaded region
represents the 1σ limits of the observed value. The curves for h

(3)
33 h

(3)
32 and h

(4)
33 h

(4)
32 are

identical to those for h
(1)
33 h

(1)
32 and h

(2)
33 h

(2)
32 respectively. (b) As in (a), but the non-zero

products of diquark and/or R parity voilating couplings are held to be 0.005.

In our effort to compare with the results available in the literature, we have, until
now, held the diquark mass to be 100GeV and varied the strength of its coupling. In
reality, though a diquark is more likely to be somewhat heavier. For the sake of com-
pleteness, we next investigate the dependence on the diquark mass (Figs. 4), while
holding the product fixed. As is expected, the extra contribution falls off with mΦ.
The fall-off is somewhat slower than m−2

Φ (see the expressions for Fi(y) in eq.(16))
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and the effects persist till ∼ 3 TeV . The different rates of fall-off are governed by
the dominant Fi(y) in each case. The case for the combination h̃

(3)
33 h

(3)
32 looks some-

what nontrivial. However, the shape is just a consequence of accidental cancellations
between various terms of eq.(19). As the exact nature of these cancellations depend
crucially on the value of the diquark couplings, not much should be read into the
shape in general or the minimum in particular.

The two dependences (mΦ and coupling strength) that we have studied can be
combined to rule out parts of the phase space. In Figs.5, we exhibit this for two
particular combinations. In each, the shaded regions of the parameter space are in
agreement with the experimental results at the designated level. For h

(1)
33 h

(1)
32 , the

second allowed region is beyond the perturbative limit.
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Figure 5: The region of the parameter space allowed by the data when all other cou-
plings are set to zero. The lightly shaded area agrees with the data at 1σ level, whereas
the encompassing darker region agrees at 2σ.

In summary, we have studied the effects of the scalar diquark and/or R prity
violating coupling to the branching ratio B → Xsγ. Among the possible new con-
tributions, the scalar diquark mediated diagram yield promising effects. The precise
measurement of this branching ratio at the upcoming B factories in near future and
the reduction of theoretical uncertainty will improve the limits on the product com-
bination of different scalar diquark and/or R parity violating couplings, we obtained.

Acknowledgement

D. Choudhury acknowledges the Department of Science and Technology, India for the
Swarnajayanti Fellowship grant.

12



References

[1] T. Inami and C.S. Lim, Prog. Theoret. Phys. (Kyoto) 65 (1981) 297; (E)65(1981)
1772.

[2] B. Grinstein and M.B. Wise, Phys. Lett. B201 (1988) 274.

[3] H. Dreiner, Mod. Phys. Lett. A3 (1988) 867.

[4] S. Bertolini, F. Borzumati, A. Masiero and G. Ridolfi, Nucl. Phys. B353 (1991)
591.

[5] A. Peterson, Phys. Lett. B282 (1992) 207.

[6] G. Bhattacharyya, G.C. Branco and D. Choudhury, Phys. Lett. B336 (1994)
487.

[7] T.G. Rizzo, Phys. Rev.D50 (1994) 3303.

[8] A. Kundu, T. De and B. Dutta-Roy, Phys. Rev.D49 (1994) 4801.

[9] G. Bhattacharyya, A. Raychaudhuri, Phys. Lett. B357 (1995) 119.

[10] E. Gabrielli and U. Sarid, Phys. Rev. Lett. 79 (1997) 4752.

[11] E. Gabrielli and U. Sarid, Phys. Rev.D58 (1998) 115003.

[12] T. Besmer and A. Steffen, (electronic archive: hep–ph/0004067).

[13] M. Aoki, E. Asakawa, M. Nagashima, N. Oshimo and A. Sugamoto, (electronic
archive: hep–ph/0005133).

[14] E. Gabrielli, S. Khalil and E. Torrente-Lujan, (electronic archive: hep–
ph/0005303).

[15] S. Ahmed et al.(CLEO Collaboration), CLEO CONF 99-10, hep-ex/9908022.

[16] R. Barate et al.(ALEPH Collaboration), Phys. Lett. B429 (1998) 169.

[17] A.L. Kagan and M. Neubert, Eur. Phys. J. C7 (1999) 5.

[18] F. Zwirner, Int. J. Mod. Phys. A3 (1988) 49;
J.L. Hewett and T.G. Rizzo, Phys. Rep. 183 (1989) 193 and references therein.

[19] H.P. Nilles, Phys. Rep. 110 (1989) 1;
H.E. Haber and G.L. Kane, Phys. Rep. 117 (1985) 75;
L. J. Hall and M. Suzuki, Nucl. Phys. B231 (1984) 419;
S. Dawson, Nucl. Phys. B261 (1985) 297;
S. Dimopoulos and L. Hall, Phys. Lett. B207 (1987) 210.

13

http://arXiv.org/abs/hep-ex/9908022


[20] S. Weinberg, Phys. Rev.D26 (1982) 287;
N. Sakai and T. Yanagida, Nucl. Phys. B197 (1982) 533.

[21] P. Fayet, Phys. Lett. B69 (1977) 489;
G. Farrar and P. Fayet, Phys. Lett. B76 (1978) 575.

[22] K. Tamvakis, Phys. Lett. B382 (1996) 251.

[23] F. Abe et al. (CDF Collab.), Phys. Rev.D55 (1997) 5263.

[24] G. Bhattacharyya, D. Choudhury and K. Sridhar, Phys. Lett. B355 (1995) 193.

[25] B. Brahmachari and P. Roy, Phys. Rev.D50 (1995) R39.

[26] J.L. Goity and M. Sher, Phys. Lett. B346 (1995) 69.

[27] C.E. Carlson, P. Roy and M. Sher, Phys. Lett. B357 (1995) 99.

[28] R. Barbieri and A. Masiero, Nucl. Phys. B267 (1986) 679.

[29] B. Grinstein, R. Springer and M.B. Wise, Nucl. Phys. B339 (1990) 269.

[30] R. Grigjanis et al., Phys. Rep. 228 (93) 1993.

[31] A. Buras, Lectures given at Les Houches Summer School in Theoretical Physics,
Session 68: Probing the Standard Model of Particle Interactions, Les Houches,
France (1997), ed. by R. Gupta, A. Morel, E. de. Rafael and F. David, North-
Holland (1999).

[32] K. Chetyrkin, M. Misiak and M. Münz, Phys. Lett. B400 (1997) 206.

[33] G. Bhattacharyya, (electronic archive: hep–ph/9709395), Talk given at Work-
shop on Physics Beyond the Standard Model: Beyond the Desert: Accelerator
and Nonaccelerator Approaches, Tegernsee, Germany, 8-14 Jun 1997.

14


