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Abstract

The Randall-Sundrum warped braneworld model is generalised to six and higher dimensions such
that the warping has a non-trivial dependence on more than one dimension. This naturally leads
to a brane-box like configuration alongwith scalar fields with possibly interesting cosmological roles.
Also obtained naturally are two towers of 3 branes with mass scales clustered around either of Planck
scale and TeV scale. Such a scenario has interesting phenomenological consequences including an
explanation for the observed hierarchy in the masses of standard model fermions.
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1 Introduction

Theories with extra spacetime dimensions have drawn considerable attention since the original pro-
posals of Kaluza and Klein. There has been a renewed interest in such theories since the emergence
of string theory. Several new ideas in such directions evolved to explore various implications of the
presence of extra spatial dimensions in the context of particle phenomenology and cosmology [1–7].
Although these ideas are not necessarily derived from string theory, there have been serious efforts
towards establishing links between the two. Two of the most prominent such extra dimensional theo-
ries developed in the context of the braneworld models are due to Arkani-Hamed, Dimopolous, Dvali
(ADD) [1] on the one hand and Randall and Sundrum (RS) [4] on the other. While the ADD model
involves the presence of large compact extra dimensions (the radius(radii) of the extra compact di-
mension(s) being much larger than the Planck length), the RS model proposes the existence of a
warped geometry in 3 + 1 dimensions in the background of a 4 + 1 dimensional anti de-Sitter (AdS)
bulk. Both the theories claim to solve the so called “naturalness problem” in standard model, which
originates from the need of an unnatural fine-tuning of parameters of the theory to stabilize the Higgs
mass within the TeV scale against large radiative corrections. Although the presence of large radii in
the ADD model indicates the reappearance of the hierarchy in a different guise, the RS scenario is
apparently free from such problems. However, in this case the braneworld model itself is not stable
and it was first shown by Goldberger and Wise (GW) [8] that by introducing a scalar field in the
bulk, the modulus—namely, the brane separation—in RS model can be stabilized without the need
of any unnatural fine-tuning. Assumption of a negligibly small scalar back-reaction on the metric in
the GW approach prompted further work in this direction where the modifications of the RS metric
due to back-reaction of bulk fields have been derived [9]. The stability issues in such cases have been
re-examined as also the effects of other bulk fields like gauge field or higher form fields been studied
in several works [10–13]. Such warped geometries are expected to have additional consequences in
particle phenomenology over and above the hierarchy issue.

As a natural extension to the RS scenario with one extra spatial dimension, several extensions of the
RS model to more than one extra dimension have been proposed [14]. In particular some cosmological
implications of warped geometry in six dimension have been explored in the context of dynamical
compactification of extra dimension [15]. Most of these consider the presence of several independent
S1/Z2 orbifolded dimensions along with M4. We, however, propose a more intricate scenario wherein
the warped compact dimensions get further warped by a series of successive warping leading to multiple
warping of the space-time with various p-branes sitting at the different orbifold fixed points satisfying
appropriate boundary conditions. Various lower dimensional branes along with the standard model
3-brane exist at the intersection edges of the higher dimensional branes. Thus the resulting geometry
of the D-dimensional space-time is M1,D−1 →

{
[M1,3 × S1/Z2] × S1/Z2

}
× · · ·, with (D − 4) such

warped directions. A series of scales are thus generated from each of these successive warpings and
we show that such a spacetime with multiple warping leads to interesting phenomenology.

The original RS model corresponded to a 5-dimensional AdS spacetime wherein the extra dimension
was S1/Z2 orbifolded. Two branes (called the standard model brane and Planck scale brane) were
placed at the two orbifold fixed points and appropriate brane tensions at the boundaries of the orbifold
were determined in terms of the bulk cosmological constant. In such a model, it was shown that
a TeV scale can be generated at the standard model brane without any unnatural fine tuning of
parameters. We propose here a model in a (5 + 1)-dimensional bulk AdS spacetime where both the
extra coordinates are compactified in succession on circles with Z2 orbifoldings. We show that the
six dimensional Einstein’s equation can be solved exactly for such a geometry and that the resulting
solution for the metric is doubly warped. Although the warping of the metric along one of the compact
coordinates resembles exponential warping as found by Randall and Sundrum, the other one turns
out to be a hyperbolic warping. Such a solution with doubly orbifolded boundary conditions results
in a box-like picture of the bulk, where the walls of the box are (4 + 1)-dimensional branes. The
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Z2 orbifoldings along the two compact coordinates puts stringent conditions on the brane tensions.
Four (3 + 1)-dimensional branes are formed at the four edges of the intersecting 4-branes. We can
then identify our 3 + 1 dimensional standard model brane with one of the edges by requiring the
desired TeV scale while the Planck scale brane resides at another edge. We thus live at one edge
of the proposed spacetime ith multiple warping. The other two edges correspond to two more 3 + 1
dimensional branes with some intermediate energy scales. With the aforementioned Z2 orbifoldings
further requiring coordinate-dependent brane tensions, a possible origin for the same is proposed. As
could be expected, the mass of a standard model scalar field like the Higgs boson is doubly warped
from the Planck scale down to the TeV scale and thereby the fine tuning problem is resolved. The
crucial aspect of the double warping scenario turns out to be unequal warping in two directions. We
show that while warping in one direction is large, the other is necessarily small.

We then generalise our result to a large number of extra dimensions, where several scales are
generated and because of unequal warping, half of these are clustered around Planck scale while the
rest are around TeV scale. We then argue that such a clustered scale brane model can offer a possible
explanation of the observed mass differences in the standard model fermions.

2 Six dimensional doubly warped spacetime

The spacetime that we are interested in is a doubly compactified six-dimensional one with a Z2

orbifolding in each of the compact directions. In other words, the manifold under consideration is
M1,5 → [M1,3 × S1/Z2] × S1/Z2. To set the notation, the non-compact directions would be denoted
by xµ (µ = 0..3) and the orbifolded compact directions by the angular coordinates y and z respectively
with Ry and rz as respective moduli. The corresponding metric is,

ds2 = b2(z)[a2(y)ηµνdxµdxν + R2
ydy2] + r2

zdz2 (1)

where ηµν = diag(−1, 1, 1, 1). Since orbifolding, in general, requires a localized concentration of energy,
we introduce four 4-branes (4 + 1 dimensional objects) at the orbifold fixed “points”, namely y = 0, π
and z = 0, π.

The total bulk-brane action is thus given by,

S = S6 + S5 + S4

S6 =

∫
d4x dy dz

√−g6 (R6 − Λ)

S5 =

∫
d4x dy dz [V1 δ(y) + V2 δ(y − π)]

+

∫
d4x dy dz [V3 δ(z) + V4 δ(z − π)]

S4 =

∫
d4xdydz

√−gvis[L − V̂ ] .

(2)

Note that, in general, we have, for the brane potential terms V1,2 = V1,2(z) whereas V3,4 = V3,4(y).
The presence of the term S4 indicates the contributions due to possible 3-branes located at (y, z) =
(0, 0), (0, π), (π, 0), (π, π).

The full six dimensional Einstein’s equation can be written as,

−M4 √−g6

(
RMN − R

2
gMN

)
= Λ6

√−g6 gMN

+
√−g5 V1(z) gαβ δα

M δβ
N δ(y) +

√−g5 V2(z) gαβ δα
M δβ

N δ(y − π)

+
√
−g̃5 V3(y) g̃α̃β̃ δα̃

M δβ̃
N δ(z) +

√
−g̃5 V4(y) g̃α̃β̃ δα̃

M δβ̃
N δ(z − π)

(3)
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Here M,N are bulk indices, α, β run over the usual four spacetime coordinates (xµ) and the compact
coordinate z while α̃, β̃ run over xµ and the compact coordinate y. And, finally, g, g̃ are the respective
metrics in these (4+1)-dimensional spaces.

On substituting our ansatz for the metric (eqn.1), the yy and zz components of Einstein’s equations
reduce to a set of two simpler equations, namely

2M4
[
3 r2

z a′2 + 3R2
y a2 ḃ2 + 2R2

y a2 b b̈
]

= −b2 a2 rz R2
y [rz Λ + V3 δ(z) + V4 δ(z − π)]

2M4
[
3 r2

z a′2 + 5R2
y a2 ḃ2 + 2 r2

z a a′′
]

= −b a2 r2
z Ry [Ry Λ b + V1 δ(y) + V2 δ(y − π)]

(4)

where primes denote differentiation w.r.t. y, while dots denote differentiation w.r.t. z. Starting with
the bulk part of eqn.(4), and rearranging terms, we have

a′2

a2
= c2 = R2

y

[
ḃ2

r2
z

+
2 bb̈

3 r2
z

+
b2 Λ

6M4

]
(5)

where c is an arbitrary constant. The solution to the above is given by

a(y) = exp(−c y) b(z) =
cosh(k z)

cosh(k π)

c ≡ Ry k

rz cosh(k π)
k ≡ rz

√
−Λ

10M4
.

(6)

It can be easily ascertained that eqn.(6) satisfies each of the two eqns.(4) as long as they are restricted
to the bulk. As is quite apparent from the form of the solution, the presence of an exponential warping
(as in RS model) in the y- direction necessitates a negative value for the bulk cosmological constant
Λ, thereby signalling an AdS bulk. Of course, for c2 < 0, an alternative (oscillatory) solution for both
a(y) and b(z) are possible. However, this, manifestly, does not lead to the desired warping of the
spacetime metric and hence shall not be considered any further. Similarly, we discount solutions of
the form b2(z) = −(c2 r2

z/k
2 R2

y) sinh2(k z) as this leads to a bulk metric with a (4, 2) signature.
Note that the Z2 orbifolding in the y-direction, namely y ≡ −y, demands that a(y) = exp(−c |y|)

whereas the symmetric form of b(z) obviates the need for an analogous requirement. The full metric
thus takes the form

ds2 =
cosh2(k z)

cosh2(k π)

[
exp (−2 c |y|) ηµν dxµ dxν + R2

y dy2
]
+ r2

z dz2 . (7)

Next, we focus our attention on the boundary terms so as to determine the brane tensions.
Using a(y) = exp(−c|y|) , substituting for c from equ. (6) and integrating the second of eqns.(4) over
an infinitesimal interval across the two boundaries at y = 0, y = π respectively, we obtain

V1(z) = −V2(z) = 8M2

√
−Λ

10
sech(k z) . (8)

In other words, the two 4-branes sitting at y = 0 and y = π have z-dependent tensions, a feature that
will return to in the next section. The fact that these tensions are equal and opposite is reminiscent
of the original RS-form and is but a consequence of the exponential warping and the fact of these
branes sitting at the orbifold fixed “points”.

Similarly, starting with the first of eqns.(4), using the solution for b(z) from (6) and integrating
over an infinitesimal interval across z = 0, we find,

V3(y) = 0 (9)
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This, of course, was to be expected since the smooth behaviour of b(z) as z → 0 obviates the necessity
for any localized energy density at z = 0. On the other hand, integrating over an infinitesimal interval
across z = π gives

V4(y) = −8M4 k

rz
tanh(kπ) , (10)

a constant, unlike the case for V1,2(z), but quite similar to the case for the original RS model. This,
again, is not unexpected, for V3,4 were introduced to account for the orbifolding in the z-direction
and with gzz being a constant, the corresponding hypersurfaces should only have a constant energy
density. The fact of gyy being a non-trivial function of y, however, made it mandatory that the two
hypersurfaces accounting for the y-orbifolding must have a z-dependent energy density.

2.1 Brane identities and the extent of warping

We have thus determined the tensions for all of the 4-branes in the theory. As indicated earlier,
the intersection of two 4-branes may be identified with a 3-brane with a tension that, to the leading
order, is an algebraic sum of the energy densities contributed by each of the 4-branes. With this
identification, the theory, thus, contains four 3-branes located at (y, z) = (0, 0), (0, π), (π, 0), (π, π).

With the 3-brane located at (y = 0, z = π) suffering no warping of the metric on it, it is logical
that it be identified with the Planck brane. Note that there is no unique assignement of the Standard
Model(visible) brane! Each of the other three offers a valid choice depending on the values of the
parameters (k, c). The latter, of course, are determined in terms of Λ, rz and Ry, with the 6-dimensional
Planck mass M being essentially the same as the 4-dimensional one because of the relation,

M2
P ∼ M4 rz Ry

2 c k

[
1 − e−2cπ

] [
tanh(kπ)

cosh2(kπ)
+

tanh3(kπ)

3

]
(11)

Each choice would have its own unique phenomenological consequences. If we adopt the conservative
view that there exists no other brane with a natural energy scale lower than ours, we must identify
the SM brane with the one at y = π, z = 0. For such a choice,

Vvis = −8M2

√
−Λ

10
VPlanck = 8M2

√
−Λ

10
[sech(k π) − tanhk π] (12)

with the two other 3-branes located at (0, 0) and (π, π) having tensions intermediate to the above.
Note that whereas the Planck-brane must always have a positive tension (given by eqn.12), it is not
mandatory that the SM brane must be a negative tension one. For example, we could have identified
the latter with the one at (0, 0) with the consequence that now, Vvis ≃ VPlanck but by paying the price
of having at least one brane—that corresponding to our present choice—having a lower energy scale.

Before ending this section, we examine the possible mass warping in the scalar sector of the
standard model, or, in other words, the status of the naturalness problem in such a scenario. With
the action for a free scalar propagating on the visible brane being given by

SH =

∫
d4x

√−gvis

[
gµν
vis DµH DνH − m2

0 H2
]

, (13)

a Planck scale mass m0 is warped to

m = m0
rz c

Ry k
exp(−π c) = m0

exp(−π c)

cosh(k π)
(14)

on the TeV brane which is quite akin to (but not exactly the same as) the RS case. An important point
to note is that if we want a substantial warping in the z-direction (from z = 0 to z = π), k π must be
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substantial, i.e. of same order of magnitude as in the usual RS case. But with c being determined by
eqn.(6), this immediately means that c must be small, unless there is a large hierarchy between the
moduli rz and Ry. This, in turn, means that we cannot have a large warping in y-direction as well
without introducing a new and undesirable hierarchy. Similarly, if we demand a large hierarchy in the
y-direction (a situation very close in spirit with RS), we must necessarily live with a relatively small
k <∼ O(1) and hence little warping in the z-direction.

An interesting consequence that emerges from this is that, of the two branes located at (y = 0, z =
0) and (y = π, z = π), one must have a natural mass scale close to the Planck scale, while for the
other it is close to the TeV scale. The latter statement immediately points to phenomenologically
interesting possibilities which shall be addressed later.

3 Origin of the coordinate dependent brane tension

We have noticed in the previous section that two of the (4+1)-dimensional brane tensions namely
V1,2 are functions of the coordinate z. While such coordinate-dependence might seem counterintuitive
at first, it should be realized that the Israel junction conditions only stipulate that there be a con-
centration of energy-density at the y = 0, π hypersurfaces and that these distributions must have the
stipulated z-dependence. A particularly simple mechanism for arranging such an energy concentration
has its origin in a scalar field confined to the respective branes.

Consider a scalar ϕ on one 4-brane, say on the brane at y = y0, (where y0 is either 0 or π) with a
potential V(ϕ). Since the metric on this brane is

ds2 = b2
0 cosh2(k z) ηµνdxµdxν + r2

z dz2

b0 ≡ e−2 c |y0| cosh−2(k π) ,
(15)

the action for the scalar is

Sϕ =

∫
d4x dz

√−g5

[
gAB
5 ∂Aϕ∂Bϕ + V(ϕ)

]
(16)

with gAB
5 being given by eqn.(15). This leads to an equation of motion of the form

r2
z

∂V
∂ϕ

= 8 k tanh(kz)ϕ′ + 2ϕ′′ (17)

where the primes denote differentiation with respect to z. Denoting

V(ϕ(z)) ≡ ρ(z) =⇒ ∂V
∂ϕ

=
ρ′

ϕ′
, (18)

the equation of motion becomes

r2
z ρ′ cosh8(kz) =

d

dz

[
cosh8(kz) (ϕ′)2

]
. (19)

Since, for the energy density to give the required brane tension, we must have

ρ(z) +

(
ϕ′

rz

)2

= V1,2 , (20)

as the case may be, we now need to find simultaneous solutions of eqns. (19&20) for each of V1,2.
Concentrating first on the 4-brane at y = π we find,

ρ(z) = v0

[
−7

6
sech(k z) + ξ sech4(k z)

]
, v0 ≡ 8M2

√
−Λ

10
, (21)
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where ξ is a constant of integration, and

ϕ′2

r2
z

= v0

[
1

6
sech(k z) − ξ sech4(k z)

]
. (22)

Positivity of the right hand side (over the entire 4-brane) requires

ξ ≤ 1

6
. (23)

The solution of eqn.(22) involves elliptic integrals. Rather than present the exact, but cumbersome,
expressions, we choose to display the profile of ϕ(z) in Fig.1. Since the value of ϕ(z) is not of any
physical relevance, we have fixed the constant of integration such that ϕ(0) = 0. As is quite apparent,
the variation of V(ϕ) with ϕ is not a rapid one, and the bulk of the energy density stored in ϕ is on
account of the rapidly varying metric. What is also reassuring is that the dependence of ρ(z) on the
parameter ξ is not extreme.
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Figure 1: The profile of the field ϕ(z) (upper panels) on the 4-brane at y = π as well as the corresponding
potentials (lower panels) ρ(z). The field is defined so that ϕ(0) = 0. Left (right) panels correspond to
k = 1 (10).

It may be observed from eqns.(18, 21 & 22) that although the potential for the scalar field V and the
scalar field φ are expressed in terms of the compact coordinate z, it is, in general, extremely difficult
to invert the relation and express the scalar potential V in terms of φ(z) through some algebraic
equation. This, however, can be achieved in certain limits. For example, in the ξ → −∞ limit, we
obtain

β(ϕ − ϕ0) = tanh(kz)
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where β2 = −v0 ξ r2
z/k

2 and ϕ0 is an integration constant. This, of course, is reminiscent of a kink
solution. The corresponding scalar potential is

V(ϕ) = −αv0[1 − β2(ϕ − ϕ0)
2]2 .

While this may seem to represent a potential unbounded from below, note that the solution need
not be a runaway one. Rather, φ = 0 is a deep local minimum of this solution, and the classical
configuration described above stretches from this minimum to a point far short of the summit that
φ would need to cross to be able to reach the runaway global minimum. It should also be borne in
mind that such potentials are not uncommon in effective field theories in general, and, in particular
the low energy actions derived from string theory which perhaps is the best candidate for ultraviolet
completion of such theories that we are concerned with. It should also be realised that large |ξ| is not
the only scenario wherein a closed form solution can be expected, but perhaps is the simplest one. In
the opposite limit, namely ξ → 0, eqn.(22) yields

ϕ′ = A
√

sech(k z) , A ≡
√

v0 r2
z

6
. (24)

Integrating this, we have, for large |k z|,

exp(−kz) ≈ 3 k

4 v0 r2
z

(ϕ − ϕ0)
2 , V (ϕ) ≈ − 7

4 r2
z

(ϕ − ϕ0)
2

where ϕ0 is an integration constnt. A much more interesting solution can be obtained by expanding
eqn.(24) around z = 0, namely

ϕ′(z) ≈ A

[
1 +

k2 z2

4

]−1/2

to yield

ϕ(z) ≈ 2A

k
tan−1 k z

2
, V(ϕ) ≈ −7 v0

6
sech

(
2 tan

k φ

2A

)
(25)

Note that the above potential is a periodic one! In Fig.2, we compare it with the exact numerical
solutions presented in Fig.1 for the ξ = 0 case. The remarkable agreement bears testimony to the
goodness of the approximation in eqn.(25), which is not surprising since it also analytically matches
with the approximate solution obtained above for large k z. For non-zero finite values of ξ, a good
approximate solution is admittedly more difficult to obtain, but the above examples illustrate that it
may not be impossible to!

While, for the 4-brane at y = π, the z-dependent brane energy density can easily be accounted for
in terms of the scalar ϕ(z), a similar analysis for the brane situated at y = 0, leads to a somewhat
different conclusion. For this (y = 0) brane we have

ρ = v0

[
7

6
sech(k z) + ξ̃ sech4(k z)

]
,

ϕ′2

r2
z

= v0

[−1

6
sech(k z) + ξ̃ sech4(k z)

]
. (26)

Once again, positivity of ϕ′2 requires

ξ̃ ≥ 1

6
cosh3(k π) . (27)

and as in the previous case, the large ξ̃ limit yields the potential for the scalar field V(φ) as,

V(ϕ) = ξ̃v0[1 − β2(ϕ − ϕ0)
2]2 (28)

It may be observed that in this case the potential is not unbounded from below. Proceeding similarly,
one can find the form of the scalar potential in small |ξ| regime also. Several comments are in order
here:
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Figure 2: The potential V(ϕ) on the 4-brane at y = π as function of ϕ for ξ = 0. The solid (red) curve
is the exact numerical solution while the dashed (blue) curve is the approximation of eqn.(25). Left (right)
panels correspond to k = 1 (10).

• If the hierarchy between the Planck scale and the TeV scale is to be explained primarily by the
warping in th z-direction, then cosh(k π) is large and eqn.(27) implies a very large value for the
parameter ξ̃. Although it might be argued that this unnaturalness is just a consequence of the
particular parametrization of ϕ(z) on this brane, the large difference between ξ and ξ̃ is indeed
disquieting.

• A (drastic) way out of this would be to exchange the field ϕ(z) (on this particular brane) for a
phantom scalar field (i.e., one whose kinetic term has the opposite sign). This, obviously, would
necessitate ξ̃ ≤ 1/6 rather than eqn.(27).

The presence of a phantom field in the theory does not necessarily imply a discernible role for it
on the SM 3-brane. However, if we identify the latter with the one located at (y = 0, z = 0)—see
Sect.2.1—then this raises the interesting possibility of obtaining a dark energy candidate with a
non-trivial equation of state.

However, as is well-known, such a scalar field is not admissible in a fundamental theory. Thus,
invoking such a course would necessitate considering the present theory as an effective field
theory description of a different theory. Though this, admittedly, is somewhat counterintuitive
in a theory purporting to be valid until MP , yet such an eventuality cannot be ruled out in
principle.

• A possible alternative to a phantom-like nature for ϕ(z) would be to postulate a non-minimal
coupling of the same to gravity on the brane, thereby effecting a change in both of eqns.(26).
This, however, needs further investigation.

• Perhaps the simplest way around eqn.(27) is to appeal to the fact that if we demand that the
warping in the y-direction is to account for the Planck scale–TeV scale hierarchy, then c is large
and k is small (see Sect.2.1). This, in turn, implies that not too large a value for ξ̃ can still
ensure positivity of ϕ′2.

While the alternatives listed above present several possible solutions to the problem of a z-
dependent energy density concentrated on the 4-brane at y = 0, it should be realized that each
will have its own unique set of phenomenological consequences (and, in the case of one, require an
ultraviolet completion). We postpone any such discussion to a future occasion and turn instead to a
brief examination of some outstanding issues.

The braneworld model proposed here faces the usual problem of stability of the moduli rz and
Ry, that one encounters even in the original 5 dimensional Randall-Sundrum model. To stabilize the
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single modulus rc in that model, the most well known mechanism was formulated by Goldberger and
Wise where a bulk scalar field is used to stabilize the brane separation. Here, one may carry a similar
analysis by incorporating a six dimensional bulk scalar field so that the back-reaction of the scalar
field on the background metric is negligibly small. By integrating out the scalar field, an effective
potential for the moduli can be generated. The minimization conditions of the potential would give
the stabilized value of the moduli. Since the corresponding solutions involve several hypergeometric
functions and elliptic integrals, we desist from presenting them here.

Finally, because of the flat nature of the metric on the 3-branes, the induced cosmological constant
on the TeV-brane, as in the RS case, vanishes identically.

4 Seven and higher dimensional spacetime with multiple

warping

In our task of extending our solutions to even higher dimensions, we start with a seven dimensional
spacetime wherein three dimensions are successively warped. In other words, the manifold of interest

is
[{

M (1,3) × [S1(/Z2)]
}
× [S1(/Z2)]

]
× [S1(/Z2)]. As in Sec.2, the total bulk-brane action is given by,

S = S7 + S6 + S5 + S4

S7 =

∫
d4x dy dz dw

√−g7 (R7 − Λ7)

S6 =

∫
d4x dy dz dw [V1 δ(w) + V2 δ(w − π)]

+

∫
d4x dy dz dw [V3 δ(z) + V4 δ(z − π)]

+

∫
d4x dy dz dw [V3 δ(y) + V4 δ(y − π)]

(29)

with appropriate actions (S5) for twelve possible 4-branes at the edges (z,w) = (0, 0), (0, π), (π, 0), (π, π),
(z, y) = (0, 0), (0, π), (π, 0), (π, π) and (y,w) = (0, 0), (0, π), (π, 0), (π, π) and eight possible 3-branes at
the corners, (y, z, w) = (0, 0, 0), (0, 0, π), (0, π, 0), (0, π, π), (π, 0, 0), (π, 0, π), (π, π, 0) and (π, π, π). As
a natural extension to our previous result we make the following metric ansatz:

ds2 = f2(w)
[
b2(z)

{
a2(y)ηµνdxµdxν + R2

y dy2
}

+ r2
z dz2

]
+ dw2 (30)

where ηµν = diag(−1, 1, 1, 1). Solving Einstein’s equation, one obtains, for the metric coefficients
a(y), b(z) and f(w),

a2(y) = e2 c y

b2(z) =






b2
1(z) =

c2

k2 R2
y

cosh2[k rz (z − z0)]

b2
2(z) =

−c2

k2 R2
y

sinh2[k rz (z − z0)]

f2(w) =






f2
1 (w) =

15 k2

Λ7
cosh2




√
Λ7

15
Rw (w − w0)




f2(w) = −15 k2

Λ7
sinh2




√

Λ7

15
Rw (w − w0)




,

(31)

where we have assumed that c2 > 0.
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Note that functions of the form b(z) ∼ eαz , or f(w) ∼ eβw are not solutions. As eqn.(31) suggests,
there are four materially different solutions in the bulk, [fi(w), bj(z)], i, j = 1, 2. However, it is easy
to see that for three of the four combinations, the seven dimensional spacetime is endowed with two
timelike and five spacelike direction. Discarding such solutions, we are left with only f(w) = f1(w),
b(z) = b1(z), or in other words,

ds2 =
cosh2(ℓw)

cosh2(ℓ π)

{
cosh2(k z)

cosh2(k π)

[
exp (−2 c y) ηµνdxµdxν + R2

y dy2
]
+ r2

z dz2

}
+ R2

w dw2

ℓ2 ≡ Λ7 R2
w

15

k ≡ ℓ rz

Rw cosh(ℓ π)

c ≡ ℓRy

Rw cosh(k π) cosh(ℓ π)
=

k Ry

rz cosh(k π)
.

(32)

As before, the factors of cosh(ℓ π) and cosh(k π) in the metric are included to ensure that the natural
scale never surpasses unity.

It may be observed that the 5-brane at w = π does not have a flat metric (y- and z-dependences).
Now, to obtain substantial warping in the w-direction (from w = π to w = 0), one would need ℓπ to be
substantial (same order of magnitude as the usual Randall-Sundrum case). However, this immediately
means that both k and c in eqn.(32) are small (for rz, Ry ∼ Rw). Which, in turn, implies that we
cannot have a large warping in either of y- and z-directions. Of course, if we do not demand a very
large warping in w [ cosh(ℓ π) ∼ O(1), or, in other words, ℓ π ∼ O(1) ], then we can have a large
warping in z (or y).

The seven-dimensional (triply-warped) theory, then, has a structure very analogous to that of the
six-dimensional (doubly-warped) one, not only in the functional dependence of the metric, but also
as far as the extent of warping is concerned. As can easily be recognised, the solution can be almost
trivially extended to even higher dimensions.

Note that orbifolding demands that we have to have branes situated at the edges of the n-
dimensional hypercube, and possibly 3-branes at the corners. Now, if one direction (say z1) suffers
from a large warping, then those in the other directions are necessarily small. This, then, leads to a
situation where all the 3-branes at the same z1(= z0

1) coordinate as ours must have a natural scale
relatively close to ours (TeV), although still separated from us by the small warpings in the (n − 1)
directions orthogonal to us. In other words, if we have SM-like fields in each of these 3-branes, the
apparent mass-scales (on each brane) would be close to TeV with some splittings. This leads to a
phenomenologically interesting possibilities which we discuss in the following section.

5 Some Phenomenological Consequences

5.1 Fermion Masses

We now speculate on some possible phenomenological consequences and constructs. The hierarchy
among the masses of the standard model fermions has been a subject of interest for a long time. There
have been various efforts in this direction through scenarios like radiative corrections, different grand
unification schemes etc. [16]. In a slightly different context of a universal extra dimensional model it
has been shown [17] that the requirement of anomaly cancellation in presence of two extra dimensions
constrains the number of fermion generations in standard model to three. We now explain how our
model of multiple warped geometry can give rise to the observed mass splitting in these standard
model fermions. As we have seen in Section 2, in a 6-dimensional doubly warped scenario, the extent
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of warping in the two directions are, in general, very different. In fact, if warping were to explain
the large hierarchy between the Planck scale and the apparent scale for the electroweak interactions
(namely the TeV scale), then the two warpings necessarily have to be very different in magnitude. In
other words, we have a situation such that there are two branes close to the Planck scale with two
more being at the electroweak scale. And the second TeV-like brane could as well have a natural scale
slightly below us as above us. In other words, if we have SM-like fields in each of these 3-branes, the
apparent mass-scales (on each brane) would be close to TeV with some splitting between them.

Now, imagine the SM fermions being defined by 5-dimensional fields, restricted to the 4-brane
at z = 0, which now defines the “bulk” for these fields. If the major warping has occurred in the
z-direction, then the natural mass scale of these fields is still O(TeV). The presence of a y-dependence
in the metric obviously leads to a non-trivial bulk wavefunction. Furthermore, since this 4-brane also
intersects two other 4-branes at y = 0 and y = π respectively, on the resultant 3-branes, the fermion
fields are allowed have brane-kinetic terms in addition to the bulk kinetic term [18]. The presence
of such boundary kinetic terms immediately alters the fermion wavefunction in the bulk (4-brane) as
well as on the 3-branes. This, in turn, changes the overlap of the fermion wavefunction with that of
a scalar located on the 3-brane and thus the effective Yukawa coupling. Note that the brane kinetic
term is the resultant of interactions of the given fermion field with the other fields on the brane. Thus,
slightly differing interactions on the distant 3-brane would result in a hierarchy amongst the effective
Yuakawa couplings on our 3-brane and hence the fermion masses.

It is easy to see that this feature is repeated in the case of higher-dimensional (d = 4+n) constructs
(Sections 3, 4). In addition, certain other features may also appear. Note that orbifolding demands
that we have to have branes situated at the faces and edges of the n-dimensional hypercube, and
possibly 3-branes at the corners. Once again, if one direction (say z1) suffers from a large warping,
then those in the other directions are necessarily small. This, then, leads to a situation where all the
3-branes at the same z1(= z0

1) coordinate as ours must have a natural scale relatively close to ours
(TeV), although still separated from us by the small warpings in the (n−1) directions orthogonal to us.
Now consider the different SM fermion fields to be higher-dimensional ones, but confined to different

p-branes, which are all situated at z1 = z0
1 and intersect to give our 3-brane. For each such fermion,

the corresponding p-brane defines the bulk. On account of the slightly different warping on each of
these p-branes. these fermions will have differing expressions for the wavefunction in the respective
bulk and thus on the SM 3-brane, thereby resulting in a hierarchy of Yukawa couplings. Furthermore,
the fermions would be associated with naturally differing brane kinetic energies which, in turn, leads
to further fine-tuning of the Yukawas. It should be noted that the above is only a plausibility argument
in favour of a geometrodynamical origin of fermion Yukawa masses in a multi-warped universe. A
realistic structure needs yet to be constructed.

5.2 Graviton tower

A different consequence, not necessarily related to the one discussed above, pertains to the nature
of the Kaluza-Klein towers. Assuming, for simplicity, that the SM fields are confined to our 3-brane
alone, we are faced with just one relevant field, namely the graviton. Clearly, we have a mutiple, and
intertwined, tower in place. To divine the exact nature of the tower including the spacings between
the modes and the corresponding eigenfunctions, requires us to solve the graviton equation of motion.
This can be done, in the weak-field limit, a la Randall-Sundrum on effecting some changes in variables.
Although it is obvious that the exact equations are much more complicated than in the RS case, several
qualitative features are easy to appreciate:

• If, as has been argued already, the bulk of the hierarchy problem is addressed by the exponential
warping in the y-direction, then k is small, and the z-dependence of the metric is small. This,
then, reduces the the situation to essentially a RS ⊗ ADD one, with the ADD radius being very
small. In other words, the graviton tower, as felt by low-energy experiments, would be almost
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identical to the RS case.

• For the opposite case, viz. k π ∼ 10, we again have a similar scenario, with the caveat that the
graviton wavefunction (and masses) would be changed somewhat compared to the RS case.

• Especially with the opening of many (upto 6, if we have string theory in mind) extra dimensions,
a more interesting possibility opens itself. If we allow for a progression of small ( <∼ O(10))
hierarchies between the moduli, then many intermediate scales become available to us. The
multiplicity of towers as well as the intermediate scale may become very relevant in collider
phenomenology.

6 Conclusions

In summary, the exact solutions of higher dimensional Einstein’s equation for a mutiply warped space-
time with negative cosmological constant has been found. It is shown that the hierarchy problem can
be resolved geometrically without invoking any further hierarchy among the various moduli provided
the warping is large in one direction and small in the other. Thus, in the case of a six dimensional
spacetime, one of the compact dimensions is nearly flat while the other is srongly warped. The re-
sulting geometry is thus similar to a combination RS and ADD scheme of compactifications. We have
further shown that such a situation automatically leads to a spectral splitting of scales around the
Planck and TeV scale thereby providing a clue to the mass splitting of the standard model fermions.
The 4-dimensional brane tension turns out to be dependent on compact coordinates, indicating the
existence of an effective scalar field distribution along the branes which is expected to have non-trivial
effects on the physics in the bulk. We further speculate that the excitation of bulk fields like scalar,
gravity , gauge and higher form tensor fields alongwith their appropriate Kaluza-Klein modes may give
rise to interesting phenomenological signatures in our search for extra dimension in the forthcoming
collider experiments.
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