Two-dimensional nuclear Overhauser effect in biomolecules

ANIL KUMAR
Department of Physics, Indian Institute of Science, Bangalore 560012, India

Abstract. During the last 5 years, since its first application to biomolecules, two-dimensional nuclear Overhauser effect (2D NOE) has become an extremely powerful technique for assignment of NOE spectra and for elucidation of conformation of biomolecules in solution. The methodology of the 2D NOE technique, its recent developments and its applications to proteins and oligonucleotides are briefly reviewed.

Keywords. Nuclear Overhauser effect; two-dimensional NMR; peptides and oligonucleotides—structure determination.

1. Introduction

Nuclear Overhauser Effect (NOE), in which non-equilibrium magnetization of spins migrates from one spin to another via mutual dipole-dipole relaxation, is a powerful tool for structural elucidation of molecules in liquid state. One-dimensional difference NOE experiments performed by selective saturation or inversion of a resonance have provided a rich source of structural information in biomolecules, but require a large number of selective experiments. Application of two-dimensional (2D) techniques for monitoring NOE in biomolecules had a revolutionary effect in the study of biomolecular structures by NMR.

The scheme for 2D NOE experiments first proposed for chemical exchange by Jeener (1977) and exploited mainly for study of chemical exchange by Meier and Ernst (1979) and Jeener et al (1979) is given in figure 1. Non-equilibrium z-magnetization of all spins produced by the second 90\° pulse after frequency labelling during t_1, undergoes dipole-dipole relaxation and chemical exchange, if any, during a fixed mixing period τ_m at the end of which the third 90\° pulse reads the state of each spin as a function of t_2. The rate equations governing this transfer during τ_m (Jeener et al 1979) are similar to those of 1D transient NOE experiments (Solomon 1955; Kalk and Berendsen 1976).

The first 2D NOE spectrum of a biomolecule (Anil Kumar et al 1980a) is shown in figure 2. The numerous cross-peaks produced in this spectrum provide a rich source of information on the proximity of various protons in the biomolecule. Biomolecules which reorient slowly on the NMR time-scale such that $\omega\tau_c \ll 1$ where ω is the resonance frequency and τ_c is the characteristic reorientation time, known as correlation time of the molecule, give negative NOE and favourable cross-peak intensity in the 2D NOE experiment (Macura and Ernst 1980). Small molecules which reorient faster, for which $\omega\tau_c \ll 1$ and give positive NOE, yield poor cross-peak intensity in the 2D NOE experiment. Molecules for which $\omega\tau_c \sim 1$ give no NOE. The effects of J coupling on the 2D NOE experiment have been studied (Macura et al 1981, 1982). Details of the experimental procedure and parameters required for proton 2D experiments in proteins including details of phase cycling employed have been described (Wider et al 1984).
2. Methodology of 2D NOE

The build-up rate of 2D NOE has been studied as a function of mixing time τ_m (Anil Kumar et al. 1981). In biomolecules the spin-diffusion tends to make the NOE information non-specific and experiments with controlled mixing time have been suggested to overcome this problem in 1D NOE schemes (Krishna et al. 1978; Gordon and Wuthrich 1978; Dubs et al. 1979). Furthermore, theoretically it has been shown that the initial build-up rate of 2D NOE is directly proportional to r^{-6}, where r is the distance to the nearest proton from the proton of interest (Macura and Ernst 1980). While factors such as differences in line-widths, relaxation times, multiplicity of coupling partners and effects of filter functions make it difficult to use the 2D NOE information quantitatively, attempts are underway to utilize the 2D NOE data for quantitative distance measurements (Wagner et al. 1984; Keepers and James 1984; James 1984). So far, however, distance information from 2D NOE has been effectively utilized in qualitative or at best in semi-quantitative manner as upper and lower bounds on distances.

Another important feature of 2D NOE and 2D correlated (cosy)* experiments is the ability to perform these experiments in H$_2$O solutions and obtain information on exchangeable protons (Anil Kumar et al. 1980b; Wider et al. 1983). This has been a key development in obtaining complete assignments and structural information on biomolecules. For suppression of H$_2$O signal in 2D NOE experiment three schemes have been suggested. The most widely used scheme utilizes selective saturation of H$_2$O resonance by irradiation (Anil Kumar et al. 1980b; Wider et al. 1983). Cunell (1982) suggested replacement of last 90° pulse by 2-1-4 sequence (Redfield et al. 1975) with a null at H$_2$O resonance position in its excitation profile. Another technique utilizes the observation that the T_1 of H$_2$O protons is much longer than those of protein resonances. A non-selective inversion by a 180° pulse followed by a recovery period of τ_{null} for H$_2$O resonance, precedes the 2D NOE experiment, accomplishing effective suppression of H$_2$O signal, almost full recovery of protein signals and unmasking of protein resonances buried under the H$_2$O signal (Basus 1984).

2D NOE experiment is utilized in an interactive manner with cosy for spectral

*Off diagonal peaks in cosy indicate spin-spin coupled protons and is a powerful technique for resonance assignment of biomolecules (Anil Kumar et al. 1980b; Wagner et al. 1981).
Figure 2. 2D NOE spectrum of basic pancreatic trypsin inhibitor (BPTI) recorded at 360 MHz and $\tau_m = 100$ ms. The protein concentration was 20 mM in D$_2$O, at pH = 3.8 and $T = 18^\circ$C. The spectral width = 4000 Hz and 512 data points were collected in each dimension, with total data accumulation time of 18 hr. Shifted sine bell filtering has been utilized in both dimensions and an absolute intensity contour plot is shown here. Some of the β-sheet NOEs, those between phenylalanine NH proton (F33NH) and threonine (T) Cα, Cβ and Cγ protons, between glutamine (Q) NH proton and cysteine (C) Cα proton and between tyrosine (Y) ring protons and alanine (A) Cα and Cγ protons are indicated by broken lines. Subsequent analysis of this data (Wagner et al 1981) and additional data (Wagner and Wüthrich 1982) have yielded essentially complete assignment of all backbone and Cβ proton resonances (from Anil Kumar et al 1980a).

Assignment and sequence determination. Combined with one triangle of COSY data and other triangle of NOE data, diagrams such as COSY-NOE\textsubscript{HY} have yielded features which are used for tracking down secondary structures such as β-sheet in biomolecules (Wagner et al 1981). This is due to the special feature of β structure in which the amide proton of an aminoacid residue lies close to the CβH proton of the preceding residue. Starting
from a known NH proton resonance, noe gives strong cross-peak to preceding C=H proton, which in turn has cross-peak with NH proton of the same residue in the cosy. Continuing from the NH proton the resonance assignments of the backbone resonances of the entire β-secondary structure can be obtained (Wagner et al 1981).

3. Applications to proteins

The information from 2D noe has been effectively utilized by Wüthrich and coworkers for structure determination of biomolecules. The noe between NH proton of adjacent aminoacid residues of a polypeptide chain has been called d₂-connectivity, while those between NH proton and C=H and C=H protons of preceding residue respectively as d₁ and d₃ connectivity (Billeter et al 1982). Sequential resonance assignments have been obtained in the backbone region of several small proteins, by careful and large scale application of 2D techniques, the strategy for which is summarized in Wüthrich et al (1982) and Wüthrich (1983). Essentially complete resonance assignments have been obtained for backbone and C=H proton resonances of basic pancreatic trypsin inhibitor (bpti), a globular protein of 56 aminoacid residues (Wagner and Wüthrich 1982a), glucagon bound to perdeuterated micelles (Wider et al 1982), trypsin inhibitor E (Arseniev et al 1982), proteasine inhibitors IIA and IIB from Bull Seminal Plasma (BUSI IIA and IIB) (Sroop et al 1983a, b) and cardiototoxic Yβ (Steinmetz et al 1981 and Hosur et al 1983).

Distance geometry algorithms have been written with aims of obtaining three-dimensional conformation of small proteins with distance constraints as obtained from 2D noe data (Braun et al 1981; Havel and Wüthrich 1984a, b). The new distance geometry program usge (Havel and Wüthrich 1984) capable of computing complete spatial structures of polypeptide chains up to ca. 100 aminoacid residues, has been tested for its ability to compute structures of biomolecules from 2D noe data, by comparing the calculated structure of bpti to its known crystal structure (Havel and Wüthrich 1985). Using the resonance assignments mentioned above, the distance information as obtained from 2D noe and the distance geometry algorithms, three-dimensional structures have been calculated for glucagon (Braun et al 1983), BUSI IIA (Williamson et al 1984), bpti (Wagner et al 1984) and portions of micelle-bound melittin (Brown et al 1982). The strategies utilized for the above structure determination have been outlined by Wüthrich et al (1983, 1984).

Various 2D techniques including 2D noe have been utilized for studying the solution structure of Alamethicin (Banerjee et al 1983) and gramicidin A double helix (Arseniev et al 1984a). Arseniev et al (1984b) have also studied the three-dimensional solution structure of a short insectotoxin I₁A using various 2D nmr techniques including 2D noe, have utilized the distance geometry algorithm of Braun et al (1981) and found similarity with the known single crystal α-helical and antiparallel β-structure of a homologous 'long' toxin v-3. Wemmer and Kallenbach (1983) studied the 18 aminoacid residue neurotoxin apamin, obtained essentially complete resonance assignments using cosy and 2D noe, and obtained evidence for secondary structures consisting of a β turn and a α-helix.

Zuiderweg et al (1983, 1984a, b) have studied the structure of the headpiece of lac repressor, residue 1-51, and found that the headpiece contains three α-helices connected by regions of less regular structure.
4. Applications to nucleotides/saccharides

2D NOE experiment has been effectively utilized by several groups for resonance assignments in oligonucleotides along with COSY experiments. Usually these DNA fragments are in some well-defined helical conformation such as B-DNA and a few typical NOEs are able to confirm such a configuration. The remaining NOEs in the molecule are then used for resonance assignment and conformational determination in an interactive manner.

Hare et al (1983) studied self-complementary DNA sequence d(CGCGAATTTCGCG) by the above 2D techniques, obtained complete resonance assignments and from the observed NOE data concluded that in solution this helix is right-handed close to the B-DNA form in conformity with the crystallographic structure. Scheek et al (1984) used this algorithm to obtain resonance assignments in a mixture of two synthetic complementary heptamers d(TGAGCGG) and d(CCGCTCA) forming a duplex. Brodio et al (1984) used 500 MHz, phase-sensitive 2D NOE experiments performed with several mixing times to obtain complete resonance assignments in self-complementary octamer duplex [d-(GGAAATTCC)]2, the largest oligonucleotide yet assigned. Weiss et al (1984a,b) carried out assignments of major groove sugar protons of the 17 base pair DNA operator site O1 by 2D NOE and COSY. Haasnoot et al (1983) have done sequential assignment and conformational analysis of d(CG) r(CG) d(CG) using COSY and 2D NOE.

Feigon et al (1982, 1983) have used 2D NOE along with COSY and 1D experiments for obtaining complete proton resonance assignments in double stranded synthetic DNA decamer d(ATAATCGATAT). The observed NOEs further establish that the nucleotides have an anti-conformation of the bases relative to sugar which is consistent with the B-form of DNA. Brodio and Kearns (1982), on the other hand, have used 2D NOE and other relaxation measurements to conclude that poly C forms a left-handed helical structure in neutral solution.

Hilbers et al (1983) have studied the solution structure of yeast tRNA \textit{phe} using 2D NOE, have totally assigned imino proton spectrum, and have shown that the principal elements of x-ray structure of tRNA \textit{i.e.} the hydrogen bonding network and the stacking of the stems upon one another, are also found in solution. The imino protons of several pure E. coli isoacceptor tRNA species have been assigned by 2D NOE in H2O solution (Reid et al 1984). Borah et al (1984) have utilized phase-sensitive 2D NOE spectra, for studying three-dimensional conformation of several sonicated poly-deoxynucleotides in solution. They find that poly(dAdT)·poly(dAdT) and poly(dGm3dc)·poly(dGm3dc) in low salt and poly(dAdT)·poly(dAdT) in high salt are right-handed B-structures, in contrast to suggestions that poly(dAdT)·poly(dAdT) exists as a left-handed form either in low or high salt. Ravikumar et al (1984) used 2D methods, including 2D NOE, for studying the solution structure of d(CG)6 in low salt concentration and found indications of B-DNA structure, at least in some parts of the molecule.

Clore and Gronenborn (1985) have recently reviewed the use of 1D and 2D NOE for three-dimensional structure determination of DNA and RNA oligonucleotides in solution and have studied the solution structure of DNA hexamer d(CGTCGC) and octamer d(ACGGCGGT) (Clore and Gronenborn 1984; Clore et al 1985).

2D NOE has been utilized for determination of sequence and linkage sites in ceramide trisaccharide (Prestegard et al 1982) and for sequence and linkage site determination in
oligosaccharides of gangliosides (Koerner et al 1983). Homans et al (1984) have used 2D NOE along with other 1D and 2D NMR techniques for structural and conformational analysis of oligosaccharides.

5. Other developments

5.1 Accordian 2D NOE spectroscopy

Bodenhausen and Ernst (1981, 1982) extended the 2D NOE experiment into third time dimension without increasing the experimental time. The mixing time t_m of 2D NOE scheme, figure 1, was incremented in concert with t_1, such that $t_m = kt_1$ where k is a constant, and appropriately named this scheme as Accordian spectroscopy. The lineshapes of the cross and diagonal peaks of the resulting 2D NOE spectrum contain information on the rate constants governing the growth and decay of these peaks. It was shown that these rate constants could be extracted, in a straightforward manner, by appropriate data handling. However, whenever lines are overlapped or have multiplet structure as happens rather often in proton NMR spectra of biomolecules, the analysis of the data becomes complex. So far, application of Accordian spectroscopy has been limited to study chemical exchange networks via carbon-13 experiments where non-overlapping resonances are obtained (Huang et al 1981; Bodenhausen and Ernst 1982).

5.2 Combined COSY/NOESY experiments

Recently two groups have independently suggested collection of data following both the second and third pulses in the 2D NOE scheme, thus making it possible to collect both COSY and NOESY data in a single experiment, with the resolution in ω_2 dimension for COSY limited to $1/(2t_m)$ (Gurevich et al 1984; Haasnoot et al 1984). Appropriate phase cycling for carrying out these experiments have been given.

5.3 Relayed coherence transfer 2D NOE

Wagner (1984) has suggested combining a coherent transfer step along with 2D NOE experiment either before the NOE transfer or after, and named it Relayed NOESY. These experiments have been suggested to transfer a NOE peak from crowded to sparse spectral region and to solve ambiguities in the interpretation of NOESY cross-peaks.

5.4 CIDNP and 2D

Scheek et al (1984) have combined photochemically-induced dynamic nuclear polarization (photo-CIDNP) and 2D techniques (COSY, NOESY and INEPT) for identifying selectively three aromatic amino acid residues (tryptophan, tyrosine and histidine) on the surfaces of proteins. The 2D techniques are preceded by a saturation pulse and a short laser pulse to generate CIDNP. Interesting 2D spectra which lack the symmetry of conventional 2D spectra have been obtained in biomolecules.

6. Conclusions

The 2D NOE experiment has provided key information on conformation, dynamical properties and assignment of resonances of biomolecules which would have been
Acknowledgements

The author thanks C. K. Jodharia for discussions. The work is supported in part by the Department of Science and Technology, India.

References

[References are not visible on the image provided]
Anil Kumar

Macura S and Ernst R R 1980 *Moléc. Phys.* 41 95
Macura S, Huang Y, Suter D and Ernst R R 1981 *J. Magn. Reson.* 43 259
Meier B H and Ernst R R 1979 *J. Am. Chem. Soc.* 101 6441
Solomon I 1955 *Phys. Rev.* 99 559
Strop P, Wider G and Wüthrich K 1983a *J. Mol. Biol.* 166 641
Strop P, Cechova D and Wüthrich K 1983b *J. Mol. Biol.* 166 669
Wagner G and Wüthrich K 1982a *J. Mol. Biol.* 155 347
Wagner G and Wüthrich K 1982b *J. Mol. Biol.* 160 343
Wagner G 1984 *J. Magn. Reson.* 57 497
Wemmer D and Kallenbach N R 1983 *Biochemistry* 22 1901
Wider G, Macura S, Anil Kumar, Ernst R R and Wüthrich K 1984 *J. Magn. Reson.* 56 207
Williamson M P, Havel T F and Wüthrich K 1984 (preprint)
Wüthrich K 1983 *Biopolymers* 22 131
Wüthrich K, Billeter M and Braun W 1983 *J. Mol. Biol.* 169 949
Wüthrich K, Billeter M and Braun W 1984 *J. Mol. Biol.* 180 715