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Abstract

The phases in a generic low-energy supersymmetric model are severely constrained

by the experimental upper bounds on the electric dipole moments of the electron

and the neutron. Coupled with the requirement of radiative electroweak symmetry

breaking, this results in a large degree of fine tuning of the phase parameters at the

unification scale. In supergravity type models, this corresponds to very highly tuned

values for the phases of the bilinear Higgs coupling parameter B and the universal

trilinear coupling A0. We identify a cancellation/enhancement mechanism associated

with the renormalization group evolution of B, which, in turn, reduces such fine-tuning

quite appreciably without taking recourse to very large masses for the supersymmetric

partners. We find a significant amount of reduction of this fine-tuning in non-universal

gaugino mass models that do not introduce any new phases.

PACS numbers:13.40.Em,04.65.+e,12.60Jv,14.20.Dh

1 Introduction

Low energy supersymmetry (SUSY) [1] has been playing a central role in the quest for

physics beyond the standard model (SM). Since phenomenological consistency requires SUSY

to be broken, and broken softly (so as not to reintroduce any quadratic divergence), the

Lagrangian of the Minimal Supersymmetric Standard Model (MSSM) [2,3] includes soft and

gauge invariant SUSY breaking terms. While the generic MSSM Lagrangian may contain

many arbitrary soft terms, specific models for SUSY breaking have been proposed that

1Emails: tpuc@iacs.res.in, debchou@physics.du.ac.in, tpdd@iacs.res.in
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provide relationships between the MSSM parameters. Incorporating well-motivated new

interactions and particles at high mass scales, such scenarios drastically reduce the large

number of unknown parameters in the MSSM to only a few, thereby making the model more

predictive. We will focus here only on supergravity (SUGRA) [4, 5] type of models where

SUSY is considered as a local symmetry. These models incorporate a hidden sector wherein

SUSY is broken, and a visible sector where the MSSM fields reside and to which the breaking

is communicated by gravitational interactions. In N = 1 SUGRA, which incorporates grand

unification, one has a choice of three functions in building a model [4–6], namely the gauge

kinetic energy function fαβ(zi), the Kähler potential K(zi, z
†
i ), and the superpotential W (zi),

where zi refer to matter fields. In mSUGRA, the minimal version of the model, one has a

flat Kähler potential and a flat gauge kinetic energy function. The corresponding soft SUSY

breaking sector is characterized by only a few parameters, normally specified at the scale

of the grand unified theory (GUT) viz. MG ∼ 2 × 1016 GeV [7, 8]. These are the universal

gaugino mass m 1

2

, the universal scalar mass m0, the universal trilinear coupling A0 and the

universal bilinear coupling B0. In addition to these, there is a superpotential parameter,

namely the Higgs mixing term µ0. Unlike in the SM, where the breaking of the electroweak

symmetry necessitates the explicit introduction of a negative valued scalar mass-squared,

in a generic SUGRA model, the said breaking can be realized even for a positive mass-

squared term in the bare Lagrangian, thanks to radiative corrections [4]. In other words,

the renormalization of the soft SUSY breaking terms as one moves from the unification scale

down to the electroweak scale automatically engenders a negative mass-squared thereby

breaking the symmetry [9–12]. In a similar vein, the low energy parameters of the MSSM

(which are quite large in number) are obtained from only a few unification scale parameters

via the renormalization group equations (RGE) [12] integrated from MG to the electroweak

scale (∼ MZ). The two minimization conditions for the Higgs potential then eliminate µ0

(except for its sign) on the one hand, and, on the other, relate B0 to tanβ (≡ 〈HU〉/〈HD〉),
the ratio of Higgs vacuum expectation values. Thus mSUGRA may be characterized by

tanβ, m1/2, m0, A0 and sign(µ)2. With all the low energy parameters of the MSSM being

generated in terms of these few parameters, one has a considerable amount of predictivity

for the MSSM spectrum.

A different problem remains though, namely that of the SUSY CP violating phases. Many

2Our choice of sign for µ and A0 follows the standard convention of Ref [13].
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phases of SUGRA models can be rotated away. In an universal scenario like mSUGRA, the

gaugino masses can be considered real with the result that only two combinations of phases

(beyond the Cabibbo-Kobayashi-Maskawa quark mixing (CKM) phase already present in

the SM) are physical. A convenient choice for the two is given by φA0
for A0 (at MG) and θB

for the B-parameter at the electroweak scale. It should be noted though that many analyses

prefer to work with θµ, the phase of µ, instead of θB. An advantage of this latter choice is

that θµ0
∼ θµ since θµ does not run up to the one-loop level. These different descriptions

can be understood in terms of U(1)R and U(1)PQ (Peccei-Quinn) symmetries and the choice

of reparametrization invariant combinations of phases, a discussion of which may be found

in Refs. [3, 14]. A selection of past analyses using θB as an input parameter may be seen in

Refs. [15–20]. Here we note that a choice of θB instead of θµ as a phase parameter makes

the entire set of input parameters to be of soft-breaking origin.

A few important points need to be noted in the context of the SUSY CP problem.

The latter arises from the fact that the phases are highly constrained by the experimental

limits on the electric dipole moments (EDM) of the electron and the neutron [14–19,21,22].

Consequently, we are forced to admit one of the three eventualities:

1. The phase θB is very small—O(10−2) or O(10−3)—if the superpartners are not consid-

ered to be very heavy3. In addition, the phases of the A-parameters at the electroweak

scale are also constrained. In mSUGRA with phases, the requirement of having a

very small θB typically translates into a relatively large but highly fine-tuned value for

arg(B0) (i.e., B at MG). This, in turn, constrains the phase φA0
of A0, although to a

somewhat lesser degree. The fact that the issue of fine-tuning in phases at the GUT

scale arises out of the combined requirement of satisfying the EDM constraints and the

radiative electroweak symmetry breaking was discussed in great detail in Refs. [15–17]

as well as in Refs. [18,19]. In this paper we try to focus our attention on this problem

by looking at suitable models beyond mSUGRA that can have unique features in the

evolution of B.

2. The phases are large and less fine-tuned but the sparticles are massive. Of course,

fully ameliorating the SUSY CP problem in this fashion requires that the sfermions

be super-massive, thereby aggravating the problem of the little mass hierarchy in the

3θB may reach up to ∼ 0.1 in the focus point zone [23].
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Higgs sector. We will investigate whether the amount of fine-tuning can be reduced

even while one considers a lighter sparticle spectra.

3. Finally there is the possibility that the SUSY breaking parameters may have special

pockets where there can be a large amount of internal cancellations between the dia-

grams contributing to the electric dipole moments of electron and neutron [21]. This

means that phases could be large while sparticle masses are significantly light. This

scenario is highly parameter dependent and clearly depends on very delicate cancel-

lations. Hence we will not include this in our work while trying to focus on generic

behaviors.

As mentioned above, we would like to address the first and the second issues in this

analysis. We are particularly interested in exploring the possible role of non-universal gaugino

masses (NUGM) in reducing the fine-tuning in the phase θB0
. To quantify the latter, we

consider a naturalness like measure of the form

Φ = [∆θB0
/∆θB]θB→0. (1)

A large value for Φ would mean a lesser degree of fine-tuning of θB0
with respect to a variation

in θB satisfying the EDM constraints. The phase-derivative is evaluated at θB ∼ 0 with the

choice being dictated by the fact that the EDM constraints force |θB| to be close to zero.

Thus, this is a restrictive definition compared to the type of fine-tuning defined in Ref. [16].

We will see that the issue of such fine-tuning of phase can be addressed by focusing on

scenarios where there is a large evolution of the bi-linear Higgs coupling parameter B between

the electroweak scale and the GUT scale. The evolution of B depends on the U(1) and the

SU(2) gaugino masses, the trilinear couplings and tanβ. Within mSUGRA, in addition to

the evolution of |B| being typically small, the phase θB0
also turns out to be quite fine-tuned

(i.e. Φ tends to be small). In other words, for a given θB0
satisfying the EDM constraints, the

variation ∆θB0
that still is consistent with the constraints is generally much smaller than the

variation ∆θB allowed at the electroweak scale [15]. As we will see, the evolution in |B| may

be enhanced by appropriate mass relationships between the gauginos that are away from

universality at MG. At the same time, these would help in reducing the above-mentioned

fine-tuning so that Φ can be significantly increased in specific NUGM scenarios.

We, however, desist from choosing an arbitrary non-universal gaugino mass scenario since

that will introduce new phases [17]. As we will see in Sec.2, non-universalities in gaugino
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masses may originate from a non-trivial gauge kinetic energy function. The latter is a

function of chiral superfields and transforms as a symmetric product of the adjoint represen-

tations of the underlying gauge group. This leaves fαβ with the possibility of being in one or

more of several representations, one of which is the singlet. While the choice of the singlet

corresponds to mSUGRA, the non-singlet representations give rise to non-universalities in

the gaugino masses. It is possible to identify a suitable non-singlet representation in isolation

(i.e., we will not combine a non-singlet representation with the singlet or other non-singlet

representations) whose gaugino mass pattern is effective in generating a large evolution in

B. At the same time, there will be no additional phases to worry about since the overall

phase of the gaugino masses can be rotated away in a fashion similar to that in mSUGRA.

In this paper, we will analyze the consequences of a large evolution of the B-parameter

(mostly in the presence of such non-universalities) on the CP violating phases. Here, the

basic input parameters are tan β, m0, m 1

2

(providing with definite NUGM patterns), |A0|
along with its phase φA0

and the phase θB of B given at the electroweak scale (∼ MZ). Note

that |B| at the electroweak scale is obtained via radiative electroweak symmetry breaking

(REWSB) condition. Subsequently, |B0|, the GUT scale magnitude of the B-parameter along

with its phase θB0
is obtained via RGEs. We will identify broad but correlated regions of

parameter space where there can be a significant degree of reduction of the phase sensitivity

while going from mSUGRA to a type of NUGM models.

The paper is organized as follows. In Sec.2, we discuss the non-universal gaugino mass

models. The study of the relevant contributions from different sectors in the associated RGEs

of B and A parameters allows us to identify the non-singlet representations which provide

with a large evolution in B. We will probe the parameter space that is suitable for reducing

the amount of fine-tuning in the CP violating phases. In Sec.3, we present the numerical

results for the evolution of B. An analysis in the absence of phases points us to the favored

regions of parameter spaces. On inclusion of phases, this facilitates the identification of the

regions with significantly reduced level of fine-tuning, Finally, we conclude in Sec.4.
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2 Non-universal gaugino masses and enhanced evolu-

tion of B

Non-universality in gaugino masses may originate from a non-trivial gauge kinetic energy

function fαβ which, in turn, is a function of the chiral superfields in the theory. The indices

α, β run over the generators of the gauge group (for example, α = 1, 2, . . . 24 for SU(5)).

The gaugino mass matrix is given by

Mαβ =
1

4
ēG/2Ga(G−1)b

a(∂f ∗
αγ/∂z∗b)f−1

γβ (2)

where G = − ln[κ6WW ∗] − κ2K. Here, W is the superpotential, K(z, z∗) is the Kähler

potential, za are the complex scalar fields, and κ = (8πGN)−
1

2 = 0.41 × 10−18 GeV−1 with

GN being Newton’s constant. The functions fαβ may have non-trivial field contents, or

in other words, may contain combinations of field transforming as either singlet or non-

singlet irreducible representations [24]. With the gauginos being Majorana particles, fαβ , of

necessity, must be contained in the symmetric product of the adjoint representations of the

gauge group. For example, in the case of SU(5),

fαβ ⊃ (24 ⊗ 24)sym = 1 ⊕ 24 ⊕ 75 ⊕ 200 . (3)

For the singlet case, one has fαβ = δαβ which indeed leads to universality of gaugino masses.

Similarly, the non-singlet representations will give rise to non-universal gaugino masses.

In general Mi(MG) = m 1

2

∑

r Crn
r
i , where Cr’s give the relative weights of each contribut-

ing representation and nr
i , for the subgroup i, are essentially the Clebsch-Gordan coefficients

corresponding to the breaking by the adjoint Higgs field [24–26]. For the case of SU(5),

the coefficients nr
i are displayed in Table 1. Clearly, the non-singlet representations have

characteristic mass relationships for the gaugino masses at the GUT scale. Past analyses

exploring various phenomenological implications of such non-universality may be found in

Refs. [24, 25, 27–29].

As we shall argue later, the adjoint representation r = 24 for fαβ (NUGM:24 in the

notation of Table 1) is the most interesting one in the context of the present investigation.

Consequently, we will analyze this case in isolation, or, in other words, assume that the sole

contribution to fαβ is from a 24-plet structure. Apart from reducing the number of free

parameters, this has the additional advantage that no new phase degree of freedom for the
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gaugino masses is introduced. With the gaugino mass ratios at the GUT scale now being

given by M3(MG) : M2(MG) : M1(MG) = 1 : −3/2 : −1/2, for a positive gluino mass, the

other two gaugino mass parameters are negative, a signature different from mSUGRA. This

indeed would turn out to be useful in our quest. As mentioned earlier, we only consider

either C1 = 1 (mSUGRA) or C24 = 1 (NUGM:24) with all other Cr’s assumed to be zero.

r Label MG
3 MG

2 MG
1

1 mSUGRA 1 1 1

24 NUGM:24 2 −3 −1

75 NUGM:75 1 3 −5

200 NUGM:200 1 2 10

Table 1: The coefficients nr
i as pertaining to the SU(3), SU(2) and U(1) gaugino masses at

the GUT scale for different representations of SU(5).

An analogous analysis with SO(10) as the underlying gauge group is also possible [29,30],

though we will not investigate it in this paper. Similar to Eq.3 here, one has (45× 45)sym =

1+54+210+770. If the symmetry breaking pattern is SO(10) → SU(4)×SU(2)×SU(2) →
SU(3) × SU(2) × U(1), one finds from the 54-plet that M3(MG) : M2(MG) : M1(MG) = 1 :

−3/2 : −1. This pattern is quite similar to NUGM:24 as can be ascertained from Table 1.

We would like to comment at this point that, in general, such non-universal gaugino mass

scenarios change the gauge coupling unification conditions [24,26]. However, it is still possible

to find specific conditions [24,31] under which the usual gauge coupling unification condition

remains unaltered and we consider this in our work. Note though that our results are quite

robust and have very little dependence on the exact details of the spectrum.

2.1 Nature of evolution of B with real parameters

We now identify the differences between mSUGRA and NUGM:24 in regard to the evolution

of the B-parameter in the absence of CP violating SUSY phases. This, in turn, will help

us in understanding the evolution of θB upon the inclusion of the phases (see Refs. [17–20]

for past analyses discussing phase evolutions). Note that µ2 and B are determined via the
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REWSB condition, viz.

|µ|2 = −1

2
M2

Z +
m2

HD
− m2

HU
tan2 β

tan2 β − 1
+

Σ1 − Σ2 tan2 β

tan2 β − 1

sin(2β) = 2|Bµ|/(m2
HD

+ m2
HU

+ 2µ2 + Σ1 + Σ2) ,

(4)

where Σi represent the one-loop corrections [32,33]. The Higgs scalar mass parameters mHD

and mHU
, and thereby µ2 and B depend quite strongly on m0 as well as on m 1

2

. To one-loop

order, the running of the B parameter has two additive components, the first proportional

to the gaugino masses and the second depending on a combination of the trilinear couplings

and the Yukawa couplings [12, 17], namely,

dB

dt
= (3α̃2m̃2 +

3

5
α̃1m̃1) + (3YtAt + 3YbAb + YτAτ ) , (5)

where t = ln(M2
G/Q2) with Q being the renormalization scale. α̃i = αi/(4π) are the scaled

gauge coupling constants (with α1 = 5
3
αY ) and m̃i for i = 1, 2, 3 are the running gaugino

masses. Furthermore, Yi represent the squared Yukawa couplings, e.g, Yt ≡ y2
t /(4π)2 where

yt is the top Yukawa coupling. In a similar vein, the evolution of the trilinear terms is given

by
dAt

dt
= −(

16

3
α̃3m̃3 + 3α̃2m̃2 +

13

15
α̃1m̃1) − 6YtAt − YbAb

dAb

dt
= −(

16

3
α̃3m̃3 + 3α̃2m̃2 +

7

15
α̃1m̃1) − YtAt − 6YbAb − YτAτ

dAτ

dt
= −(3α̃2m̃2 +

9

5
α̃1m̃1) − 3YbAb − 4YτAτ .

(6)

For small tan β, the contributions from the bottom quark and tau Yukawa couplings yb

and yτ may be neglected, and the RGEs approximately integrated to obtain [15]

B − B0 ≃
D0(t) − 1

2
A0 − C(t) m 1

2

, (7)

where D0(t) ≡ 1 − 6Y (t)F (t)/E(t) with t corresponding to the electroweak scale. The

functions E(t) and F (t) encapsulate the running of the gauge coupling constants, viz,

E(t) = (1 + β3t)
16/(3b3)(1 + β2t)

3/b2(1 + β1t)
13/(15b1)

F (t) ≡
∫ t

0

E(t′)dt′

where βi = biα̃i(0) and (b1, b2, b3) = (33/5, 1,−3) are the coefficients in the respective one-

loop beta-functions. Of course, unification imposes the boundary condition that αi(0) =

8



αG ∼ 1/24. At the top mass scale (Q = mt), D0 ≃ 1 − (mt/200 sinβ)2 <∼ 0.2 is indeed a

very good approximation. The function C(t), in Eq.7, on the other hand, is given by

C(t) = −1

2
(1 − D0)

H3

F
+

(

3h2 +
3

5
h1

)

αG

4π
, (8)

where

hi(t) ≡ t

(1 + βit)

H3(t) ≡
∫ t

0

E(t′)H2(t
′)dt′

H2(t) ≡ α̃(0)

(

16

3
h3 + 3h2 +

13

15
h1

)

.

For the generic (NUGM) case, the above results remain the same except that [25]

hi(t) −→ h̃i(t) ≡ hi(t)
m̃i(0)

m 1

2

. (9)

Note that, in dB/dt, the gaugino contribution is positive for mSUGRA, but negative for

NUGM:24. Thus, it is useful to understand the nature of evolution of trilinear couplings in

either scenario so as to evaluate their role in the evolution of B. For the mSUGRA case, the

gaugino contributions to dAi/dt are always negative (vide Eq.6). Hence, it is obvious that if

A0 not be too large, then Ai would typically turn negative by the electroweak scale. In fact,

the large gluino contributions render both At and Ab negative well above the electroweak

scale. This implies, that in this case (mSUGRA), the two pieces in dB/dt would tend to

cancel each other, an effect also manifested by the smallness of C in Eq.7. In turn, this leads

to a small value for ∆B ≡ |B0 − B| in mSUGRA.

Comparing the evolution of the trilinear terms in NUGM:24 with that in mSUGRA,

it turns out that a qualitative difference arises only in the case of Aτ , while for At and

Ab the difference between the scenarios is only a quantitative one. This is easy to under-

stand given the overwhelming dominance, in the last two cases, of the gluino contribution

over those from the electroweak gauginos. Specifically, for A0 = 0, Aτ at the weak scale

comes to be negative for mSUGRA while it is positive (with usually a larger magnitude) for

NUGM:24. Given the relative weights of the Ai terms in Eq.5, it is thus quite apparent that

the total contribution from the trilinear couplings to the evolution of B is quite similar in

the two models. On the other hand, since the signs of m̃1,2 are reversed in NUGM:24, the

aforementioned cancellations in dB/dt would no longer be operative; rather, the different
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contributions would enhance each other leading to a large ∆B. This is the very reason why

we choose to concentrate on models like NUGM:24. We note in passing that although the

RGE for B does not explicitly include the SU(3) gaugino mass, it implicitly depends on the

latter via the contributions from trilinear couplings.

We now discuss the dependence of B and B0 on m0 and the other parameters. Being

obtained from the REWSB condition of Eq.4, B (and hence B0) evidently depends on m0

quite strongly. The structure of Eq.5 suggests that, to one-loop order, ∆B should not depend

on m0. However, a subsidiary dependence arises through the determination of the scale at

which the minimizations of Higgs potential (i.e. REWSB) is to be performed. Canonically,

this scale is determined by demanding that the contribution, to µ2, of the 1-loop correction

terms of the effective potential be small. In our analysis this scale is approximately halfway

between the lowest and highest mass of the spectra and, generally, is not very far from the

average stop mass scale
√

mt̃1mt̃2 (see Ref. [34]). Since this scale does depend on m0, it leads

to a small dependence in ∆B as well by virtue of being a limit of integration for the RGEs.

2.2 Incorporating CP violating phases: |B0|/|B| and phase natu-

ralness measure Φ

Even on inclusion of phases for the A and B parameters, the RGEs formally remain the same

as in Eqs.(5&6). The evolution of the phases can then be extracted by comparing the real

and imaginary parts of the said equations. Clearly, unlike in the case of the real parts, the

imaginary parts of the beta functions for A’s and B do not depend on the gaugino masses

and hence there is no cancellation between the different contributions. Furthermore, even a

vanishing θB0
can lead to a non-zero θB provided A0 has a non-trivial phase. For example,

in the small tanβ limit, the explicit analytical solution gives

|B| sin θB = |B0| sin θB0
− 1

2
(1 − D0)|A0| sin φA0

|B| cos θB = |B0| cos θB0
− 1

2
(1 − D0)|A0| cos φA0

− Cm 1

2

.

(10)

We examine now the interdependence between the phases, their evolution (also see Ref.

[15]) and the phase sensitivity Φ for different values of tanβ and other parameters both within

mSUGRA as well as NUGM:24. As we have already mentioned, the EDM constraints limit

θB to be tiny (<∼ 0.1, and typically much smaller). Now, if either of |A0| or φA0
is small

10



(actually, if |A0| sin φA0
≪ |B| sin θB), then θB0

would be determined essentially by |B|, |B0|
and θB. In this case, φA0

would be quite unconstrained. The dependence on tan β is crucial

and is best understood by considering the two opposite limits, namely small and large values:

• For a small tan β (<∼ 5 or so), sin 2β is large, and therefore |B| is appreciably large (see

Eq.4). Within mSUGRA, for not too large a value of |A0|, the GUT scale value |B0| is

then quite comparable to |B|. This can be understood by recognizing the cancellations

between the various terms in Eq.8 that keeps C small and thereby keep B−B0 relatively

small (courtesy Eq.7). Consequently, in such a scenario, θB0
is not too different from

θB. This remains true even for φA0
= π/2 which maximizes the EDM values [22].

On the contrary, the situation in NUGM:24 is quite different. Here, a larger difference

between |B| and |B0| is generated by the enhancement in C. Consequently, θB0
becomes

appreciably different from (and numerically larger than) θB.

• For a large value of tanβ, on the other hand, sin 2β is quite small. Thus, unless |µ|
is extremely tiny (as happens, for example, in hyperbolic branch/focus point [34, 35]

scenarios), |B| is constrained to be small and has only sub-dominant influence on the

evolution of θB. This, in turn, implies that the value of θB0
becomes strongly correlated

with that of φA0
. In other words, a high degree of fine-tuning in one will necessitate a

similar degree of fine-tuning in the other.

We now focus on the issue of phase sensitivity. As Eq.10 suggests, the range allowed to

θB (i.e. ∆θB) imposes rather strong limits in the θB0
–φA0

plane. Adopting the measure of

phase naturalness Φ (as espoused in Eq.1), one may estimate, from Eq.10, the amount of fine-

tuning associated with the phase θB0
. Now, as the RGEs suggest, the implicit dependence

of Φ on A0 occurs primarily through the dependence of B0 itself on A0. Thus, to the leading

order, one has an approximate relation of the form [15]

Φ ∼ |B / B0| . (11)

We would like to point out that although the above simplification (as also those of neglecting

yb and yτ) is quite illustrative, we do not take recourse to it. Rather we solve the complete

set of RGEs numerically and also compute Φ numerically directly from its definition (Eq.1).

Note that, as obtained from Eq.1 and the first of Eqs.10, the measure Φ actually involves

a factor of cos θB0
in the denominator. This causes Φ to be very large when θB0

is close to
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π/2, as also a change of sign for Φ when θB0
crosses π/2. We will see that this is indeed the

case for NUGM:24 where θB0
can easily cross π/2 owing to a large degree of phase evolution.

In the mSUGRA scenario, on the other hand, such a feature rarely appears.

As we have already discussed, mSUGRA is associated with a relatively small degree of

evolution in B, and hence |B| ∼ |B0|. This leads to a low value of Φ ∼ 1 or, equivalently,

to a high degree of fine-tuning in θB0
. On the other hand, a non-universal gaugino mass

scenario like NUGM:24 can provide us with a large evolution of |B|. This, of course, can

generate either |B / B0| ≪ 1 or |B / B0| ≫ 1. The parameter space corresponding to the

latter case (which is typically satisfied better for smaller tan β zones) reduces fine-tuning in

θB0
. We will see that the said reduction can be as large as a factor of 10 to 20 compared to

mSUGRA. And finally, the very same large evolution of |B| also implies that |B0| ∼ 0 could

be a possibility within such scenarios. In NUGM:24 where the evolution of B is large, the

above reduction of |B0| toward zero is possible when |B| is large i.e. when tanβ is small.

In mSUGRA too this is possible, but only to a limited degree, as the aforesaid evolution

is smaller in extent. So |B| needs to be closer to zero in order to have a tiny |B0|. In this

sense, a requirement of a smaller |B| would then favor large values of tanβ for mSUGRA.

This we explore numerically in the next section.

3 Results: Degree of B-evolution and phase sensitivity

for mSUGRA and NUGM:24

We show our numerical results in two stages. To begin with, we examine the difference

between the evolution of B in mSUGRA and the NUGM:24 scenarios in the absence of any

phases. Building on the lessons drawn from this exercise, we investigate next the core issue

at hand, namely the behavior of the phase naturalness measure Φ in each of the scenarios

and the differences therein.

3.1 Results in the absence of CP violating phases

Focusing first on mSUGRA, we begin with the value of B as determined, by the REWSB

conditions, in terms of the other parameters of the model, viz, m0, m 1

2

, A0 and tanβ. This

study, coupled with that for the derived value at the GUT scale, B0, would serve to indicate
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the regions of the parameter space for which the phase sensitivity can be significantly reduced.
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Figure 1: (a) The dependence of B and B0 on m 1

2

in mSUGRA with the other parameters

fixed as shown. (b,c,d) The dependence of the ratio B0/B on m 1

2

, m0 and A0 respectively,

keeping the other parameters fixed.

Fig.1(a) shows the variation of B and correspondingly B0 with respect to m 1

2

. With an

illustrative choice of parameters, viz. m0 = 300 GeV, A0 = 0 and µ > 0, we exhibit our

results for tan β = 3 and 10. One finds that B, determined through the REWSB condition, is

almost linear with m 1

2

. The dependence on tanβ, on the other hand, is quite nonlinear; but

as already touched upon in the previous section, the REWSB condition implies that, for a

given m 1

2

, B decreases with increase in tanβ. As for the evolution of B, we find that B0 ∼ B

unless m 1

2

is quite large. This is reflective of the aforementioned cancellations between the
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gaugino and trilinear terms of Eq.5 in mSUGRA. For our choice of A0 = 0, this is same as

the cancellations between the terms of C of Eq.8. Once m 1

2

becomes large, the contributions

from the gaugino part of Eq.5 dominates and the cancellations are no longer as effective.

This causes B0 to supersede B as is shown in Fig.1(a).

The information regarding the evolution of B can also be parametrized in terms of the

ratio B0/B and this is displayed in Fig.1(b) as a function of m 1

2

. This ratio is of particu-

lar interest on account of its relatively straightforward relation with the phase naturalness

measure Φ (note that Φ ∼ |B / B0|). As could have been guessed from Fig.1(a) itself, the

variation with m 1

2

is nearly monotonic. The shallow dip at small m 1

2

values is a consequence

of the variation in the degree of cancellation between contributions to dB/dt and is difficult

to see analytically from the leading terms alone. For large m 1

2

, the ratio B0/B is seen to

increase with tan β, while for small m 1

2

the behavior is opposite. This, within mSUGRA,

indicates that a small value of m 1

2

, coupled with a large tanβ seems to be best suited for

achieving a low degree of fine-tuning in the phases.

In Fig.1(c), we display the dependence of the same ratio on m0. While the behavior may

seem intriguing at first, note that B depends on m0 only via the requirement of REWSB.

As Fig.1(a) has already shown us, for the reference value of m 1

2

= 300 GeV, B0 is typically

somewhat smaller than B. Now, B grows smaller as m0 decreases. Thus, for small m0 and

large tanβ, B can be very small and the aforesaid evolution implies that B0 would have

been negative. On the other hand, for large m0 values, B is large and thus the relatively

small evolution leaves the ratio B0/B very close to unity.

The dependence of B0/B on the trilinear coupling parameter A0 is quite linear (Fig.1(d)).

This, again, can be deduced from Eq.7 where fixing tanβ, m 1

2

and m0 will give rise to a linear

relation between B0/B and A0. Note that progressively larger values for tanβ increases the

importance of the trilinear term contributions to dB/dt, thereby increasing the slope of the

curve.

We now repeat the analysis for the case of NUGM:24 choosing A0 = 0 as before. However,

since the sign of the electroweak gaugino mass parameters are now reversed, the gaugino

contribution to Eq.5 would now enhance the trilinear contribution instead of cancelling it.

And since the sign inversion affects only the sub-dominant contributions to the evolution of

At,b, the latter remain close to their mSUGRA values with the result that the total trilinear

contribution to dB/dt suffers only a small relative change. The result is then a monotonic
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Figure 2: As in Fig.1, but for NUGM:24 instead.

decrease of B0 with an increase in m 1

2

, and hence, in an appreciably large amount of evolution

(Fig.2(a)).

A further consequence is that the ratio B0/B too is monotonic in m 1

2

(Fig.2(b)). The

slope though decreases with m 1

2

, leading to a flat behavior for moderately large m 1

2

values.

This can be understood by realizing that, apart from B being approximately linear in m 1

2

∆B too is approximately linear especially for large m 1

2

. While the steep slope for small

m 1

2

might seem intriguing given the almost linear behavior of both B and B0 in Fig.2(a),

it should be noted that B is very small for such m 1

2

and consequently any departure from

linearity would be magnified in the ratio. That the slopes at small m 1

2

values grow with tan β

is understandable too, as for larger tanβ, the trilinear term contributions to ∆B assume
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greater significance.

The abrupt ending of the curves, especially for larger tanβ values might seem curious.

However, note that Aτ is appreciably larger in NUGM:24 than in mSUGRA (see Sec.2.1).

This leads to a rapid suppression of mτ̃1 , the mass of the lighter stau. While the latter also

sees an enhancement on account of the SU(2) gaugino mass being significantly larger in

NUGM:24 in comparison that within mSUGRA for an identical value of m 1

2

, this effect is

sub-dominant. Consequently, for such parameter values, the lighter stau would have a mass

smaller than the lightest of the neutralinos thereby becoming the lightest supersymmetric

particle. Since this is phenomenologically unacceptable, such regions of the parameter space

have to be discarded. Note though that the extent of the allowed parameter range in the

m 1

2

–tanβ plane does depend on the value of m0.

Fig.2(c) displays B0/B for different values of tanβ as m0 is varied. As discussed before,

B increases with increase of m0 and diminishes with increasing tan β. For most of the region

(except when m0 is large and tan β quite small) the ratio can be large and negative because

of a large degree of evolution of B in NUGM:24. For larger tan β, B itself is much smaller.

Hence a large evolution results into a large negative B0. On the other hand, a larger value for

m0 pushes B higher and B0 would then be dragged down to a value near zero. Additionally,

we like to clarify that the larger tanβ curves really end near 2 TeV or so in Fig.2(c) because

of the REWSB requirement. This is unlike the smaller tan β contours that span the entire

m0 range displayed.

As for the dependence on A0 (see Fig.2(d)), the relationship is once again linear, as

predicted by Eq.7, for either of the two models under discussion.

3.2 Evolution of CP violating phases

Having analyzed the simple case of θB = φA0
= 0, we may now consider the effect of

phases. To start with, we continue to maintain θB = 0, but now consider φA0
= π/2, or,

in other words, a maximal phase in the trilinear coupling. This choice maximizes the EDM

values [22]. To study the generic features and compare with the results of Sec.3.1, we first

choose a relatively small value of |A0| (= 100 GeV). Thus, ℜ(Ai) and ℜ(B) would not be very

different from the analysis of Sec.3.1 because of the absence of any phase in the gaugino parts

of Eqns.(5 & 6) and the smallness of |A0|. With this choice of inputs, the only contributions

to dℑ(B)/dt or dℑ(Ai)/dt arise from ℑ(Ai) themselves, and hence there is no occasion for
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cancellations/enhancements unlike in the case for the real parts. In addition, the effect of

φA0
on |B0| would be limited even for maximal φA0

unless |A0| is quite large. This is reflected

by Figs.3, wherein we display the variation of both |B| and |B0| with m 1

2

for either model.

The results are seen to be consistent with the no-phase cases of Fig.1(a) and Fig.2(a).
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Figure 3: B and B0 vs m 1

2

for the displayed parameters with non-zero φA0
in mSUGRA and

in NUGM:24.

We now invoke a non-zero θB and analyze the resulting evolution of the same from

the electroweak scale to the GUT-scale. In Figs.4, we display this for both mSUGRA and

NUGM:24, and in each case for two values of tanβ, namely 3 and 10. Again, for illustrative

purposes, we choose, for the other relevant parameters, m0 = 100 GeV, m 1

2

= 300 GeV and

|A0| = 300 GeV with φA0
= π/2. Although the constraints from the EDM measurements

restrict |θB| to very small values (<∼ O(10−2)), we display the functional dependence for a

wider range of θB. The apparent discontinuities for the NUGM:24 curves are not physical

and have only been occasioned by the choice for the domain of θB0
, namely [−π, π]. Clearly,

the amount of phase evolution in NUGM:24 is seen to be higher than that in mSUGRA.

Having established that the degree of fine tuning could, in principle, be smaller in the

NUGM:24 case, we now perform a scan of the parameter space for both mSUGRA and

NUGM:24 so as to quantify the extent of this reduction. In each case, we consider two

different values of tan β (= 2, 10) while maintaining φA0
= π/2 so as to maximize the EDM

values. Allowing m0, m 1

2

and |A0| to vary up to 1 TeV (with the lower end set in accordance

with the current limits on super-particle masses), we show, in Figs.5, the scatter plots in the
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Figure 4: θB0
vs θB for tan β = 3 and 10 with other parameters are as shown for mSUGRA

and NUGM:24 scenarios. θB0
(defined to lie in the range [−π, π]) is seen to be larger for

NUGM:24.

Φ–m 1

2

plane. It is interesting to note that, for low to moderate values of tanβ, the measure

Φ rarely becomes negative in the mSUGRA case, whereas in the non-universal scenario it is

more evenly distributed.

While |Φ| does tend to concentrate around zero (Fig.5(c)), note that, for small tan β,

the NUGM:24 case does have a significantly dense distribution up to |Φ| ∼ 20 and values

as large as |Φ| ∼ 100 are also obtained, albeit with a reduced frequency. In contrast, the

mSUGRA case barely registers a presence even for Φ ∼ 1.5 (Fig.5(a)). Thus, in going from

mSUGRA to NUGM:24, the fine-tuning can be reduced by a factor as large as ∼ 70. For

the tan β = 10 case though, the improvement is much more moderate. As Fig.5(b) shows,

the mSUGRA scatter reaches up to Φ ∼ 3.5, whereas the non-universal scenario admits

|Φ| ∼ 10 (Fig.5(d)), or, in other words, a reduction of the maximal fine tuning by a factor

of ∼ 3. More important, though, is that the density of points at higher Φ is much larger in

the NUGM:24 case than for mSUGRA. In other words, it is far more likely to have a less

fine-tuned point in the parameter space for NUGM:24.

Concentrating on NUGM:24, we present, in Fig.6, contour plots for Φ in the m0 − m 1

2

plane for two different values of tanβ. Note that the limits on m0 and m 1

2

are 2 TeV, higher

than what was chosen for Fig.5. Once again, |A0| is fixed at 100 GeV with φA0
= π/2. A

comparison of the two plots clearly reinforces our earlier result that the fine-tuning is less
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Figure 5: Φ vs m 1

2

for mSUGRA and NUGM:24 for tanβ = 2 and 10, when m0 and |A0|
are scanned up to 1 TeV for φA0

= π/2.

severe for low tan β. Furthermore, the values of m0 and m 1

2

leading to a particular Φ are

highly correlated. Note that both signs for Φ are possible. The region where Φ changes

sign is associated with a parameter point where θB0
is ∼ π/2. To summarize, the results

displayed in Fig.5 and Fig.6 show that it is indeed possible to obtain a surprisingly large

amount of reduction of phase sensitivity even for relatively small sparticle masses.

We now explore, in detail, the range of tan β that is associated with very low level of

phase sensitivity or, in other words, a very large |Φ|. As has been argued earlier, |B| itself

strongly depends on tan β. Moreover, ∆B, and thereby B0 too, has a nontrivial dependence

on tanβ. Thus it is understandable that a very large |Φ| would indeed prominently highlight
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Figure 6: Contours of Φ in m 1

2

− m0 plane for tanβ = 2 and 10 in NUGM:24. A larger

|Φ| corresponds to a lesser degree of phase sensitivity. Switching of the sign of Φ in some

region of parameter space is associated with θB0
crossing π/2. Here |A0| = 100 GeV and

φA0
= π/2. Smaller tan β cases have larger values for |Φ|.

such a dependence. Rather than attempting a full, but very computing-intensive, scan over

the entire parameter space, we choose to restrict ourselves to the subset of the parameter

space that would naturally produce very large values for |Φ|, namely the region with small

|B0| and small |A0|. Hence we adopt a framework with given values for |B0| instead of

tanβ. The requirement of REWSB determines tan β once B0, m0, m 1

2

and A0 are fixed.

Note however, that the point A0 = B0 = 0 would imply the absence of any SUSY CP phase

at all scales. Thus, it is not surprising to obtain very large values of |Φ| in this scenario.

However, in this part of our work the focus is simply to study, the effect of tan β on Φ in

detail, more importantly for large |Φ| values. To quantify our study of this issue, we choose

small representative values viz. |B0| = 0.5 GeV and |A0| = 1 GeV, along with φA0
= π/2 so

as to maximize the EDM contributions as before. In Figs.7, we present various scatter plots

for Φ as m0 and m 1

2

are varied over a wide range (0 to 2 TeV). Note that the results of this

analysis have a significant dependence on |A0|. For example, increasing |A0| to 100 GeV may

reduce Φ by a factor of 10 to 20. As Fig.7(a) shows, within mSUGRA, |Φ| could be as large

as 100 while most of the points lie between 10 to 25. The situation is qualitatively different

in NUGM:24 (Fig.7(b)) where |Φ| may go up to 1500 while typically ranging between 200 to

600. Thus, NUGM:24 is much better able to accommodate low phase-sensitivity solutions

than do the universal gaugino mass scenarios.
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It is curious to note that, unlike what Fig.5 suggested, Φ could assume negative values

within mSUGRA (see Fig.7(a)). This prompts us present a scatter plot of Φ against the

derived quantity tanβ. As Fig.7(c) shows, mSUGRA admits negative Φ only for large tan β.

In fact, even for the positive branch, large values of |Φ| are typically concentrated in the large

tanβ (20 to 45) region. In contrast, for NUGM:24, Φ assumes larger values typically for low

tanβ values (2 to 5). It should be remembered in this context that, within NUGM:24, the

large tan β domain is significantly restricted from considerations of the LSP (see Sec.3.1).

That the favored range for tanβ is different in the two scenarios is attributable to the

interplay between the cancellations/enhancements in the RGE evolution of B on the one

hand and the requirement of REWSB on the other.

Finally, we comment on the case of µ < 0. It turns out that for this branch of µ and

φA0
= π/2, one has |B0| > |B| for almost all the parameter space of NUGM:24. As a result

one finds no advantage toward reducing the phase sensitivity.

4 Conclusion

As is well known, the experimental upper bounds on the electric dipole moments of the

neutron and the electron impose strong constraints on any source of CP violation in su-

persymmetric models, in particular on the weak scale phase parameters. For example, in

the minimal supergravity model, θB, the phase of the bilinear Higgs coupling parameter is

constrained to be typically smaller than 0.01, with only some very limited regions (such as

the focus point scenario) in the parameter space admitting slightly larger (<∼ 0.1) values.

This, however, implies a severe fine-tuning condition for θB0
, the value of the same phase

parameter at the unification scale. In turn, φA0
, the phase of the trilinear coupling param-

eter is also severely fine-tuned. This has been a longstanding problem with mSUGRA-like

scenarios.

To quantify this problem, we define a phase naturalness measure Φ as the ratio of the

spread of the phase θB0
at the unification scale that is consonant with the spread θB allowed,

at the electroweak scale, by the electric dipole moment constraints A larger Φ would imply

a lower degree of phase sensitivity. One finds that, unless tan β is very large, Φ may be

approximated to B/B0 for much of the parameter space.

In this analysis, we have demonstrated that models admitting a large RG evolution of the
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Figure 7: a) and b): Scatter plots corresponding to large values of |Φ| for mSUGRA and

NUGM:24 cases. A smaller value for |B0| as well as smaller |A0| enhance |Φ| both in

mSUGRA and NUGM:24. However, NUGM:24 is associated with much larger values for |Φ|
as compared to mSUGRA. c) and d): Displays of the associated values of tan β vs Φ. tan β

is small (2 to 5) for NUGM:24, whereas the same for mSUGRA is large (20 to 45).

bilinear Higgs coupling could be interesting in the context of a reduction in the fine-tuning

of phases. In particular, we choose a supergravity-inspired scenario wherein non-universal

gaugino masses arise from a gauge kinetic energy function fαβ transforming as a particular

non-singlet representation of SU(5) (NUGM:24 of Table 1). As in the mSUGRA (singlet

fαβ) case, this representation, considered in isolation, introduces no additional phase for the

gaugino masses.
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Studying the nature of the evolution of B to understand the correspondence with phase-

sensitivity, we identify the large cancellations in the RGE for B as being primarily responsible

for the high degree of fine-tuning within mSUGRA. In the NUGM:24, on the other hand, the

said cancellations are replaced by enhancements (on account of the reversal in the sign of the

gaugino mass terms) and this translates into a reduction of the above-mentioned fine-tuning.

In fact, Φ can be significantly increased in NUGM:24 (by a factor of 10 to 20) with respect to

comparable mSUGRA type of models. The said improvement is typically more pronounced

for small tan β values.

A particularly interesting result is the identification of extended regions in the NUGM:24

parameter space which admit a low degree of phase-sensitivity even for relatively small super-

particle masses. This feature is absent in mSUGRA as well as in most other models with

high scale inputs for SUSY breaking.

We further explored the dependence of our results, on tan β, by specifically concentrating

on the parameter space corresponding to very large Φ (or very small phase sensitivity) so as

to compare the two models. Naturally, this occurs close to vanishing A0 and B0 values. We

adopt a scheme where B0 itself is given as an input parameter instead of tanβ, given the

more direct relationship of B0 with Φ. Our analysis shows that, even here, the values of Φ in

NUGM:24 are typically larger by a factor of 10 to 20 in comparison to those in mSUGRA.

And whereas mSUGRA generically requires large tanβ (20 to 40) for |Φ| to be large, the

NUGM:24 scenario prefers a smaller tanβ (2 to 5) instead.

Finally, while our analysis has focussed on SU(5) as the GUT gauge group, similar

considerations hold for SO(10) as well. A suitable non-singlet representation resulting in a

similar gaugino-mass pattern as in NUGM:24 would also produce such a reduction of phase

sensitivity.
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